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Abstract

Diffusion processes are usually simulated using the classical diffusion equation. In certain
scenarios such equation induces anomalous behaviour and consequently several improvements
were introduced in the literature to overcome them. One of the most popular was the
replacement of the diffusion equation by an integro-differential equation. Such equation
can be established considering a modification of Fick’s mass flux where a delay in time is
introduced. In this paper, we consider mathematical models for diffusion processes that take
into account a memory effect in time and space.

1 Introduction

The diffusion process is usually simulated using the classical diffusion equation

∂c

∂t
+∇ · (vc)−∇ · (DF∇c) = f in Ω× (0, T ], (1)

where T is a positive real, Ω is a bounded domain in Rn, c denotes the concentration of a solute,
v and DF represent, respectively, the velocity field and the diffusion tensor and f denotes a
source term. Equation (1) is established using the mass conservation law

∂c

∂t
+∇ · Jtotal = f, (2)

where the total mass flux Jtotal is split into Jtotal = Ja + JF , with Ja being the advection flux

Ja = vc, (3)

and JF given by Fick’s law
JF = −DF∇c. (4)

For instance, when diffusion processes occur in porous media, the diffusion tensor is replaced by

DF = DmI + Dd (5)

where Dm is the molecular diffusion coefficient and Dd represents the dispersive tensor that
depends on the velocity v. We remark that the mass flux JF can be split into JF = Jm + Jd

where
Jm = −Dm∇c

is the mass flux defined by the molecular diffusion and Jd is the mass flux induced by the
dispersion which in the Fick’s context can be given by

Jd = −Dd∇c. (6)
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It was observed, in this case, that (1) provides accurate results in laboratory environments
for perfectly homogeneous media and a deviation of the fickian behaviour occurs when nonho-
mogeneous media are used (see for instance [8, 12, 11]). Fick’s law also does not reproduce flux
behaviour in diffusion processes in biological tissues or polymeric materials. Indeed, it has been
observed in this case that the flux at a certain time t depends on the gradient of the concentra-
tion at a previous instant t − τ (see [2]). However, the main theoretical limitation induced by
(1) is the infinite propagation speed which is not observable in real data sets and it is associated
with its parabolic character.

To overcome the deviations observed when (1) is used, several approaches have been intro-
duced in the literature. A common approach is to assume that the dispersive mass flux Jd(t) is
related with the concentration c at a delay time t− τ , that is

Jd(t+ τ) = −Dd∇c(t), (7)

where τ is a delay parameter. Then, Fick’s law (6) can be approximated by

Jd + τ
∂Jd

∂t
= −Dd∇c, (8)

and from (2) we get

∂c

∂t
+∇ · (vc)−∇ · (Dm∇c)−

1

τ

∫ t

0
e−

t−s
τ ∇ · (Dd∇c(s))ds = f in Ω× (0, T ], (9)

provided that Jd(0) = 0. We remark that a three dimensional form of the nonfickian law of type
(8) was proposed in [16]. Initial boundary value problems based on (9) were largely studied from
a mathematical point of view. Without being exhaustive, we mention [1, 3, 5, 9, 10, 13, 15, 17,
7, 6].

An equation of the type of (9) was established in [18] using different arguments and with
Jd = β1‖v‖2I + β2v

tv. This remark allows us to establish that the delay approach for the
dispersion mass flux, at least in some convenient context, leads to the proposal introduced in
[18].

Under convenient smoothness assumptions, equation (9) is equivalent to the following hy-
perbolic equation

τ
∂2c

∂t2
+
∂c

∂t
+∇ ·

(
τv
∂c

∂t
+ vc

)
−∇ · (DF∇c)−∇ ·

(
Dm∇

∂c

∂t

)
= τ

∂f

∂t
+ f in Ω× (0, T ]. (10)

It is clear that if τ = 0 then (10) reduces to (1).
To simplify the presentation in what follows, Jd is represented only by J and Dd shall be

denoted as DnF , the nonfickian diffusion tensor. As introduced in [8], let us suppose that J at
a point x + τvJ at time t+ τ depends on the behaviour of the gradient of the concentration in
x at time t, more precisely, let us assume that

