ON 2-STAR-PERMUTABILITY IN REGULAR MULTI-POINTED CATEGORIES

MARINO GRAN AND DIANA RODELO

Abstract

. 2-star-permutable categories were introduced in a joint work with Z. Janelidze and A. Ursini as a common generalisation of regular Mal'tsev categories and of normal subtractive categories. In the present article we first characterise these categories in terms of what we call star-regular pushouts. We then show that the 3×3 Lemma characterising normal subtractive categories and the Cuboid Lemma characterising regular Mal'tsev categories are special instances of a more general homological lemma for star-exact sequences. We prove that 2-star-permutability is equivalent to the validity of this lemma for a star-regular category.

Mathematics Subject Classification 2010: 18C05, 08C05, 18B10, 18E10

Introduction

The theory of Mal'tsev categories in the sense of A. Carboni, J. Lambek and M.C. Pedicchio [6] provides a beautiful example of the way how categorical algebra leads to a structural understanding of algebraic varieties (in the sense of universal algebra). Among regular categories, Mal'tsev categories are characterised by the property of 2-permutability of equivalence relations: given two equivalence relations R and S on the same object A, the two relational composites $R S$ and $S R$ are equal:

$$
R S=S R
$$

In the case of a variety of universal algebras this property is actually equivalent to the existence of a ternary term $p(x, y, z)$ satisfying the identities $p(x, y, y)=x$ and $p(x, x, y)=y[20$. In the pointed context, that is when the category has a zero object, there is also a suitable notion of 2-permutability, called " 2 -permutability at $0 "$ 21. In a variety this property can be expressed by requiring that, whenever for a given element x in an algebra A there is an element y with $x R y S 0$ (here 0 is the unique constant in A), then there is also an element z in A with $x S z R 0$. The validity of this property is equivalent to the existence of a binary term $s(x, y)$ such that the identities $s(x, 0)=x$ and $s(x, x)=0$ hold true [21]. Among regular categories, the ones where the property of 2 -permutability at 0 holds true are precisely the subtractive categories introduced in [16].

The aim of this paper is to look at regular Mal'tsev and at subtractive categories as special instances of the general notion of 2-star-permutable categories introduced in collaboration with Z. Janelidze and A. Ursini in [9. This generalisation is achieved by working in the context of a regular multi-pointed category, i.e. a regular category equipped with an ideal \mathcal{N} of distinguished morphisms [7]. When

[^0]\mathcal{N} is the class of all morphisms, a situation which we refer to as the total context, regular multi-pointed categories are just regular categories, and 2-star-permutable categories are precisely the regular Mal'tsev categories. When \mathcal{N} is the class of all zero morphisms in a pointed category, we call this the pointed context, regular multi-pointed categories are regular pointed categories, and 2-star-permutable categories are the regular subtractive categories.

This paper follows the same line of research as in [9] which was mainly focused on the property of 3 -star-permutability, a generalised notion which captures Goursat categories in the total context and, again, subtractive categories in the pointed context.

In this work we study two remarkable aspects of the property of 2-star-permutability. First we provide a characterisation of 2-star-permutable categories in terms of a special kind of pushouts (Proposition 2.4), that we call star-regular pushouts (Definition(2.2). Then we examine a homological diagram lemma of star-exact sequences, which can be seen as a generalisation of the 3×3 Lemma, whose validity is equivalent to 2 -star-permutability. We call this lemma the Star-Upper Cuboid Lemma (Theorem 3.3). The validity of this lemma turns out to give at once a characterisation of regular Mal'tsev categories (extending a result in 11) and, in the pointed context, a characterisation of those normal categories which are subtractive (this was first discovered in [17]).

Acknowledgement. The authors are grateful to Zurab Janelidze for some useful conversations on the subject of the paper.

1. Star-REGULAR CATEGORIES

1.1. Regular categories and relations. A finitely complete category \mathbb{C} is said to be a regular category [1] when any kernel pair has a coequaliser and, moreover, regular epimorphisms are stable under pullbacks. In a regular category any morphism $f: X \rightarrow Y$ has a factorisation $f=m \cdot p$, where p is a regular epimorphism and m is a monomorphism. The corresponding (regular epimorphism, monomorphism) factorisation system is then stable under pullbacks.

A relation ϱ from X to Y is a subobject $\left\langle\varrho_{1}, \varrho_{2}\right\rangle: R \mapsto X \times Y$. The opposite relation, denoted ϱ°, is given by the subobject $\left\langle\varrho_{2}, \varrho_{1}\right\rangle: R \hookrightarrow Y \times X$. We identify a morphism $f: X \rightarrow Y$ with the relation $\left\langle 1_{X}, f\right\rangle: X \mapsto X \times Y$ and write f° for the opposite relation. Given another relation σ from Y to Z, the composite relation of ϱ and σ is a relation $\sigma \varrho$ from X to Z. With this notation, we can write the above relation as $\varrho=\varrho_{2} \varrho_{1}^{\circ}$. The following properties are well known (see [5], for instance); we collect them in a lemma for future references.

