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Abstract

In bilateral Negotiation Analysis, the literature often considers the
case of complete information. In this context, since the negotiators know
the value functions of both parties, it is not difficult to calculate the
Pareto efficient solutions for the negotiation. Therefore, rational negotia-
tors can reach agreement on this frontier. However, these approaches are
not applied in practice when complete information is not available. The
research question of our work is “It is possible to help negotiators achieve
an efficient solution in the absence of complete information regarding the
different parameters of the model?”. We propose to derive incomplete in-
formation about the preferences of negotiators from the statements they
make and the offers they exchange during the negotiation process. We
present and discuss three approaches that use this information in order
to help a mediator proposing a better solution than the compromise the
negotiators have reached or are close to reach.

keywords: Incomplete Information, Negotiation, Mediation, Integra-
tive Negotiation, “Dance of the Packages”

1 Introduction

In negotiations it is sometimes necessary to bring in the help of a third party,
in the form of a mediator or an arbitrator. A mediator is a person who should
be acceptable, impartial, and neutral who does not have the power to make
decisions on behalf of the negotiators. A mediator’s task is to assist the ne-
gotiating parties in establishing a positive climate and reach a solution. An
arbitrator is a neutral and impartial person who makes a decision in the nego-
tiation process by comparing previous results, using justice criteria or by other
methods. An arbitrator’s decision may or may not be binding. In this paper,
we develop new methodologies to support a mediator or arbitrator in advis-
ing negotiators (Raiffa’s externally prescriptive perspective [23]). However, the
methodology developed in this work can also be adapted to support one of the
parties based on a description of the other party’s behavior (Raiffa’s asymmet-
rically descriptive-prescriptive perspective).
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In this study, we will be concerned with bilateral (two-party) negotiations.
We consider integrative negotiations over multiple issues, which are the most
likely ones to benefit from the efforts of a mediator. Integrative (or win-win)
negotiation (see for example [33]) assumes the integration of resources and ca-
pabilities of parties to generate more value. This contrasts with distributive (or
win-lose) negotiation where the aim is typically the division of a single good
and the main concern of negotiators is to get the largest possible share of the
“pie”. In integrative negotiation, successful strategies include cooperation, in-
formation sharing and joint resolution of problems. Mediation and arbitration
are particularly useful in integrative negotiation, since they can help negotiators
to identify potential areas of improvement for both sides.

A typical form of negotiation is the “dance of packages” [23], in which of-
fers and counter-offers are successively presented by both parties. Imagine that
party 1 prepares a proposal that he finds appealing and hopes the party 2 would
accept. Then, party 2 will answer with a proposal of his own. As one would ex-
pect, party 1’s initial proposal might be wonderful for party 1 and unacceptable
for party 2. The counter-offers from party 2 might have the opposite charac-
teristics. Now there are two proposals on the table, and each side describes
the merits of its own offer and possibly criticizes the other. The dance of the
packages proceeds by making concessions in order to seek a compromise. In a
variation of this procedure, both parties might simultaneously put offers on the
table.

According to Raiffa [23], integrative negotiation requires constructing and
evaluating proposals covering various issues. This process entails the identifi-
cation of issues to solve, the specification of the possible levels of resolution for
each issue, and the specification of the scores of each possible combination of
levels. Scores can be obtained through an aggregation method, e.g. the additive
value model [23]. A value-based evaluation model allows each party to evaluate
their potential own proposals, proposals made by the other party, and their
BATNA (best alternative to a negotiated agreement).

In bilateral Negotiation Analysis, literature often considers the case of com-
plete information. If the mediator knows the value functions of both parties,
then he can calculate the set of Pareto efficient solutions and suggest an agree-
ment from this set. A solution is Pareto efficient if it is not possible to im-
prove the position of one party without worsening the value to one of the other
parties. The choice among the Pareto efficient solutions can be based on ad-
ditional criteria such as the fairness of the proposed compromise. However, in
real negotiations, neither the parties nor the mediator have complete informa-
tion about the preferences of all parties (see for example [17]). In many cases,
parties might not even have complete information about the parameters de-
scribing their own preferences, because the assumption that parameter values
can be precisely elicited is often unrealistic (see for example [6, 16, 34]). For a
mediator in a negotiation, obtaining information about the value functions of
the parties is even more difficult, since parties might strategically distort the
preference information they provide [30]. To support mediators in their task,
it is therefore necessary to consider methods which are based on incomplete or
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imprecise information about preferences.
In this paper we assume that the preferences of both parties can be roughly

modeled by an additive value function, as in Raiffa’s Negotiation Analysis [23].
However, we do not make the assumption that each party’s value function is
precisely known, i.e., we will not assume that the parties will indicate explicitly
and exactly the parameter values that fully define their model. Although we
do not assume complete information, we assume that at least some information
about preferences is available. This information can come from one of two
sources: it can be obtained implicitly by observing the offers or the decisions of
the parties, or it can be explicitly provided by the negotiators. In both cases,
we will assume that the information is provided in the form of comparisons of
proposals that are implicitly or explicitly made by the parties, rather than by
direct specification of utility functions, issue weights or other parameters.

Some approaches in the literature deal with incomplete information in the
context of negotiation problems (see, for example, [5, 8, 10, 17, 18]). The im-
portance of preference information is quite clearly mentioned in most of the
negotiation literature. An important objective in negotiation processes is to
achieve an integrative solution, which improves the position of both parties
with respect to the present situation. According to the Dual Concern model
[22, 28], these solutions can only be achieved if negotiators have a high con-
cern about both their own preferences and the preferences of their opponents.
This THis necessitates some information regarding the opponent’s preferences.
Typically, this information is not complete [31].

For negotiation processes with incomplete information on weights, Cĺımaco
and Dias [5] proposed an extension of the methodology of the software VIP-G
[7]. Their method is based on relaxing the set of weights each actor accepts
and defining convergence paths in the weights space. Lai et al. [17] presented
a model for situations where information is incomplete, the value functions are
not linear and are not explicitly known. The authors refer that one of the
main problems associated with multi-attribute negotiation is the difficulty of
making decisions in an n-dimension space. To reduce this problem, a process
was proposed that enables negotiators, in each period, to negotiate based on a
single line, with the help of a mediator. Though it is not difficult to involve such
a mediator in automated negotiations between software agents, there may exist
situations where a mediator is not trusted or cannot be introduced. Thus, Lai
and Sycara [18] focused on developing mechanisms for Pareto-efficient multi-
attribute negotiations without the presence of a mediator.

Ehtamo et al. [8] presented a class of methods called constraint proposal
methods, which are interactive methods to find Pareto efficient solutions through
common tangent hyperplanes. This process supports negotiations of two parties
about two or more continuous issues. A mediator tries to find a hyperplane,
through some reference points, so that the most preferred alternatives of both
parties in this hyperplane coincide. Heikanen [10] proposed an interactive pro-
cess to determine Pareto efficient solutions in negotiations with multiple parties
about continuous issues, with help from a mediator. This method does not
require that negotiators know the value functions of other parties or that the
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mediator knows all the value functions.
Our paper extends these existing lines of research in several directions. While

most existing literature proposes one approach to deal with the problem of in-
complete information, we systematically develop and compare three new ap-
proaches to support a mediator under incomplete information: the first is based
on robust conclusions, the second is based on inferred approximations, and the
third uses a domain-based analysis. These approaches will allow the mediator
to assess how each proposal he may put forward would be received by the par-
ties, namely if they would consider it as better than the ones they have already
considered (or even accepted as a compromise), and to know which would be
the most promising proposals according to some arbitration criteria. We also
consider different levels of incomplete information, in particular the case where
some parameters of the evaluation model are known (value functions, weights of
the value functions), and the case where no parameters of the model are exactly
known.

We envision two scenarios in which our methods could be applied:

1. The parties have reached a potential compromise and want to improve it.

2. The parties have not (yet) reached a compromise. There are two offers on
the table, which provide different utilities to the two parties.

In the latter case, each party can at least obtain the value which it receives
from the current offer made by the opponent. We therefore consider the value
levels offered to the other side by each parties’ proposal as the status quo in
such negotiations. Our approaches therefore are applicable both to improve
upon successful negotiations (to check whether the parties “left money on the
table”), and to find a potential compromise in negotiations which otherwise
might fail.

This paper is structured as follows. In section 2 we will present a general
framework for negotiations under incomplete information. In section 3 we will
propose three different approaches to suggest potential agreements. In section
4 we will present an illustrative example using the approaches presented in
section 3. We will finish in section 5 with some conclusions and thoughts on
future research.

2 A Framework for negotiations under incom-
plete information

2.1 Information levels

In this paper, we consider several different levels of information about the ne-
gotiators’ preferences over multiple issues that might be available to an outside
mediator. To formally characterize this information, we chose an approach sim-
ilar to [23] and assume that the true (but unknown) preferences of a negotiator
can be represented by an additive value function of the form
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(a potential compromise) in the jth issue and wk
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or “weight” of the value function vkj (.), for party k, and n represents the number
of issues. Without loss of generality, we further assume that the value function
is standardized so that:

0 ≤ wk
j ≤ 1, j = 1, ...n and

n∑
j=1

wk
j = 1 (2)

and
0 ≤ vkj (x(i)) ≤ 1. (3)

An additive value function imposes certain restrictions on the preferences
that can be represented, most notably preferential independence between the
issues being considered [12, 32]. While the additive form allows us some sim-
plifications in the models we are going to formulate (such as the use of linear
programming rather than nonlinear programming), our approach does not rely
very strongly on additivity of the value function. With some straightforward
adaptations, it can also be extended to other forms such as bilinear or multilin-
ear functions [12].

