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Abstract. In this paper we present Gray codes for the sets of noncrossing partitions
associated with the classical Weyl groups, and for the set of nonnesting partitions of
type B. An algorithm for the generation of type D nonnesting partitions is developed in
which a Gray code is given for those partitions having a zero-block, while the remaining
are arranged in lexicographic order.

1. Introduction

One of the fundamental topics on the area of combinatorial algorithms is the efficient
generation of all objects in a specific combinatorial class in such a way that each item is
generated exactly once, hence producing a listing of all objects in the considered class.
A common approach to this problem has been the generation of the objects of a com-
binatorial class in such a way that two consecutive items differ in some pre–specified,
usually small, way. Such generation is usually called a Gray code and, amongst the var-
ious applications of combination generation, Gray codes are especially valued since they
usually involve recursive constructions which provide new insights into the structure of
the combinatorial class [10].

The problem of finding a Gray code for a combinatorial class can be formulated as a
Hamilton path/cycle problem: the vertices of the graph are the objects themselves, and
two vertices are joined by an edge if they differ in a pre–specified way. This graph has a
Hamilton path if and only if the required listing of the objects exist. A Hamilton cycle
corresponds to a Gray code in which the first and last objects differ in the pre–specified
way.

In [7], Huemer et al. defined a graph structure on the set of classical noncrossing par-
titions by declaring two partitions adjacent if they differ by the move of a single element
from one block to another, and showed that this set has a Hamilton cycle. Recently, this
result was also obtained for the set of all classical nonnesting partitions [6]. Classical
noncrossing and nonnesting partitions are members of a broader class of objects, known
as Coxeter-Catalan objects, associated with the symmetric group Sn. Coxeter-Catalan
combinatorics is an active field of research, having at its core the study of objects associ-
ated with a Coxeter group W and counted by the W -Catalan numbers, a generalization
of the classical Catalan numbers. Two of these objects are the noncrossing partitions,
associated to each finite Coxeter group, and the nonnesting partitions, defined for each
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crystallographic Coxeter group W . When W is one of the classical (finite) Coxeter groups,
the sets of noncrossing and nonnesting partitions, denoted NC(W ) and NN(W ) respec-
tively, have nice combinatorial descriptions in terms of permutation groups: the symmetric
group is a representative for type An−1, the hyperoctahedral group for type Bn, and the
even-signed permutation group for type Dn, and their corresponding W -Catalan numbers
are 1

n+1

(
2n
n

)
,
(
2n
n

)
and

(
2n
n

)
−
(
2n−2
n−1

)
, respectively. These two sets of objects are not only

counted by the same numbers, but are deeply connected as they share many enumerative
and combinatorial properties. Nevertheless, there are many gaps in our understanding of
the relations between noncrossing and nonnesting partitions (see [1] for a comprehensive
account of these objects).

In this paper we generalize the type A results of [6, 7] for Weyl groups of type B
and D, constructing Hamilton cycles for the sets of noncrossing partitions of types B
and D, and nonnesting partitions of type B, where now we declare two type B (or D)
partitions adjacent if they differ by the move of at most two elements from one block to
another. Although computational examples suggest that the set of type D nonnesting
partitions is hamiltonian as well, we were only able to construct a Hamilton cycle on the
subset formed by all those type D nonnesting partitions without zero-block. In [6] we
designed an efficient algorithm for a lexicographic combinatorial generation of nonnesting
set partitions of type A, using a characterization of such partitions in terms of arcs.
This characterization is used in this paper to generate all nonnesting partitions of type
B and all nonnesting partitions of type D with zero-block in lexicographic order. The
concatenation of the Hamilton path formed by all type D nonnesting partitions without
zero-block with the lexicographic ordering of those nonnesting partitions with zero-block
gives a generating algorithm for all nonnesting partitions of type D.

The remainder of this paper is structured as follows. In Section 2 we review the usual
combinatorial models for noncrossing and nonnesting partitions of types A,B and D.
The algorithm which will be the main tool for our constructions is presented in Section
3, and subsequently used to obtain Hamilton cycles for the sets of noncrossing partitions
of types A,B and D, nonnesting partitions of type B, and type D nonnesting partitions
without zero-block. Our Hamilton cycle for type A noncrossing partitions is different
from the one obtained in [7], and is needed for the construction of a Hamilton cycle in
the set of noncrossing partitions of type D. The generation in lexicographic order of type
B nonnesting partitions, and of those type D nonnesting partitions having zero-block are
presented in Sections 3.4 and 3.5.