Lemma 1.1. Let $f: X \rightarrow Y$ be any morphism in a regular category \mathbb{C}. Then:
(a) $f f^{\circ} f=f$ and $f^{\circ} f f^{\circ}=f^{\circ}$;
(b) $f f^{\circ}=1_{Y}$ if and only if f is a regular epimorphism.

A kernel pair of a morphism $f: X \rightarrow Y$, denoted by

$$
\left(\pi_{1}, \pi_{2}\right): \mathrm{Eq}(f) \rightrightarrows X
$$

is called an effective equivalence relation; we write it either as $\mathrm{Eq}(f)=f^{\circ} f$, or as $\mathrm{Eq}(f)=\pi_{2} \pi_{1}^{\circ}$, as mentioned above. When f is a regular epimorphism, then f is
the coequaliser of π_{1} and π_{2} and the diagram

$$
\mathrm{Eq}(f) \xrightarrow[\pi_{2}]{\pi_{1}} X \xrightarrow{f} Y
$$

is called an exact fork. In a regular category any effective equivalence relation is the kernel pair of a regular epimorphism.
1.2. Star relations. We now recall some notions introduced in [10], which are useful to develop a unified treatment of pointed and non-pointed categorical algebra. Let \mathbb{C} denote a category with finite limits, and \mathcal{N} a distinguished class of morphisms that forms an ideal, i.e. for any composable pair of morphisms g, f, if either g or f belongs to \mathcal{N}, then the composite $g \cdot f$ belongs to \mathcal{N}. An \mathcal{N}-kernel of a morphism $f: X \rightarrow Y$ is defined as a morphism $\mathrm{n}_{f}: \mathrm{N}_{f} \rightarrow X$ such that $f \cdot \mathrm{n}_{f} \in \mathcal{N}$ and n_{f} is universal with this property (note that such n_{f} is automatically a monomorphism). A pair of parallel morphisms, denoted by $\sigma=\left(\sigma_{1}, \sigma_{2}\right): S \rightrightarrows X$ with $\sigma_{1} \in \mathcal{N}$, is called a star; it is called a monic star, or a star relation, when the pair $\left(\sigma_{1}, \sigma_{2}\right)$ is jointly monomorphic.

Given a relation $\varrho=\left(\varrho_{1}, \varrho_{2}\right): R \rightrightarrows X$ on an object X, we denote by $\varrho^{*}: R^{*} \rightrightarrows X$ the biggest subrelation of ϱ which is a (monic) star. When \mathbb{C} has \mathcal{N}-kernels, it can be constructed by setting $\varrho^{*}=\left(\varrho_{1} \cdot \mathrm{n}_{\rho_{1}}, \varrho_{2} \cdot \mathrm{n}_{\rho_{1}}\right)$, where $\mathrm{n}_{\rho_{1}}$ is the \mathcal{N}-kernel of ϱ_{1}. In particular, if we denote the discrete equivalence relation on an object X by $\Delta_{X}=\left(1_{X}, 1_{X}\right): X \rightrightarrows X$, then $\Delta_{X}^{*}=\left(\mathrm{n}_{1_{X}}, \mathrm{n}_{1_{X}}\right)$, where $\mathrm{n}_{1_{X}}$ is the \mathcal{N}-kernel of 1_{X}.

The star-kernel of a morphism $f: X \rightarrow Y$ is a universal star $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$: $S \rightrightarrows X$ with the property $f \cdot \sigma_{1}=f \cdot \sigma_{2}$; it is easy to see that the star-kernel of f coincides with $\mathrm{Eq}(f)^{*} \rightrightarrows X$ whenever \mathcal{N}-kernels exist.

A category \mathbb{C} equipped with an ideal \mathcal{N} of morphisms is called a multi-pointed category [10]. If, moreover, every morphism admits an \mathcal{N}-kernel, then \mathbb{C} will be called a multi-pointed category with kernels.

Definition 1.2. [10] A regular multi-pointed category \mathbb{C} with kernels is called a star-regular category when every regular epimorphism in \mathbb{C} is a coequaliser of a star.

In the total context stars are pairs of parallel morphisms, \mathcal{N}-kernels are isomorphisms, star-kernels are kernel pairs and a star-regular category is precisely a regular category. In the pointed context, the first morphism σ_{1} in a star $\sigma=\left(\sigma_{1}, \sigma_{2}\right): S \rightrightarrows$ X is the unique null morphism $S \rightarrow X$ and hence a star σ can be identified with a morphism (its second component σ_{2}). Then, \mathcal{N}-kernels and star-kernels become the usual kernels, and a star-regular category is the same as a normal category [18, i.e. a pointed regular category in which any regular epimorphism is a normal epimorphism.
1.3. Calculus of star relations. The calculus of star relations 9 can be seen as an extension of the usual calculus of relations (in a regular category) to the regular multi-pointed context. First of all note that for any relation $\varrho: R \rightrightarrows X$ we have

$$
\varrho^{*}=\varrho \Delta_{X}^{*}
$$

Inspired by this formula, for any relation ϱ from X to an object Y, we define

$$
\varrho^{*}=\varrho \Delta_{X}^{*} \quad \text { and } \quad{ }^{*} \varrho=\Delta_{Y}^{*} \varrho .
$$