Function (1) allows for a classification of different types of information levels.
As a benchmark, we consider the case of complete information in which all
components of the value function are assumed to be known. By relaxing this
assumption, we consider two possible levels of incomplete information:

1. The weights wk
j are unknown, while the values vkj (x

(i)
j ) are known.

2. Both weights and values are unknown, and only very general assumptions
about the shape of the value function vkj (x(i)) are made.

In case 2, we restrict possible value functions by a lower and an upper bound.
If we can exclude increasing marginal values (which is reasonable and can easily
be assessed by asking simple questions to each party) the lower bound will be
formed by the linear function:

vlin(x
(i)
j ) =

xj − xj
xj − xj

(4)

where xj and xj represent the best and worst possible outcome in attribute
xj , respectively. The upper bound will be formed by a concave value function:

vcon(x
(i)
j ) = a+ b(−e−c∗x

(i)
j ) (5)

5



where parameters a and b are chosen to scale the function to values between zero
and one, and parameter c determines the degree of concavity of the function.

Values are thus restricted to vlin(x
(i)
j ) ≤ v̂(x

(i)
j ) ≤ vcon(x

(i)
j ), where we use v̂ to

indicate that this is an approximation of the unknown true value. For example,
in Figure 1 we would assume that m ≤ v̂price(11) ≤M . It should be noted that
utility values are only assumed to lie in the interval between the linear and the
concave function as shown in Figure 1. We do not assume that the “true” value
function itself has a particular shape or functional form.

Figure 1: Shape of a value function of the issue price (for a seller).

2.2 Representation of incomplete information

In the two cases outlined above, the mediator is not necessarily completely
ignorant about the weights and/or values, but might be able to extract at least
some information about them. Such information can be obtained in two ways:
(i) it can explicitly be provided by the negotiators, or (ii) it can be inferred from
observing their behavior during the process of the negotiation, in particular
from the offers that each of them makes and their reactions to offers from the
opponent.

In both cases, the information obtained by the mediator is most likely in
the form of statements of preference or indifference between alternatives, where
each alternative is characterized by a value for each issue. If information is
directly provided by the negotiators, the mediator could ask negotiators whether
they would consider another alternative to be about as good as a proposed
alternative. Whenever the mediator makes a proposal, he could also ask if this
proposal is indeed better than an offer already on the table, thus inferring the
direction of preference between these two alternatives.

In a concession-based negotiation process as represented by the “dance of
packages”, preferences between alternatives can also be inferred from the of-
fers made by negotiators during the process [31]. For instance, in a scenario
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where the negotiators have already reached a tentative compromise and wish
to improve upon it, one can safely assume that a negotiator will prefer that
compromise to all other offers made by the opponent during the negotiation.
Otherwise, it would in most cases be possible to revert to that previous offer
from the opponent (which the opponent could hardly reject, since it was him
who originally proposed it). Furthermore, in a dance of packages negotiation
process, negotiators typically start with offers very favorable to themselves and
then successively make concessions in the course of the negotiation. Thus we
can assume that a negotiator prefers all offers made by himself to the compro-
mise and also prefers his earlier offers to the offers he made later in the process.
From transitivity, it also follows that a negotiator will prefer all offers made
by himself to all offers made by the opponent. This last condition can also be
utilized if no compromise has been reached (yet).

Information about preferences of negotiators will therefore be available in the
form of statements of preference or indifference between alternatives. Assuming
an additive value function, the statement that alternative x(1) is preferred to
alternative x(2) can be represented by the condition (see, e.g., [11, 31]):

n∑
j=1

V k
j (x

(1)
j ) ≥

n∑
j=1

V k
j (x

(2)
j ), (6)
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where ε is a suitably small tolerance value.
The specification of V k

j depends on the information level being considered.
For the case of unknown weights and known values, it is defined as

V k
j (x

(i)
j ) = wk

j v
k
j (x

(i)
j ) (8)

i.e. the unknown weight is combined with the known value function of negotiator
k. In this case, the constraints are linear in the weights and define a feasible
set of weights Wk (a polytope) which can be considered as the set of possible
preference parameters of negotiator k.

In the second case, with unknown weights and unknown values, the values for

V k
j (x

(i)
j ) can directly be used as variables in the model, as in [9]. Let sj denote

the number of different values for x
(i)
j considering all the potential alternatives.

Let us define a vector of s1 + ...+ sn variables vki,j = V k
j (x

(i)
j ). These variables

can be used in constraints of type (6) and (7). Furthermore, if xkj represents the

best possible outcome in attribute xj for party k, then considering vkj (xkj ) = 1

we will have V k
j (xkj ) = wk

j .
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If we assume that values are ordered in decreasing order of preference, i.e.

that vk1,j represents V k
j (xkj ), we can express (2) as:

1 ≥ wk
j = vk1,j > vk2,j > . . . > vksj ,j = 0 and

n∑
j=1

vk1,j = 1. (9)

Therefore, we are dealing with linear problems even in the case where both
the weights and the values are unknown.

If the value function for each attribute is assumed to be known, the con-
straints (6), (7), and (2) (plus possibly other ones) define a polytope Wk of
admissible weights. In the case of unknown value functions, the constraints (6),
(7), and (9) (plus possibly other ones) define a feasible set of values we denote
by Mk (also a polytope). In either case, the polytope can be considered as the
set of possible preference parameters of negotiator k. It should be noted that
we assume here that all actions of a negotiator, and all preference statements
provided by a negotiator, are consistent with a true value function of the form
(1). If this is not the case, and constraints derived from the negotiator’s choices
contradict each other, these sets might become empty.

In the next section will use the general notation (w, v) ∈ (Wk,Mk) to indicate
that:

(w, v) ∈ (Wk,Mk)⇔


(wk

1 , ..., w
k
n) ∈Wk if vkj (.) is known.

(vk1,1, ..., v
k
s1,1, ..., v

k
sn,n) ∈Mk if vkj (.) is unknown.

(10)

2.3 Criteria for selecting alternative solutions

Using information of one of the types presented above, the mediator can sug-
gest one or several alternative solutions to the negotiators. Proposals from the
mediator should have a high chance of being accepted by both parties, and also
fulfill additional mediation criteria. We start by defining these criteria, and will
present three different approaches to obtain such proposals in the next section.

The dominance criterion is a natural starting point in selecting proposals.
If only this criterion is used, the mediator could identify all alternatives which
dominate the currently proposed compromise x(c) or the status quo of the ne-
gotiation. In negotiations which have not yet reached a compromise, the status
quo consist of the utility values which offers from both sides provide to the recip-
ient of the offer. Conversely, alternatives which are dominated by the proposed
compromise or by the status quo can be eliminated from further consideration.

Formally, let x(r) denote the reference (or reservation) point below which the
negotiators will not accept any alternative. If a compromise has been reached,
then x(r) = x(c). If a compromise has not been reached and the two last offers on
the table are x(o1) (offered by negotiator 1) and x(o2) (offered by negotiator 2),
then x(r) will refer to the point

(
V 1(x(o2)), V 2(x(o1))

)
in value space. Although
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(
V 1(x(o2)), V 2(x(o1))

)
is a fictitious alternative, it is not an utopian alternative

which is better than any existing one. By construction, this point is dominated
by x(o1) and x(o2), so it makes sense to search for other alternatives dominating
it.

The alternatives to be proposed by the mediator should, for both negotia-
tors, be better than x(r). Since preference information is incomplete, one can
distinguish here between alternatives which surely dominate x(r) (i.e. which are
better for both parties under all preference parameters still considered possible),
alternatives which possibly dominate x(r) (i.e. which are better for both parties
for at least one vector of preference parameters for each party), and alternatives
that cannot dominate x(r). In the last case, for at least one party, there is no
vector of preference parameters for which that alternative is better than x(r).

As a second criterion, the alternatives to be proposed should also be Pareto
efficient concerning the value they yield to each party. Once again, under in-
complete information, we can distinguish between alternatives that are surely
efficient, alternatives that are possibly efficient, and alternatives that cannot be
efficient (because they are surely dominated by another alternative).

If the mediator wants to present only one (or a small number) of alternatives
to the parties, additional criteria can be used to guide this selection. Several
such criteria can be developed, depending on whether the mediator is more
interested in finding an efficient solution (which maximizes total value creation)
or an equitable solution (which tries to balance the interests of the parties
involved). In this paper, we consider the following mediation criteria [23]:

1. The max-sum criterion, which maximizes the sum of values of both parties
and thus selects the alternative which is best according to total efficiency.