2. Preliminaries and notation

Let S be a finite non empty set. Throughout this paper, let

[n] = {1, . . . , n},

[±n] = {1, 2, . . . , n, 1, 2, . . . , n}
for any positive integer n, where we set i := −i.

A partition of S is a collection of mutually disjoint nonempty subsets of S, called blocks,
whose union is the entire set S. The set of all partitions of S is denoted by Π(S). When
S = [n] or S = [±n], we simply write Π(n) and Π(±n) instead of Π([n]) and Π([±n]).
A generic set partition with no further restriction is sometimes referred to as partition of
type A, because the lattice of all set partitions of a set of n elements can be interpreted
as the intersection lattice for the hyperplane arrangement corresponding to a root system
of type An−1, i.e. the symmetric group of n letters, Sn.
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Given partitions π, σ of S, their distance D(π, σ) is defined as the minimum number
of elements that must be deleted from S so that the two residual induced partitions are
identical:

D(π, σ) = min{|Ac| : A ⊆ S, π|A = σ|A},
where Ac is the complement of A in S and π|A is the partition of A induced by π,
obtained by removing from π all the integers not in A. In other words, D(π, σ) is equal
to the minimum number of integers that must be moved between blocks of π, possibly
creating a new block, so that the resulting partitions is σ. We call a pair (i, j) an arc of
the partition π if i and j 6= i occur in the same block and there is no other element k in
the same block satisfying i < k < j. The first coordinate i of an arc (i, j) is called an
opener and the second coordinate j is a closer of π. For example, π = 125/34/6 ∈ Π(6)
has three blocks {1, 2, 5}, {3, 4}, and {6}, and set of arcs {(1, 2), (2, 5), (3, 4)} (when there
is no ambiguity we simplify the partition notation by removing the parenthesis and the
commas within each block of a partition). The set of openers and closers are, respectively,
{1, 2, 3} and {2, 4, 5}. The standard representation of a partition π ∈ Π(n) is obtained
by placing in a horizontal line the letters 1, 2, . . . , n, in this order, and drawing an arc
between the opener and the closer of each arc (i, j) of π.

Definition 1. A partition π ∈ Π(n) is said to be noncrossing (resp. nonnesting) if it does
not have two arcs (i, k) and (j, `) such that i < j < k < ` (resp. i < j, ` < k).

In other words, π is noncrossing (resp. nonnesting) if and only if the standard repre-
sentation of π does not have two arcs which cross each other (resp. two arcs one of which
nests in the other). We denote by NC(n) the set of all noncrossing partitions of [n] and
by NN(n) the set of all nonnesting partitions of [n]. See Figure 2.1 for the standard
representations of π = 125/34/6 ∈ NC(6) and σ = 125/3/46 ∈ NN(6). Note that these
partitions have distance D(π, σ) = 1.

A noncrossing partition π of [n] can also be represented in a circular diagram, called
the circular representation, obtained by placing clockwise around a circle the integers
1, 2, . . . , n, and drawing a direct edge from vertex i to vertex j whenever (i, j) is an arc
of π, or when i is the least and j is the greater element of a block. Then, π will be
noncrossing if and only if for every pair of distinct blocks B,B′ of π, the convex hulls of
the vertices representing B and B′ are disjoint. We may view the circular representation
as obtained by bending round the horizontal line of the standard representation of π.

1
2

3
4

5

6

1 2 3 4 5 6 1 2 3 4 5 6

Figure 2.1. Circular and standard representation of 125/34/6 ∈ NC(6)
and standard representation of 125/3/46 ∈ NN(6).

In the last years, these two classes of partitions have received great attention and have
been generalized in many directions, both combinatorially and algebraically. One of these
directions lead to the generalization of noncrossing partitions to each finite reflection group
W , denoted NC(W ), by Bessis [3], Brady and Watt [4], where NC(An−1) is identified
with NC[n]. In other direction, Postnikov [11, Remark 2] defined the set NN(W ) of
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nonnesting partitions for each crystallographic reflection group W , where NN(An−1) is
identified with NN(n).