Note that associativity of composition yields

$$
{ }^{*}\left(\varrho^{*}\right)=\left({ }^{*} \varrho\right)^{*}
$$

and so we can write * ϱ^{*} for the above.
For any relation σ (from some object Y to Z), the associativity of composition also gives

$$
\left(\sigma^{*}\right) \varrho=\sigma\left(^{*} \varrho\right),
$$

and

$$
(\sigma \varrho)^{*}=\sigma \varrho^{*}
$$

It is easy to verify that for any morphism $f: X \rightarrow Y$ we have

$$
f^{*}={ }^{*} f^{*} \quad \text { and } \quad{ }^{*} f^{\circ}={ }^{*} f^{\circ *} .
$$

2. 2 -STAR-PERMUTABILITY AND STAR-REGULAR PUSHOUTS

Recall that a finitely complete category \mathbb{C} is called a Mal'tsev category when any reflexive relation in \mathbb{C} is an equivalence relation [6, 5]. We recall the following well known characterisation of the regular categories which are Mal'tsev categories:

Proposition 2.1. A regular category \mathbb{C} is a Mal'tsev category if and only if the composition of effective equivalence relations in \mathbb{C} is commutative:

$$
\mathrm{Eq}(f) \mathrm{Eq}(g)=\mathrm{Eq}(g) \mathrm{Eq}(f)
$$

for any pair of regular epimorphisms f and g in \mathbb{C} with the same domain.
There are many known characterisations of regular Mal'tsev categories (see Section 2.5 in [2], for instance, and references therein). The one that will play a central role in the present work is expressed in terms of commutative diagrams of the form

where f and g are split epimorphisms $\left(f \cdot s=1_{B}, g \cdot t=1_{D}\right), f \cdot c=d \cdot g, s \cdot d=c \cdot t$, and c and d are regular epimorphisms. A diagram of type (1) is always a pushout; it is called a regular pushout [4] (alternatively, a double extension [15, 13]) when, moreover, the canonical morphism $\langle g, c\rangle: C \rightarrow D \times_{B} A$ to the pullback $D \times_{B} A$ of d and f is a regular epimorphism. Among regular categories, Mal'tsev categories can be characterized as those ones where any square (1) is a regular pushout: this easily follows from the results in [4], and a simple proof of this fact is given in [12].

Observe that a commutative diagram of type (1) is a regular pushout if and only if $c g^{\circ}=f^{\circ} d$ or, equivalently, $g c^{\circ}=d^{\circ} f$. This suggests to introduce the following notion:

Definition 2.2. A commutative diagram (11) is a star-regular pushout if it satisfies the identity $c g^{\circ *}=f^{\circ} d^{*}$ (or, equivalently, $g c^{\circ *}=d^{\circ} f^{*}$).

Diagrammatically, the property of being a star-regular pushout can be expressed as follows. Consider the commutative diagram

where $\left(D \times_{B} A, x, y\right)$ is the pullback of $(f, d), m \cdot p$ is the (regular epimorphism, monomorphism) factorisation of the induced morphism $\langle g, c\rangle: C \rightarrow D \times_{B} A$. Then the identity $c g^{\circ}=b a^{\circ}$ allows one to identify $c g^{\circ *}$ with the relation $\left(a \cdot \mathrm{n}_{a}, b \cdot \mathrm{n}_{a}\right)$, while $f^{\circ} d=y x^{\circ}$ says that $f^{\circ} d^{*}$ can be identified with the relation $\left(x \cdot \mathrm{n}_{x}, y \cdot \mathrm{n}_{x}\right)$. Accordingly, diagram (11) is a star-regular pushout precisely when the dotted arrow from N_{a} to N_{x} is an isomorphism. Notice that in the total context the \mathcal{N}-kernels are isomorphisms, so that m is an isomorphism if and only if (11) is a regular pushout, as expected.

The "star-version" of the notion of Mal'tsev category can be defined as follows:
Definition 2.3. 9 A regular multi-pointed category with kernels \mathbb{C} is said to be a 2 -star-permutable category if

$$
\mathrm{Eq}(f) \mathrm{Eq}(g)^{*}=\mathrm{Eq}(g) \mathrm{Eq}(f)^{*}
$$

for any pair of regular epimorphisms f and g in \mathbb{C} with the same domain.
One can check that the equality $\mathrm{Eq}(f) \mathrm{Eq}(g)^{*}=\mathrm{Eq}(g) \mathrm{Eq}(f)^{*}$ in the definition above can be actually replaced by $\mathrm{Eq}(f) \mathrm{Eq}(g)^{*} \leq \mathrm{Eq}(g) \mathrm{Eq}(f)^{*}$.

In the total context the property of 2-star-permutability characterises the regular categories which are Mal'tsev. In the pointed context this same property characterises the regular categories which are subtractive [16] (this follows from the characterisation of subtractivity given in Theorem 6.9 in [17]).