2. The max-min PoP criterion, which maximizes the minimum payoff, i.e.
the payoff to the negotiator who receives the lowest payoff from the ne-
gotiation result. To make payoffs comparable between negotiators, they
are standardized within the possible range by calculating the Proportion
of Potential (PoP).

Thus, the max-sum criterion selects the alternative which maximizes

V 1(x(i)) + V 2(x(i)) (11)

and the max-min PoP criterion maximizes

min
k

V k(x(i))− V k
min

V k
max − V k

min

(12)

where V k
max is the best payoff that negotiator k could achieve considering the

set of alternatives being considered, and V k
min is a lower limit on the payoffs

considered for negotiator k for the same set of alternatives. To ensure accept-
ability of the proposal, we only consider alternatives which are at least as good
as x(r) for both parties when maximizing the criteria.
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Naturally, other mediation criteria could be used, e.g., maximizing the prod-
uct of values exceeding x(r), which is equivalent to the Nash bargaining solution
using x(r) as a disagreement point. Although generalization to those other crite-
ria is straightforward, we will restrict our analysis in this paper to the max-sum
criterion and the max-min PoP criterion, because they lead to linear program-
ming models, while other criteria would require nonlinear models.

Considering incomplete information, we can again distinguish different classes
of alternatives: alternatives that are surely optimal for a criterion (i.e. maxi-
mize that criterion for all possible preference parameters), and alternatives that
are potentially optimal (i.e. maximize the criterion for at least one vector of
possible preference parameters, while for some other possible parameter values
the maximum is obtained at another alternative). Alternatives are called surely
non-optimal if no preference parameter (w, v) ∈ (Wk,Mk) exists at which the
alternative maximizes the criterion under consideration.

3 Approaches to suggest potential agreements

3.1 Extreme parameters approach

As a first approach, we formulate optimization models to identify alternatives for
which one of the mediator’s requirements described in the previous section surely
holds, or surely does not hold. An alternative surely meets a certain requirement
if that requirement is fulfilled for all possible parameter vectors. Similarly, an
alternative surely does not meet a requirement if that requirement is not fulfilled
for any of the possible parameter vectors. This analysis is only concerned with
one single alternative at a time, other alternatives might exist that also fulfill
the requirement. We call this first method the “extreme parameters” approach,
because we are looking for parameter values which lie on the boundary of the
feasible set, leading to extreme value differences.

To find out whether an alternative is surely better or surely worse than the
reference, a Linear Program (LP) can be solved. Recall that V k(x(i)) is the
value of alternative x(i) for negotiator k (k = 1, 2). Let mk

ij denote the solution
of the following LP:

max{V k(x(i))− V k(x(j))}
(w, v) ∈ (Wk,Mk)

(13)

Whenever mk
ij < 0, there is no possible combination of parameters which

would make alternative x(i) at least as good as x(j) for negotiator k, thus we
can say that x(j) is surely better than x(i) (or x(i) is surely worse than x(j))
with respect to the available information about negotiator k’s preferences.

Given the sets of feasible parameter values (W1,M1) and (W2,M2), it is
possible to determine, for each negotiator, which alternatives are surely better
than the reference point x(r) and which alternatives are surely worse than the
reference point. The mediator would like to propose an alternative x(i) such
that m1

ri < 0 and m2
ri < 0. The problem is that it can happen that there are
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no alternatives that are surely better than the reference for both negotiators.
Nevertheless, this approach is a good starting point: if there are alternatives
that are surely worse than the reference for one of the negotiators, then the
mediator can discard these alternatives, i.e., we can eliminate the alternatives
x(i) for which m1

ir < 0 or m2
ir < 0. These calculations are analogous to those

proposed by Dias and Cĺımaco [6] to obtain binary robust conclusions. Hence,
only the alternatives that are potentially at least as good as the reference for
both negotiators are candidates to be proposed to them.

The LP (13) can also be used to compare any other pairs of alternatives,
besides pairs containing the reference x(r). This allows to check for Pareto
efficiency. For a pair (x(i), x(j)), if m1

ji < 0 and m2
ji < 0, then x(j) is surely

worse than x(i) for both negotiators and hence x(j) is surely not Pareto efficient.
Thus it can also be discarded.

Let P denote the index set of the remaining candidate alternatives, after
discarding alternatives surely worse than the reference point for any of the
negotiators and alternatives surely not belonging to the Pareto frontier. To
discriminate between alternatives in P , the mediator might also try to identify
which ones can be potentially optimal according to a mediation criterion. For
the max-sum criterion the following LP is solved for each alternative x(i) ∈ P :

max δ
V 1(x(i)) + V ′2(x(i))− [V 1(x(j)) + V ′2(x(j))]− δ ≥ 0,∀j ∈ P, j 6= i
(w, v) ∈ (W1,M1)
(w′, v′) ∈ (W2,M2)
δ free

(14)

If this LP yields δ ≥ 0 at the optimal solution, then x(i) is potentially optimal
according to the max-sum criterion; otherwise, it cannot be the best alternative
according to that criterion. Furthermore, if an alternative is the only one for
which a solution with δ > 0 is obtained, that alternative is surely optimal. Let
us note that if we tried to maximize the sum of the values, this would not lead
to acceptable results (for more details see [25]). To perform a similar analysis
considering another mediation criteria requires introducing binary variables (for
the criterion of maximizing the minimum PoP) or nonlinear programming (for
criteria involving products).

3.2 Central parameters approach

A second approach the mediator might use to find good potential alternatives
consists in inferring a representative combination of parameter values from
(W1,M1) and (W2,M2). Using these surrogate parameter values, the media-
tor can identify alternatives that are better than the reference point for both
negotiators, are efficient, or are optimal according to a mediation criterion. Of
course, the conclusions that hold for such a surrogate parameter vector do not
necessarily hold for the true parameter values that would be obtained by a
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thorough and explicit utility elicitation process. Nevertheless, studies in the
context of additive value functions (e.g., [1, 24]) show that using a combination
of parameter values that is central to the feasible set yields good approxima-
tions. The more information the mediator has, in terms of constraints to the
parameter values, the more accurate this approximation will be.

One possible approach to find a central combination of parameter values
is to solve a LP of the max-min type in order to find a point such that the
smallest slack in a constraint of the form (6) is as large as possible. This is an
approach used for inferring parameters of multicriteria aggregation approaches
(e.g., [2, 11, 21]). Let Ak denote a coefficient matrix and let bk denote a right-
hand side vector such that (w, v) ∈ (Wk,Mk) if and only if Ak.(w, v) ≤ bk.
Let sk be a vector containing one constant per constraint, equal to 1 if the
constraint is of type (6) and equal to 0 otherwise. The following LP can then be
used to infer a central parameter vector with respect to the inequality preference
statements, for k ∈ {1, 2}:

max ∆k

Ak.(w, v) + sk∆k ≤ bk
(15)

The variables of this problem are the scalar ∆k, which represents the small-
est slack to be maximized, the weights, and possibly the values. The optimal
solution can be considered to be the “safest” vector, which is as far as possible
from any boundary. Due to this point, our objective is to maximize the slack.
Note that all constraints are formulated in terms of the multi-attribute value
function, which is scaled between zero and one, and thus have a comparable
magnitude. This makes it possible to compare deviations across constraints
without further rescaling.

A central combination of parameter values can also be found by comput-
ing the centroid of (Wk,Mk) in an exact manner or using an approximation.
Exact methods exist for some types of polytopes [26]. An approximation to
the centroid of any polytope can however be easily obtained using Monte-Carlo
simulation, as in the computation of central weights used in the SMAA method
[15].

Let (w1, v1)∗ denote the central parameter vector obtained for negotiator 1,
and let (w2, v2)∗ denote the analogous result obtained for negotiator 2. Using
(w1, v1)∗ and (w2, v2)∗ as surrogate parameter values, it is possible to com-
pute alternatives that are better than the reference point for both negotiators,
which maximize the mediation criteria. In contrast to the extreme parame-
ters approach, maximizing the minimum PoP or criteria involving products is
straightforward in the central parameters approach, because it is only neces-
sary to compute the respective objective function for each alternative using one
parameter vector. In addition to the optimal alternative for the mediation cri-
terion, the set of all other efficient solutions for the central parameter vector
can also be determined easily.

Since the parameter vector used in this approach is only an approximation,
it might not reflect the true preferences of negotiators. As a result, it is possible
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that a negotiator finds an alternative x(i) proposed by the mediator unaccept-
able. From such a statement, the mediator can conclude that alternative x(i)

has a lower value than the reference point x(r) for negotiator k. This informa-
tion leads to a new constraint V k(x(i)) < V k(x(r)), which reduces the parameter
sets (Wk, Vk). Using this new and smaller polytope, new central parameters can
be computed, which then can be used to generate another proposal.

3.3 Domains approach

The domain criterion, introduced by Starr [27], uses the volume of a region
in parameter space in which an alternative remains optimal to indicate the
sensitivity of a solution. The use of this criterion for multi-attribute decision
problems was proposed by Charnetski and Soland [4]. SMAA methods [16] are
also based on exploring the weight space in order to describe the preferences
that would make each alternative the most preferred one, or that would give a
certain rank for a specified alternative. The method proposed by Vetschera [31]
to measure the extent to which information about the preferences is available
during a negotiation is also based on the domain criterion.