In this paper we consider noncrossing and nonnesting partitions over the classical Weyl
groups, which have combinatorial descriptions in terms of permutation groups: the sym-
metric group Sn is a representative for type An−1, the hyperoctahedral group for type Bn,
and the even-signed permutation group for type Dn. Next, we recall the combinatorial
models for the noncrossing and nonnesting partitions of types B and D following [1, 2]
and referring to [5, 8] for any undefined terminology and comprehensive references on
Coxeter groups.

2.1. Noncrossing and nonnesting partitions of types B and D. The combinatorial
models for noncrossing and nonnesting partitions of types B and D are based on the notion
of a type B partition introduced by Reiner in [11]. A partition of type Bn is a partition
π of the set [±n] such that if B is a block of π then −B = {i : i ∈ B} is also a block of
π, and there is at most one block, called the zero-block, which satisfies B = −B.

A partition of type Dn is a partition of type Bn with the additional property that
the zero-block, when it is eventually present, has more than two elements. The set of
all partitions of type Bn is denoted by ΠB(n), and its subset consisting of all partitions
of type Dn is denoted by ΠD(n). The posets ΠB(n) and ΠD(n) are geometric lattices
which are isomorphic to the intersection lattice of the Bn and Dn Coxeter hyperplane
arrangement, respectively.

For example, π = 11/235/2 3 5/4/4 is a partition of type B5, but not of type D5,
with blocks {2, 3, 5}, {2, 3, 5}, {4}, {4} and zero-block {1, 1}. Its arcs are {(5, 3), (3, 2),
(1, 1), (2, 3), (3, 5)}, and its set of openers and closers are, respectively, {5, 3, 1, 2, 3} and
{3, 2, 1, 3, 5}.

If we fix the linearly ordered ground set

[±n] = {1 < 2 < · · · < n < 1 < 2 < · · · < n},

which is isomorphic, through the map i 7→ i for i ∈ [n] and i 7→ n + i for i ∈ {1, . . . , n},
to

[2n] = {1 < 2 < . . . < n < n+ 1 < · · · < 2n},
we may define the set NC(±n), of noncrossing partitions of [±n], as the isomorphic image
of NC(2n). This allows us to define a Bn noncrossing partitions as an element of the
intersection NC(±n)∩ΠB(n). As in type A, we may depict a noncrossing partitions π of
type Bn pictorially by placing the numbers 1, 2, . . . , n, 1, 2, . . . , n clockwise around a circle
in this order, so that n is adjacent to 1, and for each block B of π drawing the convex
hull ρ(B) of the set of vertices labeled with the elements of B. Then π is noncrossing if
and only if ρ(B) and ρ(B′) have empty intersection for any two distinct blocks B and B′

of π. Cutting the 2n-gon between the integers n and 1 and stretching it along a line, we
get a standard representation of the noncrossing partition π where no two arcs cross. See
Figure 2.2 for an example. The set of all noncrossing partitions of type Bn is denoted by
NCB(n).

Consider now the type Dn case. Let us label the vertices of a regular (2n − 2)-gon as
2, 3, · · · , n, 2, 3, · · · , n clockwise, in this order, and label its centroid with both 1 and 1.
Let π ∈ ΠD(n) and for each block B of π let ρ(B) be the convex hull of the set of vertices
labeled with the elements of B. Two blocks B and B′ of π are said to cross if ρ(B) 6= ρ(B′)
and if the intersection of the relative interior of ρ(B) and ρ(B′) is nonempty. Note that
the case ρ(B) = ρ(B′) can occur only when B and B′ are the singletons {1} and {1}, and
that if π has a zero-block B, then B and the block containing 1 cross unless {1, 1} ⊆ B.
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Figure 2.2. Two type B6 noncrossing partitions: π = 16/16/453/4 53/2/2
without zero-block, and σ = 55/246/2 46/3/3 with zero-block.

Thus, the zero-block of π, if it is eventually present, contains necessarily the integers 1
and 1, and at least one more pair i, i, with i 6= ±1. A partition π ∈ ΠD(n) is said to be
noncrossing if no two of its blocks cross. The set of all type Dn noncrossing partitions is
denoted by NCD(n). See Figure 2.3 for examples of D7 noncrossing partitions.
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Figure 2.3. Two D7 noncrossing partitions: π = 146/14 6/237/2 37/5/5
without zero-block, and σ = 13471 3 4 7/56/5 6/2/2 with zero-block.