The next result gives a useful characterisation of 2 -star-permutable categories. Given a commutative diagram of type (11), we write $g\langle\mathrm{Eq}(c)\rangle$ and $g\left\langle\mathrm{Eq}(c)^{*}\right\rangle$ for the direct images of the relations $\mathrm{Eq}(c)$ and $\mathrm{Eq}(c)^{*}$ along the split epimorphism g. The vertical split epimorphisms are such that both the equalities $g\langle\mathrm{Eq}(c)\rangle=\mathrm{Eq}(d)$ and $g\left\langle\mathrm{Eq}(c)^{*}\right\rangle=\mathrm{Eq}(d)^{*}$ hold true in \mathbb{C}.

Proposition 2.4. For a regular multi-pointed category with kernels \mathbb{C} the following statements are equivalent:
(a) \mathbb{C} is a 2-star-permutable category;
(b) any commutative diagram of the form (11) is a star-regular pushout.

Proof. (a) \Rightarrow (b) Given a pushout (11) we have

$$
\begin{aligned}
f^{\circ} d^{*} & =c c^{\circ} f^{\circ} d^{*} & & (\text { Lemma 1.1(2) }) \\
& =c g^{\circ} d^{\circ} d^{*} & & (f \cdot c=d \cdot g) \\
& =c g^{\circ} g c^{\circ} c^{*} g^{\circ} & & \left(\mathrm{Eq}(d)^{*}=g\left\langle\mathrm{Eq}(c)^{*}\right\rangle\right) \\
& =c c^{\circ} c g^{\circ} g^{*} g^{\circ} & & \left(\mathrm{Eq}(g) \mathrm{Eq}(c)^{*}=\mathrm{Eq}(c) \mathrm{Eq}(g)^{*} \text { by Definition 2.3) }\right) \\
& \leq c c^{\circ} c g^{\circ} g g^{\circ} & & \left(g^{*} \leq g\right) \\
& =c g^{\circ} . & & (\text { Lemma 1.1(1) })
\end{aligned}
$$

Since $c g^{\circ *}$ is the largest star contained in $c g^{\circ}$, it follows that $f^{\circ} d^{*} \leq c g^{\circ *}$. The inclusion $c g^{\circ *} \leq f^{\circ} d^{*}$ always holds, so that $c g^{\circ *}=f^{\circ} d^{*}$.
$(\mathrm{b}) \Rightarrow$ (a) Let us consider regular epimorphisms $f: X \rightarrow Y$ and $g: X \rightarrow Z$. We want to prove that $\mathrm{Eq}(f) \mathrm{Eq}(g)^{*}=\mathrm{Eq}(g) \mathrm{Eq}(f)^{*}$. For this we build the following diagram

that represents the regular image of $\mathbf{E q}(f)$ along g. The relation $g\langle\mathbf{E q}(f)\rangle=\left(\rho_{1}, \rho_{2}\right)$ is reflexive and, consequently, ρ_{1} is a split epimorphism. By assumption, we then know that the equality

$$
\begin{equation*}
\rho_{1}^{\circ} g^{*}=c \pi_{1}^{\circ *} \tag{A}
\end{equation*}
$$

holds true. This implies that

$$
\begin{aligned}
\mathrm{Eq}(f) \mathrm{Eq}(g)^{*} & =\pi_{2} \pi_{1}^{\circ} g^{\circ} g^{*} & & \\
& =\pi_{2} c^{\circ} \rho_{1}^{\circ} g^{*} & & \left(g \cdot \pi_{1}=\rho_{1} \cdot c\right) \\
& =\pi_{2} c^{\circ} c \pi_{1}^{\circ} & & (\mathrm{A}) \\
& \leq \pi_{2} c^{\circ} c \pi_{2}^{\circ} \pi_{2} \pi_{1}^{\circ *} & & \left(\Delta_{\mathrm{Eq}(f)} \leq \pi_{2}^{\circ} \pi_{2}\right) \\
& =\mathrm{Eq}(g) \pi_{2} \pi_{1}^{\circ} * & & \left(\pi_{2}\langle\mathrm{Eq}(c)\rangle=\mathrm{Eq}(g)\right) \\
& =\mathrm{Eq}(g) \mathrm{Eq}(f)^{*}, & &
\end{aligned}
$$

where the equality $\pi_{2}\langle\mathrm{Eq}(c)\rangle=\mathrm{Eq}(g)$ follows from the fact that the split epimorphisms π_{2} and ρ_{2} induce a split epimorphism from $\mathrm{Eq}(c)$ to $\mathrm{Eq}(g)$.