J(x + τvJ, t+ τ) = −DnF∇c(x, t), (11)

which can be approximated by

τ
∂J

∂t
+ τ(vJ · ∇)J + J = −DnF∇c. (12)

In (12), DnF represents the dispersion tensor which is responsible by the nonfickian behaviour
and vJ, that represents a nonfickian flux velocity, is a vector function depending only on x.
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To model the evolution of a concentration in a one-dimensional porous medium, an hyperbolic
equation can be obtained from (12) and the initial mass conservation law,

∂c

∂t
+∇ · (vc)−∇ · (DF∇c) +∇ · J = f in Ω× (0, T ], (13)

which was proposed in [14]. We point out that such hyperbolic equation was not obtained using
explicitly (12) nor the last expression was not mentioned in [14]. We point the reader to [8] for
an overview on these models.

Following similar techniques that were used to deduce equations (9) and (10), under suitable
regularity conditions, different (integro-)differential equations can be obtained from (12)-(13).
These formulations are satisfied by the same solution as (12)-(13) but given the nature of the
equations, new energy estimates can be proved and different quantities can be bounded.

A first possibility that we can follow to obtain a mathematical problem equivalent to the
system (12), (13) is to solve the mass flux equation (12) using the method of characteristics. In
fact, (12) can be rewritten in the following equivalent form

t′ = τ,
x′ = τvJ,
J′ + J = −DnF∇c.

(14)

The existence of the dispersive mass flux is guaranteed, at least locally, provided that vJ and
DnF∇c are Lipschitz functions. In this case, after solving the initial value problem associated
with (14), the expression of J is obtained in function of DnF∇c. Let us consider now the simplest
case: vJ = Const. In this case using the method of characteristics in (12), we obtain for the
dispersion mass flux the following representation

J(x, t) = e−
t
τ J(x, 0)− 1

τ

∫ t

0
e−

t−s
τ DnF∇c(x + vJ(s− t), s) ds. (15)

In this case, with Ω∗ = {x ∈ Ω : x− tvJ ∈ Ω} , and considering the mass conservation law (13),
equation (9) is replaced by

∂c

∂t
+∇ · (vc)−∇ · (DF∇c) +∇ · J(0)e−

t
τ

−1

τ

∫ t

0
e−

t−s
τ ∇ · (DnF∇c(x + vJ(s− t), s)) ds = f in Ω∗ × (0, T ],

(16)

which requires smoothness on J at t = 0.
It is clear that (14) admits an explicit expression for the dispersion mass flux J in simple

cases. Moreover, in such cases, an integral representation for the dispersive mass flux of the type
of (15) can be obtained. However, such representation puts a set of significant computational
difficulties beyond the smoothness requirement for the J at initial time, like the computational
cost of the integral term, the use of spatial grid that depends on time and that needs to be
defined in each time level.

Another possibility is the replacement of (12), (13) by an hyperbolic equation as the one
proposed in [14]. From (13) we obtain

τ
∂2c

∂t2
+ τ∇ ·

(
v
∂c

∂t

)
− τ∇ ·

(
DF∇

∂c

∂t

)
+ τ∇ · ∂J

∂t
= τ

∂f

∂t
. (17)
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From (12) we get

τ∇ · ∂J
∂t

= −τ∇ · ((vJ · ∇)J)−∇ · J−∇ · (DnF∇c) (18)

where

∇ · J = −∂c
∂t
−∇ · (vc) +∇ · (DF∇c) + f (19)

being this last representation deduced from (13). Furthermore, equation (13) enable us write

τ∇ · (vJ∇ · J) = −τ∇ ·
(
vJ
∂c

∂t

)
− τ∇ · (vJ∇ · (vc))− τ∇ · (vJ∇ · (DF∇c)) + τ∇ · (vJf). (20)

If
∇ · (vJ∇ · J) = ∇ · ((vJ · ∇)J), (21)

then from (17)-(20) we conclude

τ
∂2c

∂t2
+ τ∇ ·

(
(vJ + v)

∂c

∂t

)
− τ∇ ·

(
DF∇

∂c

∂t

)
− τ∇ · (vJ∇ · (DF∇c)

+τ∇ · (vJ∇ · (vc))−∇ · ((DF + DnF )∇c)

+
∂c

∂t
+∇ · (vc) = f + τ

∂f

∂t
+ τ∇ · (vJf) in Ω× (0, T ].