We turn now our attention to the construction of the combinatorial models for nonnest-
ing partitions of type Bn and Dn. Using the usual ordering, we can identify the set

[±n] ∪ {0} = {n < · · · < 2 < 1 < 0 < 1 < 2 < · · · < n}

with

[2n+ 1] = {1 < 2 < · · · < 2n+ 1},
through the map i 7→ n+1−i for i ∈ [±n] and 0 7→ n+1. With this identification we may
define the set of nonnesting partitions of [±n]∪ {0} as the set of nonnesting partitions of
[2n+ 1]: NN([±n] ∪ {0}) ∼= NN(2n+ 1).

Given π ∈ ΠB(n) let π0 be the partition of [±n] ∪ {0} obtained from π by adding 0 to
the zero-block if π has a zero-block, or by adding the singleton {0} otherwise. We say
that π is a type Bn nonnesting partition if π0 ∈ NN([±n]∪{0}). That is, π is nonnesting
if and only if the standard representation of π0 relative to the ground set

n < · · · < 2 < 1 < 0 < 1 < 2 < · · · < n

is nonnesting. The presence of 0 in the ground set for nonnesting partitions of type Bn

is necessary to correctly represent the arc between a positive number i an its negative
(when it is eventually present). See Figure 2.4 for an example. Denote by NNB(n) the
set of nonnesting partitions of type Bn.
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5 4 3 2 1 0 1 2 3 4 5

Figure 2.4. The nonnesting partition 4455/23/23 ∈ NNB(5).

Consider now the following partial order of the set [±n]:

[±n]′ = {n < · · · < 2 < 1, 1 < 2 < · · · < n},
in which the integers 1 and 1 are not comparable. Using the obvious map, we identity
this set with [2n], and thus we can identify the set NN([±n]′) of nonnesting partitions of
[±n]′ with the set NN(2n), for which, according to Definition 1, an arc with 1 as closer
and another one with 1 as closer are not considered nested. A partition π ∈ ΠD(n) is
said to be a Dn nonnesting partition if the zero-block, if present, contains the integers ±1
and π ∈ NN([±n]′). Denote by NND(n) the set of nonnesting partitions of type Dn. An
example of a nonnesting partition of type D5 is depicted in example 2.5.

5 4 3 2 1 1 2 3 4 5

Figure 2.5. The nonnesting partition 412/1 24/35/35 ∈ NND(5).

3. Gray codes for noncrossing and nonnesting partitions

Let TA(n) denote one of the sets NC(n) or NN(n), and let Tψ(n) denote one of the
sets NCψ(n) or NNψ(n), for ψ = B or ψ = D. We can endow TA(n) (resp. Tψ(n)) with a
graph structure by declaring two partitions adjacent if their distance is 1 (resp. 1 or 2). A
Hamilton path with distance 1 in TA(n) (resp. 2 in Tψ(n)) corresponds to an exhaustive
sequence of all partitions in TA(n) (resp. Tψ(n)) such that the distance between two
successive partitions is 1 (resp. 1 or 2), and thus it gives a Gray code for these objects.
If this path is closed we have a Hamilton cycle. We use the same notation for the set
of partitions and the corresponding graph. We point out that the distance between the
partition π = {±1,±2, . . . ,±n} ∈ Π(±n), with only one block, and any other type B or
type D partition is at least 2, and thus there is no Gray code with distance 1 for the sets
NCB(n), NNB(n), NCD(n) and NND(n).

Given partitions π, σ in TA(n) or Tψ(n), we will write π ∼ σ to indicate that π and
σ are adjacent. Moreover, to simplify notation, if π′ is a partition of some set S ⊂ [n],
(resp. S ⊆ [±n]) we will often write π = π′/sing to denote the partition of [n] (resp.
[±n]) where π|S = π′ and sing is the all singleton partition of [n] \ S (resp. [±n] \ S),
that is the partition of [n] \ S (resp. [±n] \ S) where each block has only one element. In
particular, π = sing denotes the all singleton partition of [n] (resp. [±n]).