In the total context, Proposition 2.4 gives the characterisation of regular Mal'tsev categories through regular pushouts (see [4] and Proposition 3.4 of [12]), as expected. In the pointed context, condition (b) of Proposition 2.4 translates into the pointed version of the right saturation property 9 for any commutative diagram of type (11): the induced morphism $\bar{c}: \operatorname{Ker}(g) \rightarrow \operatorname{Ker}(f)$, from the kernel of g to the kernel of f is also a regular epimorphism. This can be seen by looking at diagram (2), where the \mathcal{N}-kernels now represent actual kernels, so that $\operatorname{Ker}(a)=\operatorname{Ker}(x)=\operatorname{Ker}(f)$.
2.1. The star of a pullback relation. Consider the pullback relation $\pi=\left(\pi_{1}, \pi_{2}\right)$ of a pair (g, δ) of morphisms as in the diagram

The star of the pullback relation π is defined as $\pi^{*}=\pi \Delta_{W}^{*}$. It can be described as the universal relation $\nu=\left(\nu_{1}, \nu_{2}\right)$ from W to C such that $\nu_{1} \in \mathcal{N}$ and $\delta \cdot \nu_{1}=g \cdot \nu_{2}$ as in the diagram

where $\mathrm{n}_{\pi_{1}}$ is the \mathcal{N}-kernel of $\pi_{1}, \nu_{1}=\pi_{1} \cdot \mathrm{n}_{\pi_{1}}$ and $\nu_{2}=\pi_{2} \cdot \mathrm{n}_{\pi_{1}}$.
By using the composition of relations one has the equalities $\pi=\pi_{2} \pi_{1}^{\circ}=g^{\circ} \delta$, so that

$$
\pi^{*}=\pi_{2} \pi_{1}^{\circ *}=g^{\circ} \delta^{*}
$$

In the total context, the star of a pullback relation is precisely that pullback relation. In the pointed context, the star of the pullback (relation) of (g, δ) is given by $\pi^{*}=(0, \operatorname{ker}(g))$.

A morphism $f: X \rightarrow Y$ in a multi-pointed category with kernels is said to be saturating [9] when the induced dotted morphism from the \mathcal{N}-kernel of 1_{X} to the \mathcal{N}-kernel of 1_{Y} making the diagram

commute is a regular epimorphism. All morphisms are saturating in the pointed context. This is also the case for any quasi-pointed category [3], namely a finitely complete category with an initial object 0 and a terminal object 1 such that the arrow $0 \rightarrow 1$ is a monomorphism. As in the pointed case, it suffices to choose for \mathcal{N} the class of morphisms which factor through the initial object 0 . In this case we shall speak of the quasi-pointed context. In the total context, any regular epimorphism is saturating. The proof of the following result is straightforward:
Lemma 2.5. [9] Let \mathbb{C} be a regular multi-pointed category with kernels. For a morphism $f: X \rightarrow Y$ the following conditions are equivalent:
(a) f is saturating;
(b) $\Delta_{Y}^{*}=f^{*} f^{\circ}$.

The next result gives a characterisation of 2-star-permutable categories which will be useful in the following section.
Proposition 2.6. For a regular multi-pointed category \mathbb{C} with kernels and saturating regular epimorphisms the following statements are equivalent:
(a) \mathbb{C} is a 2-star-permutable category;
(b) for any commutative diagram

where the front square is of the form (1), $\beta \cdot w=d \cdot \delta, w$ is a regular epimorphism, $\left(\left(W \times_{D} C\right)^{*}, \nu_{1}, \nu_{2}\right)$ and $\left(\left(Y \times_{B} A\right)^{*}, \chi_{1}, \chi_{2}\right)$ are stars of the corresponding pullback relations, then the comparison morphism $\lambda:\left(W \times_{D}\right.$ $C)^{*} \rightarrow\left(Y \times_{B} A\right)^{*}$ is also a regular epimorphism.

Proof. (a) \Rightarrow (b) To prove that the arrow λ in the cube above is a regular epimorphism, we must show that $\left\langle\chi_{1}, \chi_{2}\right\rangle \lambda$ in the commutative diagram

is the (regular epimorphism, monomorphism) factorisation of the morphism $\langle w$. $\left.\nu_{1}, c \cdot \nu_{2}\right\rangle:\left(W \times_{D} C\right)^{*} \rightarrow Y \times A$. That is, we must have $c \nu_{2} \nu_{1}^{\circ} w^{\circ}=\chi_{2} \chi_{1}^{\circ}$ or, equivalently, $c g^{\circ} \delta^{*} w^{\circ}=f^{\circ} \beta^{*}$, since $\nu_{2} \nu_{1}^{\circ}=\nu^{*}=g^{\circ} \delta^{*}$ and $\chi_{2} \chi_{1}^{\circ}=\chi^{*}=f^{\circ} \beta^{*}$ (see Section 2.1).