(22)

We point out that the establishment of (22) requires the condition (21), smooth data and it
should be complemented with the initial conditions

∂c

∂t
(0) = −∇ · J0 + f(0) +∇ · (DF∇c0)

c(0) = c0.

(23)

We remark that for pure nonfickian diffusion processes, equation (22) takes the form

τ
∂2c

∂t2
+ τ∇ ·

(
(vJ + v)

∂c

∂t

)
+ τ∇ · (vJ∇ · (vc))

−∇ · (DnF )∇c) +
∂c

∂t
+∇ · (vc) = f + τ

∂f

∂t
+ τ∇ · (vJf) in Ω× (0, T ].

(24)
In conclusion, to model the diffusion processes that occurs in a bounded domain Ω ⊂ Rn,

with fickian behaviour and nonfickian behaviour characterized by memory in time and in space,
we consider the differential system (12), (13) which is complemented with initial data

c(x, 0) = c0(x) and J(x, 0) = J0(x), x ∈ Ω. (25)

Regarding boundary conditions, let us first introduce a disjoint decomposition of the boundary:
∂Ω = ΓD ∪ ΓN and denote n(x) (or simply n) the unit outer normal vector at x ∈ ∂Ω. We
assume that ΓN is isolated, this means that we do not have any mass flux, and in ΓD we know
the concentration c

Jtotal · n = 0 on ΓN , c = cn on ΓD. (26)
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where Jtotal represents the total mass flux

Jtotal = −DF∇c+ vc+ J.

In what follows we assume that c0 = 0, otherwise a change of variables needs to be consid-
ered which turns our model more complex. To summarize we remark that the coupled system
(12),(13) comprises three components for the mass flux: the advective mass flux, the fickian mass
flux (modeling, for instance, the molecular mass flux) and a nonfickian component (through
(12)).

In this paper our aim is to study, from an analytical and numerical view point, the coupled
model (12), (13) with convenient boundary and initial conditions. The paper is organized as
follows: in Section 2, we obtain energy estimates for the proposed model as well as for the
equivalent formulations introduced in Section 1; finally, in Section 3, we simulate the evolution
of the coupled model and illustrate the different behaviour of the variables.

2 Energy estimates

In this section we focus on obtaining an energy estimate initial boundary value nonfickian prob-
lem (12),(13),(25),(26). We also establish an energy estimate for an equivalent pure nonfickian
hyperbolic problem to clarify the properties of the solution of the coupled problem (12)-(13).

2.0.1 Some notations

Let us first introduce some notations, necessary for the following sections. We denote by L2(Ω),
H1(Ω) and more generally W k,p(Ω) the standard Sobolev spaces of scalar functions defined in
Ω and L2(∂Ω) denotes the usual L2 space of functions defined on ∂Ω. Given a nonzero measure
portion Γ of ∂Ω, H1

Γ(Ω) denotes the space of H1(Ω) functions that have zero trace on Γ. Also,
the equivalent spaces for vectorial functions are represented using the same notation, but with
bold letters. With an abuse of notation, we shall denote by the same notation, (·, ·), the inner
product of L2 and L2.

Given a space V as any of the ones introduces before, we define

L2(0, T ;V ) =

{
u : (0, T ) −→ V :

∫ T

0
‖u(s)‖2V ds <∞

}
and

H1(0, T ;V ) =

{
u ∈ L2(0, T ;V ) :

∂u

∂t
∈ L2(0, T ;V )

}
.