Our third approach is also based on this concept and calculates the relative
volume of the feasible set of parameter values for which some conditions are
fulfilled. Let S denote the set of feasible parameter values for the two parties
given the information currently available:

S = {(w1, v1, w2, v2) ∈ (W1,M1)× (W2,M2)}.

Let S(C̃) denote the subset of S where condition C̃ holds:

S(C̃) = {(w1, v1, w2, v2) ∈ (W1,M1)× (W2,M2) : C̃ is true}.

Let V ol(S(C̃)) denote the volume of set S(C̃) and let V ol(S) denote the
volume of set S. The expression

V ol(S(C̃))/V ol(S)

then denotes the relative volume of the subset in which condition C̃ holds as
compared to the volume of the entire feasible region. If we further assume that
parameter vectors are uniformly distributed, this ratio can be interpreted as
the probability that condition C̃ is fulfilled for any randomly drawn feasible
parameter vector.

The relative volume of the parameter set in which each alternative x(i) is at
least as good as the reference for both negotiators can be computed as

V ol
(
S
(
V 1(x(i)) ≥ V 1(x(r)) ∧ V 2(x(i)) ≥ V 2(x(r))

))
/V ol(S).

Note that this relative volume is equal to zero for alternatives that are surely
worse than x(r), and is equal to one for alternatives that are surely better than
the reference point. This approach therefore complements the extreme values
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approach by providing additional information about alternatives which are be-
tween the two extreme cases of being surely better or surely worse than the
reference point. It indicates the probability that, given the preference informa-
tion collected so far from the negotiators, both negotiators will prefer alternative
x(i) over the reference value.

In a similar way, the relative volume of the parameter set in which each
alternative is Pareto efficient is given by: V ol

(
S(x(i) is efficient)

)
/V ol(S).

The same approach can also be applied to the mediation criteria. The rel-
ative volume of the subset of parameter space where each alternative x(i) is
optimal according to the different mediation criteria (maximizing the sum of
the values, maximizing the minimal PoP, etc.) can in general be written as
V ol

(
S(x(i)is optimal)

)
/V ol(S). For the sum of values criterion this relative

volume is:

V ol
(
S(V 1(x(i)) + V 2(x(i)) ≥ V 1(x(j)) + V 2(x(j)),∀j 6= i)

)
/V ol(S).

These volumes can again be interpreted as probabilities. Therefore, they pro-
vide a probability distribution across alternatives indicating the possible optima.
Alternatives having zero probability will definitely not be optimal, while alter-
natives with a high probability of being optimal can be considered as robust
solutions.

The domains approach can also be used interactively in a similar way as the
central parameters approach. If a negotiator does not accept one alternative,
it is possible to redefine S by introducing a new constraint to eliminate this
alternative and calculate again the domain volumes.

As the mediator should be informed of the relative volumes of many differ-
ent results, we suggest to use Monte-Carlo simulation to approximate volumes.
Exact methods for computing volumes also exist (see, e.g., [19, 20, 29]), but are
more computationally demanding and can be used only for one question at a
time.

The simulation generates a large number niter of random instances of the
two negotiators’s parameter values satisfying all the constraints. For each vec-
tor, all properties C̃ of interest can be evaluated simultaneously, i.e. which
alternatives are better than the reference x(r) for both of the negotiators, which
alternatives are efficient, and which alternative is the best one according to each
mediation criterion (as it is also possible to analyze several mediation criteria
simultaneously). Considering the results for all these instances, it is possible
to indicate, for each alternative x(i), the proportion of instances where each of
the above mentioned conditions was verified for that particular alternative. In
order to allow for (relative) volumes to be interpreted as probabilities, a uni-
form distribution of parameter vectors must be used for the simulations. In
the experiments described in the next section, scaling weights were generated
according to an uniform distribution using the process described in [3].

When we interpret the volumes as probabilities, it might also be interesting
to compute conditional probabilities, e.g., the probability that an alternative
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is optimal for a mediation criterion under the condition that it is better than
the reference point and efficient. Such conditional probabilities can also be
obtained from the simulation by recording the number of instances in which
both conditions are fulfilled and calculating

p(C̃|D̃) = p(C̃&D̃)/p(D̃) (16)

where C̃ and D̃ represent the two conditions to be analyzed.

3.4 Comparison of the three approaches

3.4.1 Properties

In the preceding subsections, we proposed three approaches to support a medi-
ator who observes a dance of the packages with incomplete information. In this
subsection we discuss properties of the presented approaches.

Since they are based on incomplete information, the models might mislead
the mediator to propose unsuitable alternatives. The first property we analyze
directly deals with the question whether an approach will support statements
which are not true in view of the actual preferences of the negotiators (e.g.
whether it is possible that an alternative will be indicated to be better than the
reference value for both negotiators, while in reality it is not).

Our methods represent different ways of handling uncertainty about pref-
erences. The domains approach in a way relates to decision criteria under
risk like the expected value, which explicitly take into account probabilities.
The extreme parameters approach could be compared to a pessimistic min-max
criterion, which only looks at the baseline which can be obtained under any
circumstances.

Taking the analogy to statistical decisions under risk a step further, two
kinds of errors can be made when outcomes are uncertain: on one hand, an
alternative can be indicated as optimal or as better than another alternative
while in reality it is not, whilst on the other hand, the method might fail to
identify an alternative which is good in reality. All methods might lead to the
second kind of error. We therefore focus our discussion on the first kind of error,
declaring an alternative erroneously as optimal.

The extreme parameters approach will compute exactly which alternatives
are surely better, which alternatives are possibly better, which alternatives are
surely efficient or surely not efficient, and will determine whether there exists
an optimal alternative for all parameter values and which alternatives might
be optimal. If the information provided by the negotiators is consistent (which
we are assuming) it is therefore not possible to obtain wrong results using the
extreme parameters approach.

The central parameters approach makes statements about alternatives as-
suming a central parameter vector. However, the central vector is just an ap-
proximation, which can be a rather coarse one if information is scarce. Hence,
there is no guarantee that the supposedly better alternatives will really have
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higher value than the reference point, or any of the other statements made
about alternatives will really hold for the true preference parameters.

The domains approach will compute the probabilities that each alternative is
better than the reference point for both negotiators simultaneously, the proba-
bilities that each alternative is efficient, and the probabilities of each alternative
being optimal. The conditions with probability equal to 0 or to 1 will corre-
spond to conditions that “surely” do not hold or to conditions that “surely”
hold, respectively, and thus correspond to exact information like the extreme
parameters approach. In these cases, the domains approach will also never be
misleading. However, when some property holds with a probability strictly be-
tween zero and one, there is the possibility that the statement might be true
or false for the true preference parameters. In particular, this approach might
be misleading to the mediator if different probabilities are attached to different
alternatives. For example, the mediator might be tempted to propose an al-
ternative which has the highest probability of being optimal according to some
arbitration criterion, while according to the true preference parameters, another
alternative (for which only a low probability is indicated) is optimal.

Therefore, according to the possibility of providing misleading results, we
rank the extreme parameters approach first, followed by the domains approach,
and the central parameters approach comes last.

When information is incomplete, there is also the possibility to obtain addi-
tional information to improve the quality of results. One would wish that this
additional information indeed improves the quality of results. Additional infor-
mation would be misleading if, without the additional information, a method
delivers a correct result (e.g. indicates the truly optimal alternative to be the
best one according to some arbitration criterion), while after adding more in-
formation, the method delivers a different – and thus wrong – result.

For simplicity, we analyze this property only for the case of unknown weights,
but results can easily be generalized to the other cases. Consider some statement
which the mediator wants to verify, e.g. that alternative x(i) is better than the
reference value. The situation before receiving additional information is depicted
in Figure 2. The polygon represents the set of all weight vectors which are still
considered as possible given the information which the mediator has received so
far. Let the true weight vector (which is unknown to the mediator) be located
at point T. The left part of the polygon represents all parameter vectors for
which the statement under consideration would be true, the right part those
parameter vectors for which the statement is false. Since the true parameter
vector is located in the left part, the statement is true in reality.

The three approaches will process this situation in the following way:

• Since the set of feasible weight vectors contains both vectors for which
the statement is true and some vectors for which it is false, the extreme
parameters approach will indicate that the statement is possibly true (e.g.
alternative x(i) is possibly better than the reference level).

• In the central parameters approach, the mid-point M of the polygon is
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Figure 2: Original set of feasible parameters

used for evaluation. At this point, the statement is true, so the central
parameters approach will indicate the statement to be true.

• In the domains approach, the left area indicates the probability that the
statement is true, the right area the probability that the statement is
false. The domains approach will therefore indicate that the statement
has a probability well over fifty percent of being true.

Now the mediator obtains additional information about the preferences of a
negotiator, which leads to an additional constraint represented by a new line in
Figure 3.