The children of a partition π ∈ TA(n−1) are defined as the partitions in TA(n) obtained
from π by adjoining the letter n to one of its blocks, or by adding the singleton block {n}.
We denote by π∗ = π/n this last child of π and let C(π) be the set of all children of π.
Any partition in TA(n) has a unique parent in TA(n− 1).

Similarly, for types B and D the children of a partition π ∈ Tψ(n−1) are defined as the
partitions in Tψ(n) obtained from π by adjoining the letters n and n to some of its blocks,
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or by adding the zero-block {±n} (only possible in type B if π has no zero-block), or the
singletons blocks {n} and {n}. We denote by π∗ = π/n/n this last child of π and let C(π)
be the set of all children of π. Any partition in TB(n) has a unique parent in TB(n− 1),
but this property is no longer valid in type D. Due to the restrictions on the cardinality
of the zero-block, there are partitions in TD(n) which have no parent in TD(n − 1). For
instance, the D3 noncrossing partition π = {±1,±3}/2/2 is not a child of any partition
in NCD(2).

The following result is immediate from the definitions.

Lemma 1. If π1 and π2 are children of the same partition π ∈ Tψ(n − 1), then π1 ∼ π2
for any ψ = A,B or D.

The main tool for constructing the Gray codes is the following algorithm. It transforms
a sequence of sets C1, . . . , Cs, where each set Ci is a collection of children of some partition
πi of [n− 1] (or [±(n− 1)]) with two distinct elements π∗i and π�i such that π∗i−1 ∼ π∗i and
π�i−1 ∼ π�i for all i, into an ordered sequence of partitions of [n] (or [±n]).

Algorithm 1.
Input: A sequence of sets C1, . . . , Cs of partitions such that each element in Ci is a
child of some partition πi of [n − 1] (or [±(n − 1)]), and there are π∗i 6= π�ii ∈ Ci and
π∗i+1 6= π�ii+1 ∈ Ci+1 with π∗i−1 ∼ π∗i and π�ii ∼ π�ii+1 for each i ∈ [s− 1].

1. Start with π∗1 and transverse in any order all other elements of C1, ending in π�11 .
Let π••1 := π�11 .

2. For i = 2 to s− 1 do
Go to π•i and transverse, in any order, the remaining elements of Ci, ending

in π••i , where π•i =

{
π∗i , if π••i−1 = π∗i−1
π
�i−1

i , if π••i−1 = π
�i−1

i−1
and

π••i =

{
π∗i , if π•i = π

�i−1

i

π�ii , if π•i = π∗i
.

3. Go to π•s and transverse, in any order, all other elements of Cs, where

π•s =

{
π∗s , if π••s−1 = π∗s−1
π�s−1
s , if π••s−1 = π

�s−1

s−1
.

5. End.

Note that when we apply Algorithm 1 to the input sequence C1, . . . , Cs, then for each
even (resp. odd) integer i ∈ [s− 1], the last partition of Ci to be placed into the output
sequence is π∗i (resp. π

�s−1

i ).

3.1. Type A noncrossing partitions. The next result shows that among the children
of two partitions with distance 1 in NC(n) there are at least two pairs of children also
with distance 1.

Lemma 2. Let σ, π ∈ NC(n − 1) with σ ∼ π and n ≥ 3. Then, there are children
σ� ∈ C(σ) and π� ∈ C(π) such that σ� 6= σ∗, π� 6= π∗, and σ� ∼ π�.

Proof. If σ = sing is the all singleton partition, then we must have π = ij/sing, for some
i < j in [n− 1]. In this case, the partitions σ� and π�, obtained from σ and π by placing
the letter n in the blocks containing the letter i, satisfy the required condition. Notice
also that σ� is never equal to the partition n(n− 1)/sing.

Assume now that neither σ nor π is the all singleton partition of [n − 1]. Let σ =
B1/B2/σ

′ and π = B′1/B
′
2/σ

′, such that j ∈ B1 and B′1 = B1 \ {j} and B′2 = B2 ∪ {j}. If
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j 6= 1 then let σ� and π� be obtained from σ and π by placing the letter n in the blocks
containing the letter 1. Otherwise j = 1 and we let σ� and π� be obtained from σ and π
by placing the letter n in the blocks containing the letter n−1. In any case the partitions
σ� and π� satisfy the required conditions. �

1
3

2

1
3

2

1
3

2

1
3

2

1
3

2

Figure 3.1. A Hamilton cycle in NC(3)
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Figure 3.2. A Hamilton cycle in NC(4)

Theorem 3. For n ≥ 2 there is a Hamilton cycle π1, . . . , πs−1, πs in NCA(n) which
starts with the all singleton partition π1 = sing and ends with the partitions πs−1 =
n(n− 1)(n− 2)/sing and πs = n(n− 1)/sing, where s = 1

n+1

(
2n
n

)
.