The two previous spaces are Banach spaces with the following norms:

‖u‖2L2(0,T ;V ) =

∫ T

0
‖u(s)‖2V ds, ‖u‖2H1(0,T ;V ) =

∫ T

0

(
‖u(s)‖2V +

∥∥u′(s)∥∥2

V

)
ds.

For vectorial functions, the definitions follow the same notation as for the scalar counterparts.
The space C([0, T ];V ) shall denote the subspace of L2(0, T ;V ) of continuous functions in time.

Finally, given vJ ∈W1,∞(Ω) and u ∈ H1(Ω) (or u2 ∈ H1(Ω)), we use the notation

|u|2vJ,∂Ω =

∫
∂Ω
u2vJ · n ds

(
or |u|2vJ,∂Ω =

∫
∂Ω
|u|2vJ · n ds

)
.
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Of course that if
vJ · n ≥ 0 a.e. on ∂Ω, (27)

then |.|2vJ,∂Ω defines a seminorm in L2(∂Ω).
In what follows we assume that the matrices DF and DnF that arise in (12), (13) are real

symmetric matrices a.e. in Ω and there exist uniform bounds αF , βnF , αnF , βnF > 0 such that

αk|ξ|2 6 ξTDk(x)ξ 6 βk|ξ|2,∀ξ ∈ Rd, ∀x in Ω (28)

with k ∈ {n, nF}, where | · | denotes the Euclidean norm. In the following sections, to obtain
energy estimates, we shall assume that (27) holds.

2.1 Coupled model

For the coupled problem, we assume that vJ ∈W1,∞(Ω) and v = 0 (pure diffusion problem).
The mixed weak formulation for the coupled model reads as: given f ∈ L2(0, T ;L2(Ω)), c0 ∈

L2(Ω), J0 ∈ L2(Ω) find c ∈ L2
(

0, T ;H1
ΓD

(Ω)
)

, J ∈ L2
(
0, T ;H1(Ω)

)
such that

∂c

∂t
∈ L2(0, T ;L2(Ω)),

∂J

∂t
∈ L2(0, T ;L2(Ω)) and(
∂c

∂t
(t), v

)
+ (DF∇c(t),∇v)− (J(t),∇v) = (f(t), v) a.e. in (0, T ), ∀v ∈ H1

ΓD
(Ω)

τ

(
∂J

∂t
(t),w

)
+ (J(t),w)

+τ ((vJ · ∇)J(t),w) = − (DnF∇c(t),w) a.e. in (0, T ), ∀w ∈ H1(Ω).
(29)

Before the establishment of an energy estimate for this problem, let us denote by αnF,−1 and
βnF,−1 the constants in (28) that make the inequalities hold for D−1

nF . Let dij denote the matrix
entries of D−1

nF .

Proposition 1. Let f ∈ L2(0, T ;L2(Ω)), c0 ∈ L2(Ω) and J0 ∈ L2(Ω). If dij ∈ W 1,∞(Ω) and
the matrix

B(vJ,D
−1
nF ) := [div(dijvJ)]ij (30)

is negative semidefinite a.e. in Ω, then the solution (c,J) of (29) in C([0, T ];L2(Ω))×C([0, T ];L2(Ω))
verifies the following estimate:

‖c(t)‖20 + ταnF,−1 ‖J(t)‖20 + αF

∫ t

0
‖∇c(s)‖20 ds+ 2αnF,−1

∫ t

0
‖J(s)‖20 ds

6 ‖c0‖20 + ταnF,−1 ‖J0‖20 + ε

∫ t

0
‖f(s)‖20 ds

(31)

for some positive constant ε.

Proof. We start by taking v = c(t) in the first equation of (29). Using (28) it follows that

1

2

d

dt
‖c(t)‖20 + αF ‖∇c(t)‖20 6 (J(t),∇c(t)) + (f(t), c(t)).