Figure 3: Changed set of feasible parameters

The three approaches will process this additional information in the following
way:

• Since the set of feasible parameter vectors still contains elements for which
the statement is true and elements for which the statement is false, the
extreme parameters approach will still indicate that the statement is po-
tentially true. In fact, since any additional constraint that is based on the
correct preferences of a negotiator will retain the true parameter vector in
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the feasible set, the extreme parameters approach will always indicate at
least that the statement is possibly true. If the constraint eliminates all
parameter vectors for which the statement is false, the statement would
even be indicated as surely true.

• In the central parameters approach, point M′ will now be used as param-
eter vector. For this point, the statement is false, so this approach will
now incorrectly indicate that the statement is false.

• The domain approach will now indicate a much higher probability for the
statement to be false (right part of the remaining area), than for it to be
true.

Thus we have shown that in the central parameters approach and in the
domains approach, additional information might be misleading in the sense that
a correct answer is obtained without the information, but a wrong answer with
the additional information. In contrast, this will never happen in the extreme
parameters approach.

The question now is whether such a situation will happen frequently, and
under which conditions such an undesirable reversal of results might occur.
From Figure 3, it is clear that such a reversal is more likely to occur if the true
parameter vector is located close to the boundary in parameter space separating
the regions in which the statement is true and false, respectively, and at the same
time it is close to the constraint generated by the additional information.

If the true parameter vector is close to the boundary line of the statement
in question, this means that for the true parameters, the statement is not very
robust. This underlines the importance of sensitivity analysis, which should be
performed to check the robustness of any conclusions derived from our methods.

If an additional constraint is close to the true parameter vector, this indicates
that the decision on which the constraint is based is a tight one and involves
two alternatives which provide almost the same value for a negotiator. Since
this additional constraint is also close to the boundary line of the statement in
questions, we might for example have a situation in which alternative x(i) is
being compared to an alternative which is similar to the reference value as well
as to x(i) itself.

In real applications, a negotiator might be hesitant to make a preference
statement about alternatives between which he is almost indifferent and thus
we can expect that such reversals will not happen too often. On the other hand,
such preference statements can not be completely avoided. If the mediator tries
to use only preference statements about which the negotiators are very sure,
this would generate only constraints far from the true parameter vector. Using
only such constraints, it is not possible to reduce the set of feasible parameter
vectors to a region close to the true vector. A large feasible region might be
sufficient in some cases, but will often not be enough to obtain a unique solution.
Our results indicate that such statements, even if they are correct (the true
parameter vector remains feasible, thus the preference statement leading to the
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new line is in accordance with the true preferences) might generate misleading
results.

The simulation studies we have performed to obtain the numerical results
presented in section 4 provide further insights into the effects of additional
information (for more details see [25]). On one hand, some results indicate that
the information which can be inferred from choices made during the negotiation
is not enough for reliable results, and the results can significantly be improved by
adding at least a few preference or indifference statements directly obtained from
the negotiators. On the other hand, just a few of those equivalence statements
are sufficient to obtain results which are very close to the true preferences of
negotiators. Therefore, it seems that one need not obtain much additional
information from the negotiators.

3.4.2 User-oriented comparison of the approaches

Table 1 summarizes the different intervention possibilities for a mediator using
the three approaches, which altogether can constitute a process with three steps.

The rows of Table 1 express the complementary concerns of a mediator. A
mediator would like to propose an alternative likely to be accepted, hence better
than the reference point for both negotiators. Three approaches can then be
used:

• The extreme parameters approach will compute which alternatives are
surely better than the reference point for both negotiators simultaneously
(analysis 1a). However, it might turn out that no such alternatives exist.
The same approach can be used to eliminate alternatives which are surely
worse than the reference point for at least one negotiator (analysis 1b).
The advantage of this approach is that the conditions of being surely
better or surely worse are exactly determined. Its disadvantage is that
it requires solving nalt LPs for each analysis (where nalt represents the
number of possible alternatives, i.e. the number of different combinations
of issue levels).

• The central parameters approach will find alternatives which are better
than the reference point for both negotiators simultaneously, assuming
a central parameter vector (analysis 1’). This vector can be computed
solving a LP maximizing the minimum slack or computing a centroid. An
advantage of this approach is that only two LPs need to be solved (one
for each negotiator), or only two centroids have to be computed. Another
advantage is that it provides a clear-cut partition of the alternatives set:
those better than the reference, and those worse than the reference.

• The domains approach will compute the probabilities that each alterna-
tive is better than the reference point for both negotiators simultaneously
(analysis 1”). Some alternatives will have zero or a very low probabil-
ity and might be discarded from further analysis. The advantage of this
approach is that it is straightforward to compute the probabilities using
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Table 1: Summary of the different analysis that can be performed

Concept / Approach Extreme Central Domains

Step 1: Com-
parison to
reference
point in
value space

1a. identify alter-
natives which
are surely
better than
the reference
point for both
negotiators

1b. eliminate alter-
natives which
are surely
worse than
the reference
point for at
least one
negotiator

1’. identify alterna-
tives which
are better
than the
reference
point for both
negotiators,
assuming
the central
parameter
values (LP
solution or
centroid)

1”. find the prob-
ability that
each alter-
native is
better than
the reference
point for both
negotiators

Step 2: Pareto
Efficiency

2a. identify al-
ternatives
which are
surely Pareto
efficient

2b. eliminate alter-
natives which
are surely
not Pareto
efficient

2’. identify alterna-
tives which
are Pareto
efficient,
assuming
the central
parameter
values (LP
solution or
centroid)

2”. find the prob-
ability that
each alterna-
tive is Pareto
efficient

Step 3: Optimal
alterna-
tive using
mediation
criterion

3a. identify alter-
natives which
are surely
optimal for
the mediation
criterion (for
all parameter
vectors)

3b. identify alter-
natives which
might be
optimal for
the mediation
criterion (at
least for one
parameter
vector)

3’. identify alterna-
tives which
are optimal
for the media-
tion criterion,
assuming
the central
parameter
values (LP
solution or
centroid)

3”. find the prob-
ability that
each alter-
native is
optimal for
the mediation
criterion

Monte-Carlo simulation, with a confidence level as high as needed (it is
a matter of how many iterations are used for the simulation). Its dis-
advantage is that the result will not be as clear cut as in the previous
case.
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Concerning the second row of Table 1, a mediator would like to propose an
alternative on the Pareto efficient frontier. Again, the same three approaches
can be used:

• The extreme parameters approach will compute exactly which alternatives
are surely efficient (analysis 2a), or surely not efficient (analysis 2b), al-
lowing to eliminate the latter. Its disadvantage is that it requires solving
2 ∗ nalt ∗ (nalt − 1) LPs for each analysis (this is a worst case bound, be-
cause as soon as an alternative is deemed surely inefficient, it is no longer
necessary to include it in the subsequent comparisons). The advantage
of this approach is that the conditions of being surely efficient or surely
inefficient are exactly determined.

• The central parameters approach will find which alternatives are efficient,
assuming a central parameter vector computed solving an LP or comput-
ing a centroid (analysis 2’). An advantage of this approach is that only
two LPs or centroid computations are needed. It also provides a clear-cut
partition of the alternatives set between efficient and inefficient ones.

• The domains approach will compute the probabilities that each alternative
is efficient (analysis 2”). Alternatives with a very low probability of being
efficient might be discarded from further analysis. The advantage and the
disadvantage are the same as for analysis 1”.

Finally, concerning the third row of Table 1, a mediator could have the
requirement of proposing an efficient alternative that would be optimal accord-
ing to a mediation criterion such as the sum of the values (pursuing maximal
enlargement of the pie) or the minimum PoP (pursuing equity):

• The extreme parameters approach will indicate if an optimal alternative
for all parameter values exists (analysis 3a), which is not very likely, and
will determine which alternatives might be optimal (analysis 3b). As an
advantage, the conditions of being surely optimal or potentially optimal
are exactly determined. However, the most likely result will be a set of
potentially optimal alternatives, with no way of knowing which one is
better. Furthermore, the use of linear programming is limited to the case
where the mediation criterion is the sum of values.

• The central parameters approach will find the optimal alternative, assum-
ing a central parameter vector (analysis 3’). An advantage of this approach
is that a single alternative will be identified (except for rare cases where
multiple alternative optima might exist). A second advantage is that the
mediation criterion does not have to be linear, the minimum PoP as a me-
diation criterion, or a criterion involving products, can also be computed
easily for a given parameter vector.

• The domains approach will compute the probabilities of each alternative
being optimal (analysis 3”). Alternatives with a very low probability of
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being optimal might be discarded from further analysis. The advantage
of this approach is that by using Monte-Carlo simulation, probabilities
for several mediation clriteria can be computed simultaneously and also
non-linear criteria can be used. A clear cut result is not very likely, but
this analysis provides more information than analysis 3b, because it also
includes probabilities.

All the presented approaches provide interesting and diversified results. The
choice of the approaches to be used depends on the mediator’s goals, but we
suggest to use different approaches complementarily in sequence.