The front square of diagram (3) is a star-regular pushout by Proposition 2.4 which means that the equality

$$
\begin{equation*}
c g^{\circ *}=f^{\circ} d^{*} \tag{B}
\end{equation*}
$$

holds true. Now, we always have

$$
\begin{array}{rlrl}
c g^{\circ} \delta^{*} w^{\circ} & \leqslant f^{\circ} d \delta^{*} w^{\circ} & & (\text { commutativity of the front face of (3) }) \\
& =f^{\circ} \beta w^{*} w^{\circ} & (d \cdot \delta=\beta \cdot w) \\
& =f^{\circ} \beta \Delta_{Y}^{*} & & (\text { Lemma 2.5) } \\
& =f^{\circ} \beta^{*} . & &
\end{array}
$$

The other inequality follows from

$$
\begin{array}{rlrl}
c g^{\circ} \delta^{*} w^{\circ} & \geqslant c g^{\circ} \delta^{*} w^{\circ} & & \left(g^{\circ} \geqslant g^{\circ *}\right) \\
& =f^{\circ} d^{*} \delta^{*} w^{\circ} & (\mathrm{B}) \\
& =f^{\circ} d \delta^{*} w^{\circ} & & \left({ }^{*} \delta^{*}=\delta^{*} ;\right. \text { Section 1.3) } \\
& =f^{\circ} \beta^{*} . & & (\text { as in the inequality above })
\end{array}
$$

(b) \Rightarrow (a) A commutative diagram of type (11) induces a commutative cube

where $\nu=\left(g \cdot \mathrm{n}_{g}, \mathrm{n}_{g}\right)$ is the star of the pullback (relation) of $\left(g, 1_{D}\right)$. By assumption, λ is a regular epimorphism which translates into the equality $c g^{\circ} 1_{D}^{*} 1_{D}=f^{\circ} d^{*}$, as observed in the first part of the proof. We get the equality $c g^{\circ *}=f^{\circ} d^{*}$, and this proves that diagram (11) is a star-regular pushout and, consequently, that \mathbb{C} is a 2-star-permutable category by Proposition 2.4.

In the total context, Proposition 2.6 is the "star version" of Proposition 3.6 in [12] (see also Proposition 4.1 in 4]). In the pointed context condition (b) of Proposition 2.6 also reduces to the pointed version of the right saturation property (in the sense of [9]). Indeed, in this context that condition says that, in the following commutative diagram

the induced arrow $\bar{c}: \operatorname{Ker}(g) \rightarrow \operatorname{Ker}(f)$ is a regular epimorphism.
We conclude this section with the pointed version of Propositions 2.4 and 2.6
Corollary 2.7. (see Theorem 2.12 in 9) For a pointed regular category \mathbb{C} the following statements are equivalent:
(a) \mathbb{C} is a subtractive category;
(b) any commutative diagram of the form (1) is right saturated, i.e. the comparison morphism $\bar{c}: \operatorname{Ker}(g) \rightarrow \operatorname{Ker}(f)$ is a regular epimorphism.

3. The Star-Cuboid Lemma

In [12] it was shown that regular Mal'tsev categories can be characterised through the validity of a homological lemma called the Upper Cuboid Lemma, a strong form of the denormalised 3×3 Lemma [4, 19, 11, We are now going to extend this result to the star-regular context. We shall then observe that, in the pointed
context, it gives back the classical Upper 3×3 Lemma characterising subtractive normal categories.
3.1. \mathcal{N}-trivial objects. An object X in a multi-pointed category is said to be \mathcal{N}-trivial when $1_{X} \in \mathcal{N}$. If a composite $f \cdot g$ belongs to \mathcal{N} and g is a strong epimorphism, then also f belongs to \mathcal{N}. This implies that \mathcal{N}-trivial objects are closed under strong quotients. One says that a multi-pointed category \mathbb{C} has enough trivial objects [8] when \mathcal{N} is a closed ideal [14], i.e. any morphism in \mathcal{N} factors through an \mathcal{N}-trivial object and, moreover, the class of \mathcal{N}-trivial objects is closed under subobjects and squares, where the latter property means that, for any \mathcal{N} trivial object X, the object $X^{2}=X \times X$ is \mathcal{N}-trivial. An equivalent way of expressing the existence of enough trivial objects is recalled in the following:

Proposition 3.1. [8] Let \mathbb{C} be a regular multi-pointed category with kernels. The following conditions are equivalent:
(a) if $\left(\sigma_{1}, \sigma_{2}\right): S \rightrightarrows X$ is a relation on X such that $\sigma_{1} \cdot n \in \mathcal{N}$ and $\sigma_{2} \cdot n \in \mathcal{N}$, then $n \in \mathcal{N}$;
(b) \mathbb{C} has enough trivial objects.

In the following we shall also assume that \mathcal{N}-trivial objects are closed under binary products. Remark that in the total and in the (quasi-)pointed contexts there are enough trivial objects, and \mathcal{N}-trivial objects are closed under binary products.

Under the presence of enough trivial objects the assumption that \mathcal{N}-trivial objects are closed under binary products is equivalent to the following condition:
(a') if $\left(\sigma_{1}, \sigma_{2}\right): S \mapsto X \times Y$ is a relation from X to Y such that $\sigma_{1} \cdot n \in \mathcal{N}$ and $\sigma_{2} \cdot n \in \mathcal{N}$, then $n \in \mathcal{N}$.
Whenever the category has enough trivial objects, condition (a') implies that starkernels "commute" with stars of pullback relations:

Lemma 3.2. Let \mathbb{C} be a multi-pointed category with kernels, enough trivial objects, and assume that \mathcal{N}-trivial objects are closed under binary products. Given a commutative cube

in \mathbb{C}, consider the star-kernels of c, d and w, and the induced morphisms $\bar{\delta}: \mathrm{Eq}(w)^{*} \rightarrow$ $\mathrm{Eq}(d)^{*}$ and $\bar{g}: \mathrm{Eq}(c)^{*} \rightarrow \mathrm{Eq}(d)^{*}$. Then the following constructions are equivalent (up to isomorphism):

- taking the horizontal star-kernel of λ and then the induced morphisms $\operatorname{Eq}(\lambda)^{*} \rightarrow$ $\mathrm{Eq}(w)^{*}$ and $\mathrm{Eq}(\lambda)^{*} \rightarrow \mathrm{Eq}(c)^{*}$;
- taking the star of the pullback (relation) of \bar{g} and $\bar{\delta}$ and then the induced morphisms $\left(\mathrm{Eq}(w)^{*} \times_{\mathrm{Eq}(d)^{*}} \mathrm{Eq}(c)^{*}\right)^{*} \rightrightarrows\left(W \times{ }_{D} C\right)^{*}$.

Proof. This follows easily by the usual commutation of kernel pairs with pullbacks and condition (a').

In a star-regular category, a (short) star-exact sequence is a diagram

$$
\mathrm{Eq}(f)^{*} \underset{f_{2}}{\stackrel{f_{1}}{\Longrightarrow}} X \xrightarrow{f} Y
$$

where $\operatorname{Eq}(f)^{*}$ is a star-kernel of f and f is a coequaliser of f_{1} and f_{2} (which, by star-regularity, is the same as to say that f is a regular epimorphism). In the total context, a star-exact sequence is just an exact fork, while in the (quasi-)pointed context it is a short exact sequence in the usual sense.

The Star-Upper Cuboid Lemma

Let \mathbb{C} be a star-regular category. Consider a commutative diagram of morphisms and stars in \mathbb{C}

where the three diamonds are stars of pullback (relations) of regular epimorphisms along arbitrary morphisms (so that $\left.P=\left(\mathrm{Eq}(w)^{*} \times_{S} \mathrm{Eq}(c)^{*}\right)^{*}\right)$ and the two middle rows are star-exact sequences. Then the upper row is a star-exact sequence whenever the lower row is.

Note that, in the diagram (5) above, d is necessarily a regular epimorphism, $d \cdot \sigma_{1}=d \cdot \sigma_{2}$ since \bar{g} is an epimorphism, and $\lambda \cdot \pi_{1}=\lambda \cdot \pi_{2}$, because the pair of morphisms $\left(\chi_{1}, \chi_{2}\right)$ is jointly monomorphic.

Theorem 3.3. Let \mathbb{C} be a star-regular category with saturating regular epimorphisms, enough trivial objects, and assume that \mathcal{N}-trivial objects are closed under binary products. The following conditions are equivalent:
(a) \mathbb{C} is a 2-star-permutable category;
(b) the Star-Upper Cuboid Lemma holds true in \mathbb{C}.

Proof. (a) \Rightarrow (b) Suppose that the lower row is a star-exact sequence. The fact that $\pi=\mathrm{Eq}(\lambda)^{*}$ follows from Lemma 3.2. As explained in Proposition 2.6, λ is a
regular epimorphism if and only if $c g^{\circ} \delta^{*} w^{\circ} \geqslant f^{\circ} \beta^{*}$. In fact we have

$$
\begin{aligned}
& c g^{\circ} \delta^{*} w^{\circ}=c c^{\circ} c g^{\circ} g g^{\circ} \delta^{*} w^{\circ} \quad(\text { Lemma 1.1(1)) } \\
& \geqslant c c^{\circ} c g^{\circ} g^{*} g^{\circ} \delta^{*} w^{\circ} \quad\left(\mathrm{Eq}(g) \geqslant \mathrm{Eq}(g)^{*}\right) \\
& =c g^{\circ} g c^{\circ} c^{*} g^{\circ} \delta^{*} w^{\circ} \quad\left(\mathrm{Eq}(c) \mathrm{Eq}(g)^{*}=\mathrm{Eq}(g) \mathrm{Eq}(c)^{*}\right. \text {; Definition 2.3) } \\
& =c g^{\circ} d^{\circ} d^{*} \delta^{*} w^{\circ} \quad\left(g\left\langle\mathrm{Eq}(c)^{*}\right\rangle=\mathrm{Eq}(d)^{*} \text { by assumption }\right) \\
& =c g^{\circ} d^{\circ} d \delta^{*} w^{\circ} \quad\left({ }^{*} \delta^{*}=\delta^{*}\right. \text {; Section (1.3) } \\
& =c c^{\circ} f^{\circ} \beta w^{*} w^{\circ} \quad(d \cdot g=f \cdot c, d \cdot \delta=\beta \cdot w) \\
& =f^{\circ} \beta w^{*} w^{\circ} \quad \text { (Lemma 1.1(2)) } \\
& =f^{\circ} \beta \Delta_{Y}^{*} \quad(\text { Lemma 2.5) } \\
& =f^{\circ} \beta^{*} \text {. (Section 1.3) }
\end{aligned}
$$

(b) \Rightarrow (a) Consider a commutative cube of the form (3). We construct a commutative diagram of type (5) by taking the star-kernels of c, w, d and λ, so that $\bar{g}, \bar{\delta}, \tau_{1}$ and τ_{2} are the induced arrows between the star-kernels. By Lemma 3.2 we know that $\left(\tau_{1}, \tau_{2}\right)$ is the star above the pullback (relation) of $(\bar{g}, \bar{\delta})$. By applying the Star-Upper Cuboid Lemma to this diagram we conclude that the upper row is a star-exact sequence and, consequently, λ is a regular epimorphism. By Proposition 2.6. \mathbb{C} is a 2 -star-permutable category.