Applying Cauchy-Schwarz’s and Young’s inequality, we deduce, for all ε > 0,

1

2

d

dt
‖c(t)‖20 + αF ‖∇c(t)‖20 6

ε

2
‖f(t)‖20 +

1

2ε
‖c(t)‖20 + (∇c(t),J(t)). (32)
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On the other hand, taking w = D−1
nFJ(t) in the second equation of (29), we immediately

conclude that

τ

(
D−1

nF

∂J

∂t
(t),J(t)

)
+
(
D−1

nFJ(t),J(t)
)

+ τ
(
D−1

nF (vJ · ∇)J(t),J(t)
)

= − (∇c(t),J(t)) . (33)

It follows from (28) for the inverses that

αnF,−1 ‖J(t)‖20 6
(
D−1

nFJ(t),J(t)
)
. (34)

For t ∈ (0, T ), let

I1(t) =

(
D−1

nF

∂J

∂t
(t),J(t)

)
and I2(t) =

(
D−1

nF (vJ · ∇)J(t),J(t)
)
.

Since D−1
nF does not depend on t, it is straightforward to conclude that

I1(t) =

(
D−1

nF

∂J

∂t
(t),J(t)

)
=

1

2

d

dt

(
D−1

nFJ(t),J(t)
)
. (35)

On the other hand, using integration by parts we conclude that

I2(t) =
(
D−1

nF (vJ · ∇)J(t),J(t)
)

=
1

2

∫
∂Ω

(D−1
nFJ(t)) · J(t)(n · vJ) ds− 1

2

(
B(vJ,D

−1
nF )J(t),J(t)

)
.

(36)
Combining (34), (35) and (36) in (33)

τ

2

d

dt

(
D−1

nFJ(t),J(t)
)
+αnF,−1

(
‖J(t)‖20+

τ

2
|J(t)|2vJ,∂Ω

)
6 − (∇c(t),J(t))+

τ

2

(
B(vJ,D

−1
nF )J(t),J(t)

)
.

(37)
Since B(vJ,D

−1
nF ) is negative semidefinite

τ

2

d

dt

(
D−1

nFJ(t),J(t)
)

+ αnF,−1

(
‖J(t)‖20 +

τ

2
|J(t)|2vJ,∂Ω

)
6 − (∇c(t),J(t)) . (38)

Owing to the Poincaré inequality, we can choose a positive ε such that

1

2ε
‖c(t)‖20 6

αF

2
‖∇c(t)‖20 . (39)

Inserting (39) in (32), integrating (32) and (38) over [0, t] and summing the resulting in-
equalities term by term, we get

αnF,−1τ

2
‖J(t)‖20 +

1

2
‖c(t)‖20 +

αF

2

∫ t

0
‖∇c(s)‖20 ds

+αnF,−1

(∫ t

0
‖J(s)‖20 ds+

τ

2

∫ t

0
|J(s)|2vJ,∂Ω ds

)
6 +

1

2

(
‖c0‖20 + ταnF ‖J0‖20

)
+
ε

2

∫ t

0
‖f(s)‖20 ds

(40)
that leads to (31).

Remark 1. The technical assumption (27) is a requirement in the previous proof. However, this
assumption is valid in a considerable range of cases. Indeed, if we recall [8], the flux velocity is
the velocity associated with the flow of a fluid. Bearing this is mind, in this particular (although
wide) setting, it is subjected to possibly homogeneous Dirichlet or zero normal trace boundary
conditions, allowing the flux velocity to satisfy condition (27). On another scenario, assuming
for instance that the velocity is given by Darcy’s law, full Neumann homogeneous boundary
conditions (for the associated pressure) also translate in the satisfaction of this condition.
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Remark 2. The negative semidefiniteness of B(vJ,D
−1
nF ) is a condition that steams from the

presence of a nonzero flux velocity and its physical meaning is not clear in the more general
setting. However, in the case that DnF is constant, this condition is satisfied if we assume that
∇ · vJ = 0. As already pointed out in Remark 1, given that the flux velocity can be associated
with a fluid flow, this condition holds for incompressible fluids.