The mediator can start by finding alternatives that both negotiators would
consider to be an improvement relatively to the reference point. This implies
eliminating alternatives which are surely worse than the reference for at least
one negotiator (analysis 1b), or which have only a very low probability of being
better than the reference for both negotiators (analysis 1”). In a second step,
the mediator can eliminate alternatives that are surely inefficient (analysis 2b)
or very unlikely to be efficient (analysis 2”), the latter approach being preferable
if there remain many alternatives. To detect efficiency, each of the alternatives
that was not eliminated in the previous step would be compared with the origi-
nal set of alternatives. Finally, to choose a single alternative to propose to both
negotiators, the mediator can use analysis 3’ to propose the optimal solution us-
ing central parameters, or use analysis 3” to pick the alternative that is optimal
with highest probability. For this purpose, more than one mediation criterion
can be considered.

As referred previously, this integrated approach can be used interactively.
If the alternative proposed by the mediator is accepted, the negotiation ends
successfully. However, a situation can arise in which the alternative proposed by
the mediator is not accepted by one negotiator (or both). If a negotiator k states
that a proposed solution x(p) is not better than the reference x(r), the constraint
V k(x(p)) < V k(x(r)) can be added to the definition of (Wk,Mk). The analysis
can then be repeated to find a new solution. A negotiator might be insincere (act
strategically) when stating that x(p) is not better than the reference, hoping that
a better alternative will proposed by the mediator. However, since the mediator
will incorporate the constraint V k(x(p)) < V k(x(r)), which is contrary to the
negotiator’s true preferences, the negotiator’s true parameter vector will be
excluded from the feasible region. It therefore might happen that the following
alternatives proposed will not be as good as the previous one. For this reason,
it is likely that manipulation attempts will eventually harm the negotiator who
tried to manipulate the process.

Although the columns of Table 1 show three different approaches, they can
all be performed in one single Monte-Carlo simulation. Indeed, Monte-Carlo
simulation can be used to compute probabilities (relative domains) for different
conditions with high accuracy, depending on the number of parameter vectors in
the sample. Averaging the feasible parameter across all iterations will provide
an accurate approximation of the centroid of (W1,M1) and (W2,M2), which
can be used in the central parameters approach. Simulation experiments with
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a large number of parameter vectors will also provide a good approximation of
the extreme parameters approach, however, exact results can only be obtained
by solving the corresponding LP problems.

4 Illustrative Example

4.1 Introduction

To illustrate the approaches presented in the last section, let us consider an
example introduced by Raiffa [23]. In this example, there are two parties in
a negotiation: Nelson and Amstore. Nelson has a construction firm and he
negotiates with a retail chain (Amstore) to build a new store for them. There
are three issues: price (10, 10.5, 11, 11.5 or 12 thousand dollars), design (basic
or improved) and time (20, 21, 22, 23, 24, 25 or 26 days). Combining these issue
levels yields a total of 70 possible alternatives (see Table 2). Nelson wants to
maximize the issues price and time and prefers basic over improved design, while
Amstore has the opposite preferences. Therefore, the most preferred alternative
for Amstore is alternative 1, whereas the most preferred alternative for Nelson
is alternative 70. The sequence of proposals and the compromise eventually
reached (alternative 44) are depicted in Figure 4.

Figure 4: Dance of the Packages.

In this illustration, we consider only the mediation criterion of maximizing
the sum of the values. Among the efficient alternatives that are better than the
compromise for both parties, alternative 39 is the best one, with a sum of values
equal to 136. Alternative 25 also has the same total value, but it is not better
for both parties than the compromise solution. Therefore, a mediator having
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Table 2: Alternatives

Alt. Price Design Time Alt. Price Design Time Alt. Price Design Time

1 10 Imp. 20 25 10.5 Basic 23 49 11.5 Imp. 26
2 10 Imp. 21 26 10.5 Basic 24 50 11.5 Basic 20
3 10 Imp. 22 27 10.5 Basic 25 51 11.5 Basic 21
4 10 Imp. 23 28 10.5 Basic 26 52 11.5 Basic 22
5 10 Imp. 24 29 11 Imp. 20 53 11.5 Basic 23
6 10 Imp. 25 30 11 Imp. 21 54 11.5 Basic 24
7 10 Imp. 26 31 11 Imp. 22 55 11.5 Basic 25
8 10 Basic 20 32 11 Imp. 23 56 11.5 Basic 26
9 10 Basic 21 33 11 Imp. 24 57 12 Imp. 20
10 10 Basic 22 34 11 Imp. 25 58 12 Imp. 21
11 10 Basic 23 35 11 Imp. 26 59 12 Imp. 22
12 10 Basic 24 36 11 Basic 20 60 12 Imp. 23
13 10 Basic 25 37 11 Basic 21 61 12 Imp. 24
14 10 Basic 26 38 11 Basic 22 62 12 Imp. 25
15 10.5 Imp. 20 39 11 Basic 23 63 12 Imp. 26
16 10.5 Imp. 21 40 11 Basic 24 64 12 Basic 20
17 10.5 Imp. 22 41 11 Basic 25 65 12 Basic 21
18 10.5 Imp. 23 42 11 Basic 26 66 12 Basic 22
19 10.5 Imp. 24 43 11.5 Imp. 20 67 12 Basic 23
20 10.5 Imp. 25 44 11.5 Imp. 21 68 12 Basic 24
21 10.5 Imp. 26 45 11.5 Imp. 22 69 12 Basic 25
22 10.5 Basic 20 46 11.5 Imp. 23 70 12 Basic 26
23 10.5 Basic 21 47 11.5 Imp. 24
24 10.5 Basic 22 48 11.5 Imp. 25
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Table 3: Complete Information.

Partial value Value*100
Issue Level Nelson Amstore Nelson Amstore

Price

10 0 1 0 70
10.5 0.41667 0.85714 25 60

11 0.66667 0.64286 40 45
11.5 0.91667 0.35714 55 25

12 1 0 60 0
w1 0.6 0.7

Design
Basic 1 0 20 0

Improved 0 1 0 10
w2 0.2 0.1

Time

20 0 1 0 20
21 0.4 0.95 8 19
22 0.6 0.9 12 18
23 0.75 0.8 15 16
24 0.85 0.6 17 12
25 0.95 0.35 19 7
26 1 0 20 0
w3 0.2 0.2

complete information would propose alternative 39 to the parties.
Let us now consider the analysis of a mediator who knows the available

alternatives (Table 2) and witnesses the sequence of proposals, but does not
know the exact parameter values of each negotiator displayed in Table 3. The
sequence of proposals originates constraints of type (6). To illustrate the use of
explicit preference information (namely, constraints of type (7)), suppose that
Nelson indicates that alternative 25 is as good as alternative 36, and alternative
39 is as good as alternative 50. Let us also assume that Amstore provides the
information that alternatives 50 and 42 as well as alternatives 36 and 37 are
roughly equivalent. We decided to use c = 5 in (5) so that the real values belong
to the interval with the linear function as lower limit and the concave function
as upper limit, but without considering that value functions could be extremely
concave. For the constraints of type (7) we used ε = 10.

4.2 Comparison of the recommendations provided by the
different approaches

In this example, we consider only the recommendations that would be given
by the mediator in the first step, without interactive refinement. The results
obtained assuming known value functions are presented in Table 4 and results
assuming unknown value functions in Table 5. For our calculations, we used
constraints of type (6)+(7). Considering the central approach we present the
results obtained solving the LPs. The results for the domains approach were
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obtained using 5000 iterations in a Monte Carlo simulation.
These tables:

- show the probabilities obtained in the domains approach (probability of be-
ing better for both parties than the compromise solution, probability of
being efficient and probability of being the best according the criterion of
maximizing the sum of the values);

- indicate if one alternative is possibly / surely better than the compromise
solution for both negotiators, possibly / surely efficient and possibly /
surely the best one according the criterion of maximizing the sum of the
values;

- present the results considering the central parameters approach (indicating
if this approach indicates or not an alternative as being better than the
compromise for both negotiators, of being efficient and of maximizing the
sum of the values).

In these tables, one can observe the difference between a simulation approach
and the exact solution of LP models in the extreme parameters approach. The-
oretically, an alternative should be surely better than the compromise exactly
if the probability of being better than the compromise is one. But since prob-
abilities are obtained via simulation with a finite number of parameter vectors,
it is possible that for some alternatives, the probability is estimated to be one,
while the exact solution of the LP model still indicates that it is not better for
some parameter vectors and thus it is not surely better. This was the case for
alternatives 38 and 40 in Table 4. The tables also show the possibility that the
central parameters approach generates misleading results. For example, alterna-
tive 41 is indicated as being better than the compromise, although the domain
approach reveals that the probability of this property is only about 65%.

Considering known values (but unknown weights), in all the approaches, the
mediator should recommend alternative 39. Alternative 39 is in reality better
for both parties than the compromise solution and it is efficient. Considering
value functions with unknown parameters, and using the extreme parameters
approach, it is only possible to recommend a set of 15 alternatives that can
be better for both parties than the compromise solution, can be efficient and
can maximize the sum of the values. Considering the central approach it is
possible to recommend alternative 38 (after using the approach interactively),
in the criterion maximizing the sum of the values. This alternative is in reality
better for both parties than the compromise solution and efficient. Considering
the domains approach, if the objective is to maximize the sum of the values the
mediator should suggest alternatives 26 and 27 (both alternatives are efficient,
but alternative 26 is not better for Nelson than the compromise solution). Table
6 summarizes the results of the three approaches to facilitate their comparison.