In the total context, Theorem 3.3 is precisely Theorem 4.3 in [12, which gives a characterisation of regular Mal'tsev categories through the Upper Cuboid Lemma, as expected. In the pointed context, the Star-Upper Cuboid Lemma gives the classical Upper 3×3 Lemma: in the pointed version of diagram (5), the back part is irrelevant (like in diagram (4)). Then the front part is a 3×3 diagram where all columns and the middle row are short exact sequences. The Star-Upper Cuboid Lemma claims that the upper row is a short exact sequence whenever the lower row is, i.e. the same as the Upper 3×3 Lemma. The pointed version of Theorem 3.3 is Theorem 5.4 of [18] which characterises normal subtractive categories. Note that in the pointed context, the Upper 3×3 Lemma is also equivalent to the Lower 3×3 Lemma as shown in 18 .

References

[1] M. Barr, Exact Categories, in: Lecture Notes in Math. 236 Springer (1971) 1-120.
[2] F. Borceux and D. Bourn, Mal'cev, protomodular, homological and semi-abelian categories, Math. and its Appl. 566, Kluwer, (2004).
[3] D. Bourn, 3×3 lemma and protomodularity, J. Algebra, 236 (2001) 778-795.
[4] D. Bourn, The denormalized 3×3 lemma, J. Pure Appl. Algebra 177 (2003) 113-129.
[5] A. Carboni, G.M. Kelly, and M.C. Pedicchio, Some remarks on Maltsev and Goursat categories, Appl. Cat. Structures 1 (1993) 385-421.
[6] A. Carboni, J. Lambek, and M.C. Pedicchio, Diagram chasing in Mal'cev categories, J. Pure Appl. Alg. 69 (1991) 271-284.
[7] C. Ehresmann, Sur une notion générale de cohomologie, C. R. Acad. Sci. Paris 259 (1964) 2050-2053.
[8] M. Gran, Z. Janelidze and D. Rodelo, 3×3-Lemma for star-exact sequences, Homology, Homotopy Appl. 14 (2) (2012) 1-22.
[9] M. Gran, Z. Janelidze, D. Rodelo, and A. Ursini, Symmetry of regular diamonds, the Goursat property, and subtractivity, Theory Appl. Categ. 27 (2012) 80-96.
[10] M. Gran, Z. Janelidze and A. Ursini, A good theory of ideal in regular multi-pointed categories, J. Pure Appl. Algebra 216 (2012) 1905-1919.
[11] M. Gran and D. Rodelo, A new characterisation of Goursat categories, Appl. Categ. Structures 20 (2012) 229-238.
[12] M. Gran and D. Rodelo, The Cuboid Lemma and Mal'tsev categories, published online in Appl. Categ. Structures, DOI: 10.1007/s10485-013-9352-5.
[13] M. Gran and V. Rossi, Galois Theory and Double Central Extensions, Homology, Homotopy Appl. 6 (1) (2004) 283-298.
[14] M. Grandis, On the categorical foundations of homological and homotopical algebra, Cah. Top. Géom. Diff. Catég. 33 (1992) 135-175.
[15] G. Janelidze, What is a double central extension? Cah. Top. Géom. Diff. Catég. 32 (3) (1991) 191-201.
[16] Z. Janelidze, Subtractive categories, Appl. Categ. Struct. 13 (2005) 343-350.
[17] Z. Janelidze, Closedness properties of internal relations I: A unified approach to Mal'tsev, unital and subtractive categories, Theory Appl. Categ. 16 (2006) 236-261.
[18] Z. Janelidze, The pointed subobject functor, 3×3 lemmas and subtractivity of spans, Theory Appl. Categ. 23 (2010) 221-242.
[19] S. Lack, The 3-by-3 lemma for regular Goursat categories, Homology, Homotopy Appl., 6 (1) (2004) 1-3.
[20] J.D.H. Smith, Mal'cev Varieties, Lecture Notes in Math. 554, Springer (1976).
[21] A. Ursini, On subtractive varieties, I, Algebra Univ. 31 (1994) 204-222.
Institut de Recherche en Mathématique et Physique, Université catholique de Louvain, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium

Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal, and, CMUC, Universidade de Coimbra, 3001-454 Coimbra, Portugal, drodelo@ualg.pt

[^0]: Key words and phrases. Regular multi-pointed category; star relation; Mal'tsev category; subtractive category; varieties of algebras; homological diagram lemma.