An estimate similar to (31) could be obtained considering different norm/semi-norm for the
flux, namely ‖J(t)‖0,D−1

nF
:=
(
D−1

nFJ(t),J(t)
)

and |J(t)|2vJ,∂Ω =
∫
∂Ω |J(t)|2vJ ·n ds, for which the

new estimate would read

‖c(t)‖20 + τ ‖J(t)‖2
0,D−1

nF
+ αF

∫ t

0
‖∇c(s)‖20 ds

+2

∫ t

0
‖J(s)‖2

0,D−1
nF

ds+ τ

∫ t

0
|J(s)|2

vJ,∂Ω,D−1
nF

ds 6 ‖c0‖20 + τ ‖J0‖20 + ε

∫ t

0
‖f(s)‖20 ds.

(41)

3 Numerical simulation

In this section we apply a finite element method to approximate the solution of (29) in a two-
dimensional setting. This will serve to illustrate the behaviour of the solution of the coupled
model, under different choices of parameters.

We start by introducing the numerical method. Let N be a positive integer and ∆t a positive
real such that N = T

∆t . The points ti = i∆t, i = 0, . . . , N define a partition in [0, T ]. Let h
denote a positive real and Th a quasi-uniform mesh on Ω, with mesh size h and Vh the space
of piecewise linear polynomials built on Th. Let Vh,0 = Vh ∩ H1

Γ(Ω) and Ph : L2(Ω) −→ Vh
denote the L2 projection operator onto Vh. The corresponding vectorial versions of Vh and Ph

are represented by bold letters.

3.1 Numerical method

The finite element approximation of (29) reads as: given c0
h = Phc0 and J0

h = PhJ0, find
cn+1
h ∈ Vh,0 and Jn+1

h ∈ Vh such that

1

∆t

(
cn+1
h , vh

)
+
(
DF∇cn+1

h − Jn+1
h ,∇vh

)
= (Phf(tn+1), vh) +

1

∆t
(cnh, vh) , ∀vh ∈ Vh,0( τ

∆t
+ 1
) (

Jn+1
h ,wh

)
+ τ

(
(vJ · ∇)Jn+1

h ,wh

)
+
(
DnF∇cn+1

h ,wh

)
=

τ

∆t
(Jn

h,wh) , ∀wh ∈ Vh.

(42)

Remark 3. Method (42) treats coupled problem (29) fully implicitly and we expect that this
scheme benefits from reasonable stability properties. It can be shown that (42) satisfies a discrete
version of (31).

Remark 4. The equation for the nonfickian flux is, assuming the term −DnF∇c acts as a
source, of convection-reaction type. Standard finite element formulations as (42) might not
perform very well for certain choices of τ and vJ. In order to increase the robustness of the
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numerical method, we add an interior penalty stabilization term, see [4], to the left hand side of
the second equation of (42)

j(Jh,wh;vJ) := γ
∑
F∈FI

∫
F
h2
F |vJ · n|[[∇Jh]]F · [[∇wh]]F ds, ∀Jh,wh ∈ Vh, (43)

where FI denotes the set of interior faces of the triangulation Th, [[·]]F denotes the usual jump
function across the face F , h2

F is the length (for d = 2, or area for d = 3) of face F and γ > 0
is a parameter.

3.2 Comparison of different flux behaviours

In this section we try to illustrate the behaviour of some of the solutions of system (13)-(12).
For our first numerical simulation, let us start by fixing some data and initial conditions.

Let Ω = (0, 1)2. We consider DF = DnF = µnF I = 0.01I, where I denotes the identity matrix,
and the following initial conditions

c0(x, y) = e−
(x−0.5)2+(y−0.5)2

0.02 , J0(x, y) = −µnF∇c0(x), ∀x ∈ Ω.