Figure 5 shows the positions of these solutions in value space. The compari-
son to the reference point helps to eliminate a large fraction of the alternatives,
even in the case of unknown value functions. The difference between the two
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Table 4: Results of the three approaches considering known values.

Better than the compromise Efficient Sum

Poss. Cent. Poss. Cent. Poss. Cent.
Alt Domain /Surely Param. Domain /Surely Param. Domain /Surely Param.
1 0 n/n n 1 y/n n 0 n/n n
2 0 n/n n 1 y/n n 0 n/n n
3 0 n/n n 0.9638 y/n n 0 n/n n
4 0 n/n n 0.6340 y/n n 0 n/n n
5 0 n/n n 0.2050 y/n n 0 n/n n
6 0 n/n n 0 y/n n 0 n/n n
7 0 n/n n 0 y/n n 0 n/n n
8 0 n/n n 0.6400 y/n n 0 n/n n
9 0 n/n n 0.9644 y/n n 0 n/n n
10 0 n/n n 0.9406 y/n n 0 n/n n
11 0 n/n n 0.8542 y/n n 0 n/n n
12 0 y/n n 0.6474 y/n n 0 y/n n
13 0.0102 y/n n 0 n/n n 0 n/n n
14 0.0380 y/n n 0 n/n n 0 n/n n
15 0 n/n n 0.0790 y/n n 0 n/n n
16 0 n/n n 0.2718 y/n n 0 n/n n
17 0 n/n n 0.4750 y/n n 0 n/n n
18 0 n/n n 0.4110 y/n n 0 n/n n
19 0 n/n n 0.1652 y/n n 0 n/n n
20 0 n/n n 0 y/n n 0 n/n n
21 0 n/n n 0 y/n n 0 n/n n
22 0 y/n n 0.4420 y/n n 0 y/n n
23 0.1310 y/n n 0.9972 y/n n 0 y/n n
24 0.3514 y/n n 1 y/n n 0 y/n n
25 0.5856 y/n n 1 y/n n 0.5856 y/n n
26 0.7038 y/n n 1 y/n n 0.0330 y/n n
27 0.8268 y/n n 0.9724 y/n n 0 y/n n
28 0.8552 y/n n 0 y/n n 0 y/n n
29 0 n/n n 0 y/n n 0 n/n n
30 0 n/n n 0 y/n n 0 n/n n
31 0 n/n n 0 y/n n 0 n/n n
32 0 n/n n 0.0032 y/n n 0 n/n n
33 0.2208 y/n n 0.0100 y/n n 0 y/n n
34 0.4534 y/n n 0 n/n n 0 n/n n
35 0.2254 y/n n 0 n/n n 0 n/n n
36 0.2422 y/n n 0 n/n n 0 n/n n
37 0.8506 y/n n 0.5592 y/n n 0 y/n n
38 1 y/n y 1 y/n y 0 y/n n
39 1 y/y y 1 y/n y 0.3814 y/n y
40 1 y/n y 1 y/n y 0 y/n n
41 0.6490 y/n y 1 y/n y 0 y/n n
42 0.0140 y/n n 0.4706 y/n n 0 y/n n
43 0 n/n n 0 y/n n 0 n/n n
44 0 n/n n 0 y/n n 0 n/n n
45 0 n/n n 0 y/n n 0 n/n n
46 0 n/n n 0 y/n n 0 n/n n
47 0 n/n n 0.0006 y/n n 0 n/n n
48 0 n/n n 0 y/n n 0 n/n n
49 0 n/n n 0 y/n n 0 n/n n
50 0 y/n n 0 n/n n 0 n/n n
51 0 n/n n 0.4844 y/n n 0 n/n n
52 0 n/n n 0.9994 y/n n 0 n/n n
53 0 n/n n 1 y/n n 0 n/n n
54 0 n/n n 1 y/n n 0 n/n n
55 0 n/n n 1 y/n n 0 n/n n
56 0 n/n n 1 y/n n 0 n/n n
57 0 n/n n 0 y/n n 0 n/n n
58 0 n/n n 0 y/n n 0 n/n n
59 0 n/n n 0 y/n n 0 n/n n
60 0 n/n n 0 y/n n 0 n/n n
61 0 n/n n 0 y/n n 0 n/n n
62 0 n/n n 0 y/n n 0 n/n n
63 0 n/n n 0 y/n n 0 n/n n
64 0 n/n n 0 y/n n 0 n/n n
65 0 n/n n 0 y/n n 0 n/n n
66 0 n/n n 0 y/n n 0 n/n n
67 0 n/n n 0.0078 y/n n 0 n/n n
68 0 n/n n 0.7792 y/n n 0 n/n n
69 0 n/n n 1 y/n n 0 n/n n
70 0 n/n n 1 y/n n 0 n/n n
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Table 5: Results of the three approaches considering unknown values.

Better than the compromisse Efficient Sum
Poss. Cent. Poss. Cent. Poss. Cent.

Alt Domain /Surely Param. Domain /Surely Param. Domain /Surely Param.

1 0 n/n n 1 y/n n 0 n/n n
2 0 n/n n 0.8930 y/n n 0 n/n n
3 0 n/n n 0.5664 y/n n 0 n/n n
4 0 n/n n 0.3424 y/n n 0 n/n n
5 0 n/n n 0.2074 y/n n 0 n/n n
6 0 n/n n 0.1212 y/n n 0 n/n n
7 0 n/n n 0.0292 y/n n 0 n/n n
8 0 n/n n 0.6334 y/n n 0 n/n n
9 0 y/n n 0.6670 y/n n 0 y/n n
10 0.0032 y/n n 0.5536 y/n n 0 y/n n
11 0.0106 y/n n 0.4398 y/n n 0 y/n n
12 0.0326 y/n n 0.3372 y/n n 0 y/n n
13 0.0702 y/n n 0.2484 y/n n 0.0077 y/n n
14 0.1108 y/n n 0.0928 y/n n 0.0028 y/n n
15 0 n/n n 0.5118 y/n n 0 n/n n
16 0 n/n n 0.5532 y/n n 0 n/n n
17 0 n/n n 0.3960 y/n n 0 n/n n
18 0 n/n n 0.2736 y/n n 0 n/n n
19 0 n/n n 0.1908 y/n n 0 n/n n
20 0 n/n n 0.1346 y/n n 0 n/n n
21 0.0448 y/n n 0.0330 y/n n 0 y/n n
22 0.0152 y/n n 0.6234 y/n n 0 y/n n
23 0.1786 y/n n 0.8636 y/n n 0.0238 y/n n
24 0.3564 y/n y 0.9280 y/n y 0.0598 y/n y
25 0.5512 y/n y 0.9638 y/n y 0.1200 y/n n
26 0.7154 y/n y 0.9550 y/n y 0.2240 y/n n
27 0.8192 y/n y 0.9140 y/n y 0.2583 y/n n
28 0.8058 y/n y 0.6636 y/n y 0.0413 y/n n
29 0 n/n n 0.0136 y/n n 0 n/n n
30 0 n/n n 0.0282 y/n n 0 n/n n
31 0 n/n n 0.0254 y/n n 0 n/n n
32 0 n/n n 0.0282 y/n n 0 n/n n
33 0.1204 y/n n 0.0294 y/n n 0.00142 y/n n
34 0.3624 y/n n 0.0296 y/n n 0.0020 y/n n
35 0.2762 y/n n 0.0062 y/n n 0 y/n n
36 0.3272 y/n n 0.1440 y/n n 0.00386 y/n n
37 0.6448 y/n y 0.3168 y/n n 0.05635 y/n n
38 0.7872 y/n y 0.4484 y/n n 0.05716 y/n n
39 0.8032 y/n n 0.6256 y/n n 0.06204 y/n n
40 0.7026 y/n n 0.7890 y/n n 0.04475 y/n n
41 0.5064 y/n n 0.8728 y/n n 0.03356 y/n n
42 0.1806 y/n n 0.5834 y/n n 0.00041 y/n n
43 0 n/n n 0.0042 y/n n 0 n/n n
44 0 y/n n 0.0162 y/n n 0 n/n n
45 0 n/n n 0.0310 y/n n 0 n/n n
46 0 n/n n 0.0492 y/n n 0 n/n n
47 0 n/n n 0.0800 y/n n 0 n/n n
48 0 n/n n 0.0930 y/n n 0 n/n n
49 0 n/n n 0.0288 y/n n 0 n/n n
50 0.0670 y/n n 0.1122 y/n n 0.0006 y/n n
51 0 n/n n 0.4748 y/n n 0 n/n n
52 0 n/n n 0.8170 y/n n 0 n/n n
53 0 n/n n 0.9910 y/n n 0 n/n n
54 0 n/n n 0.9980 y/n n 0 n/n n
55 0 n/n n 0.9936 y/n n 0 n/n n
56 0 n/n n 0.9530 y/n n 0 n/n n
57 0 n/n n 0.0008 y/n n 0 n/n n
58 0 n/n n 0.0030 y/n n 0 n/n n
59 0 n/n n 0.0042 y/n n 0 n/n n
60 0 n/n n 0.0036 y/n n 0 n/n n
61 0 n/n n 0.0084 y/n n 0 n/n n
62 0 n/n n 0.0128 y/n n 0 n/n n
63 0 n/n n 0.0048 y/n n 0 n/n n
64 0 n/n n 0.0188 y/n n 0 n/n n
65 0 n/n n 0.0852 y/n n 0 n/n n
66 0 n/n n 0.1752 y/n n 0 n/n n
67 0 n/n n 0.3216 y/n n 0 n/n n
68 0 n/n n 0.5426 y/n n 0 n/n n
69 0 n/n n 0.8862 y/n n 0 n/n n
70 0 n/n n 1 y/n n 0 n/n n
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information levels becomes more important in the analysis of efficient solutions.
In the case of unknown values, both the domain approach and the central pa-
rameters approach indicate several alternatives as efficient and better than the
compromise, which in fact do not dominate the compromise. One of those al-
ternatives is even inefficient. Similarly, when computing the optimal alternative
according to the sum of values criterion, many inadequate alternatives would
be indicated as possibly optimal for the case of unknown values.