The initial concentration profile is plotted in Figure 1. We consider homogeneous Dirichlet

Figure 1: Concentration profile at t = 0.

boundary conditions at x = 0 and x = 1 and homogeneous Neumann conditions at y = 0 and
y = 1. The discretization parameters are chosen as h = 0.02 and ∆t = 0.005. We start by
simulating the case vJ = 0 and consider different values for τ : τ = 0, 10−3, τ = 10−2 and
τ = 10−1. Note that the first test, τ = 0 corresponds to the pure fickian regime. From Figure
2, the increase of τ does not seem to have a substantial effect on the solution. It is however
noticeable that for values of τ big enough, the numerical solution obtained is nonphysical, which
does not happen for small values of τ . This can be explained by the fact that, for large enough
τ (we can think of the limiting case τ −→ +∞), the solution of this problem is the solution of
a wave type equation. In fact, from (22), taking τ big enough, vJ = 0 and f = 0, we conclude
that the solution c of the differential system is the solution of the wave equation. Therefore,
the behaviour exhibited in Figure 2(d) is in perfect agreement with the behaviour of the exact
solution of the system. In this example, we do not observe any different decay or delay in the
concentration when comparing with the fickian case.

We consider now another example. Let us take another initial condition and choice of
parameters; let Ω denote the same domain as before and

c0(x, y) = 100x(1− x) [1 +H(y − 0.4)(−5(y − 0.4))−H(y − 0.6)(1− 5(y − 0.4))] ,
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(a) Pure fickian diffusion: case τ = 0 (b) Case τ = 0.01

(c) Case τ = 0.1 (d) Case τ = 1

Figure 2: Plots of concentration profiles at t = 0.5 for different choices of τ .

where H denotes the Heaviside function. The same boundary condition setting as in the previous
example is chosen. We take the fickian and nonfickian diffusion tensors as DF = DnF = I. To
illustrate the behaviour of the parameter τ (while still considering a zero nonfickian flux velocity),
we run several simulations (h = 0.01,∆t = 10−4) corresponding to τ = 0 (pure fickian diffusion),
τ = 10−3 and τ = 10−2.

In Figure 3(a) we plot the concentration profile at t = 0. For the different values of τ , the
evolution of the concentration is very similar, see Figures 3(b)-3(d). We can however notice
that the larger τ is, the faster the diffusion process seems to occur. To further investigate
this phenomena, we looked at the maximum and average concentration as a function of time,
see Figures 4(a) and 4(b). From Figure 4(a), at first the diffusion is delayed by the increased
parameter τ (although the difference is not very significant), but as time evolves, the diffusion
accelerates and the concentration decreases faster than in the fickian case. The latter behaviour
is also evident in the average concentration plot, see Figure 4(b).

Finally we consider again the first simulation in this section, but with vJ given as

vJ = α(x, 2(y − 1))T , ∀(x, y) ∈ Ω,

where α > 0 is a constant parameter used to control the maximum magnitude of vJ. In Figure
5 we plot the numerical solution obtained with h = 0.02,∆t = 0.02, T = 0.08, τ = 10−2, µ =
0.1, γ = 0.1. Only for large values of α we can notice a different behaviour induced by the
extra convective flux term. As in the previous simulation, the choice of the parameter vJ has
an impact on the profile of the concentration c. While in the previous case we noticed an
acceleration in the diffusion process, the consideration of a flux velocity induces some sort of
convective phenomenon to the concentration field, which, in this case, breaks the symmetry of
the solution.
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(a) Initial concentration (b) Pure fickian diffusion: case τ = 0

(c) Case τ = 0.01 (d) Case τ = 0.1

Figure 3: Plots of concentration profiles at t = 0.1 for different choices of τ .

4 Conclusions

We have considered a coupled system of equations to model a diffusion process presenting a
fickian and nonfickian mass flux contributions. This model introduces a memory effect in time
and space for the flux.

In some special cases, we showed that the coupled problem is the same as others already
proposed in the literature. Also, the energy estimates obtained for the coupled problem are
consistent with the ones found for those other equivalent formulations. A finite element method
was implemented to illustrate the different behaviour of the various effects of memory in time
and space.

It is our goal to apply the model studied in this paper to model diffusion (and advection) in
porous media. In this case, this system should be coupled with Darcy’s law for the velocity and
an elliptic equation for the pressure (for incompressible flows).
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(a) Maximum concentration over time (b) Average concentration over time

Figure 4: Plots of maximum and average concentration along time for different choices of τ .
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