For more detailed results, we refer to [25], where we also show some results
concerning the case that no compromise is reached.

5 Conclusions

In this paper, we have addressed three ways to deal with incomplete information
in the context of negotiations:

1. the extreme parameters approach,

2. the central parameters approach, and

3. the domains approach,

and analyzed how they can be applied to different levels of information that
might be available about the preferences of negotiators.

The three methods we have discussed reflect two important trade-offs in
dealing with incomplete information. The first trade-off, which can best be
illustrated by comparing the extreme parameters approach to the domains ap-
proach, can be labeled as ambiguity vs. lack of universality. The domains
approach generates only probability statements, which sometimes can be rather
vague and might be hard to interpret. This contrasts with the very clear state-
ments generated by the extreme parameters approach. If an alternative is surely
better than another alternative according to the extreme parameters approach,
there is no doubt how the two alternatives are to be seen, while the domains
approach might create statements like there is a 55 percent probability that one
alternative x(i) is better than another alternative x(j). However, the advan-
tage of the extreme parameters approach in terms of lower ambiguity comes at
a price: the domains approach is able to generate a (probabilistic) statement
about any two alternatives, the extreme parameters approach might be unable
to state whether one alternative is surely better than the other or vice versa.

The central parameters approach overcomes this dilemma. It will always
deliver a unique result, but does so by ignoring much of the information that
is available and focusing only on one out of possibly many possible parameter
vectors. Thus, it illustrates another important trade-off between information
richness and uniqueness of results. Figure 6 illustrates this relationship.

The two dimensions represented in Figure 6 represent trade-offs, both ends
of these axes have their advantages and disadvantages. Consequently, there
is no method which is clearly better than the others, all methods have their
particular strengths and weaknesses, which make them suitable for some tasks.
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Figure 5: Distribution of solutions in utility space
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Table 6: Summary of solutions obtained

Concept Information Extreme Central Domains

Comparison
to reference
point in
value space

Known values

Surely: 39
Surely not:
1-11,
15-21,
29-32,
43-49,
51-70

38-41
25-28,
37-41

Unknown values

Surely:
none
Surely not:
1-8, 15-20,
29-32, 43,
45-49,
51-70

24-28,
37-38

25-28,
37-41

Pareto
Efficiency

Known values

Surely:
none
Surely not:
13, 14, 34 -
36, 50

38-41

25-26, 38 -
41 (1), 27
(0.9724),
37 (0.5592)

Unknown values

Surely:
none
Surely not:
none

24-28

25
(0.9638),
26
(0.9550),
27
(0.9140),
28
(0.6636),
39
(0.6256),
40
(0.7890),
41 (0.8728)

Optimal
alternative
using the
sum
criterion

Known values

Surely:
none
Surely not:
12, 22-28,
33, 37-42

39

25
(0.5856),
39 (0.3814)

Unknown values

Surely:
none
Surely not:
9-14,
21-28,
33-42, 50

24
26 (0.2240)
27 (0.2583)

Mediator
Recommendation

Known values alternative 39 alternative 39 alternative 39
Unknown values Not conclusive alternative 24 alt. 26 or 2731



Figure 6: Trade-offs between approaches to deal with incomplete information
in negotiations.

We therefore argue for a mix of methods, which should preferably be im-
plemented in the form of an interactive process. The first step of such a pro-
cess consists in a pre-selection of alternatives based on the extreme parameters
approach. Depending on the purpose of the analysis, further choice between
these alternatives can be based on the central parameters approach to obtain
specific results, or on the domains approach to better exploit the rich, but po-
tentially ambiguous information available. This integration can probably best
be achieved using simulation methods, which make it possible to follow a central
parameters approach and a domains approach simultaneously.

While our study has led to some interesting results concerning the advantages
and disadvantages of the methods we studied, it also has several limitations
which indicate the need for future research. This future research can follow
two different directions. The first direction concerns theoretical developments
to strengthen the foundations of the methods we have proposed and better
delineate the possible areas of application for each method. The second is
directed towards implementation and empirical investigation of these methods
in a realistic context.

The main focus of our research was on finding solutions which provide a
Pareto-improvement over a proposed compromise, or even maximize the total
payoff to both negotiators. This kind of improvement is only possible if the
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negotiation problem has some integrative potential at all, in a purely distributive
negotiation, no such improvements are possible. It would therefore be important
for the negotiators, as well as for a mediator, to know at a very early stage of
the negotiation whether such integrative potential exists at all. Of course, even
for this purpose, some information on the preferences of negotiators is required.
Our research could thus be extended towards identifying the minimal amount of
information on preferences that would allow to identify whether the negotiation
is integrative at all.

Since our methods rely on information about preferences, the quality of this
information is also an important issue. In this paper, we have assumed that all
information obtained from negotiators either implicitly or explicitly is consistent
and reflects the same true value function of a negotiator. In reality, negotiators
might not behave (make offers, accept offers) in a way fully consistent with
the model assumptions, or they might provide inconsistent information when
explicitly asked about their preferences. It is therefore necessary to extend our
methods to deal with such inconsistencies.

Inconsistencies in the responses of negotiators might be the result of an er-
ror, but they might also be the result of deliberate manipulation. In particular,
when our methods are used by a mediator to suggest potential agreements to
negotiators, or even by an arbitrator to calculate a binding solution, there are
incentives for parties for strategic misrepresentation of their preferences. While
the complexity of the calculations involved would make it difficult for negotiators
to manipulate their answers in an optimal way, parties could nevertheless suc-
cessfully try to improve their situation even by simplistic methods [30]. These
possibilities and their impact on the quality of results also need to be analyzed.

While some of these questions can perhaps be answered using analytical
methods, the complexity of the relationships will in many cases require compu-
tational experiments. In this paper, we have applied our methods only to one
single case for illustrative purposes. A thorough analysis of the impact which
the choice of different methods, and variants of one method, have on the results
requires a larger empirical basis. Such a basis can come from simulation studies
with artificial data, but will also require applications of the methods to real data
from (experimental) negotiations. Such studies can help to identify conditions
under which the different methods lead to different solutions, and to explore
how the choice of methods will influence final outcomes.

Apart from these theoretical and empirical developments, further work is
needed to foster the practical application of our methods. This includes the
development of actual scenarios for their use. While we have discussed the use
of the proposed methods mainly as tools for a mediator or arbitrator in the
present paper, this is not the only setting in which our proposed methods could
be useful: they could also be applied as tools in an asymmetric setting for the
support of one party in a negotiation. Of course, in such a setting the quality of
information available about the preferences of the two parties will be different,
since a negotiator could provide quite exact information about his or her own
preferences, but would be restricted to information implicitly obtained from
observed behavior concerning the preferences of the opponent. Application of
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our method in such a setting would also require different objective functions to
pursue the interests of one party rather than to provide fair solutions in terms
of the concepts discussed here. However, the general methodology could also be
applied in such a setting.

Eventually, this work should lead to the development of a support system
for mediators that helps them in proposing compromise solutions. For an inter-
active system, computational aspects are also important. We propose the use
of Monte Carlo methods, which require the evaluation of many randomly gen-
erated parameter vectors. However, we do not foresee problems in embedding
this approach into an interactive system for two reasons: First, the problems
only require the evaluation of utility function for given parameter values and
alternatives, so the total computational load is not that large. Second, since the
same operations must be performed for many parameter vectors, the simulation
can easily be distributed across several processors to decrease response time.

Embedding the proposed approaches into a user-friendly support system is
also a prerequisite for testing the acceptability of the methods by users. There
is some empirical evidence that negotiators are reluctant to accept solutions
proposed by an automated system, even if it would improve their situation
[13, 14]. Thus it is not clear how negotiators would react to the proposals
generated by our methods. This could also be a topic of future empirical research
aimed at transforming the theoretical concepts introduced here into practical
tools for actual negotiations.
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