Proof. The proof is by induction on n ≥ 2. The case n = 2 is trivial and the cases
n = 3, 4 are depicted in Figures 3.1 and 3.2. Assume the result holds for n − 1 ≥ 3
and let π1, . . . , πs−1, πs be a Hamilton cycle in NCA(n − 1), with π1 = 1/2/ · · · /(n − 1),
πs−1 = (n− 1)(n− 2)(n− 3)/1/2/ · · · /(n− 4) and πs = (n− 1)(n− 2)/1/2/ · · · /(n− 3).

Let π†1 = n(n − 1)/sing ∈ C(π1), π
†
s = n(n − 1)(n − 2)/sing ∈ C(πs), and consider

the sequence C1, . . . , Cs, defined by C1 = C(π1) \ {π†1}, Ci = C(πi), for i = 2, . . . , s − 1,
and Cs = C(πs) \ {π†s}. For i ∈ [s − 1], consider also the partitions π∗i 6= π�ii ∈ Ci and
π∗i+1 6= π�ii+1 ∈ Ci+1 obtained in Lemma 2 applied to the pair πi ∼ πi+1. The construction
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of a Hamilton cycle for NCA(n) results from the application of Algorithm 1 to the sequence

C1, . . . , Cs, followed by the partitions π†s and π†1, which satisfy π†s ∼ π†1.
Lemmas 1 and 2 show that any two consecutive partitions in the sequence given by the

algorithm above have distance 1, as well as the first and last partition. Moreover, this
sequence exhausts all elements of NC(n), since any partition on this set has a unique

parent in NC(n− 1). It remains to show that π†1 6= π�11 and that π†s 6= π�s−1
s when s− 1 is

odd, since by construction π†s 6= π∗s . The first inequality follows immediately from Lemma
2, since π�11 is obtained by adding the letter n to the singleton containing some letter
i < n − 1. For the second inequality, notice that again by Lemma 2, if n ≥ 4 then π

�s−1

s−1
and π�s−1

s are obtained from πs−1 and πs by placing the letter n in the blocks containing
the letter 1, and so we must have π†s 6= π�s . Note that when n = 3, we have π�s = π†s, but
in this case s− 1 is even and the sets C(πs−1) and C(πs) are linked by π∗s−1 and π∗s . �

See Figure 3.2 for a Hamilton cycle in NC(4) constructed by applying the algorithm
described above, starting from the Hamilton cycle for NC(3) given in Figure 3.1.

3.2. Type B noncrossing partitions. As in type A, we start by showing that among
the children of two distinct partitions with distance less than or equal to 2 in NCB(n)
there are at least two pairs of children also with distance less than or equal to 2.

Lemma 4. Let σ, π ∈ NCB(n − 1) with σ ∼ π and n ≥ 3. Then, there are children
σ� ∈ C(σ) and π� ∈ C(π) such that σ� 6= σ∗, π� 6= π∗, and σ� ∼ π�.

Proof. First assume that σ = sing is the all singleton partition in [±(n − 1)]. Then
we must have either π = ±i/sing or π = ij/ i j/sing, where in each case sing is the
appropriate all singleton partition and |i| < |j| ∈ [n − 1]. Let σ� and π� be obtained

from σ and π by adding the letters n and n to the blocks containing the letter |i| and |i|,
respectively.

In any other case there must be an integer j ∈ [n − 1] such that j and/or j change
blocks between partitions σ and π. Now, if j 6= 1 then define σ� and π� as the partitions
obtained from σ and π adding the letters n and n to the blocks containing the letters 1
and 1, respectively. Otherwise, σ� and π� are obtained by adding the letters n and n to
the blocks of σ and π containing the letter n− 1 and n− 1, respectively.

In any case, the partitions σ� and π� are noncrossing and their distance is 2. �
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21

2 1

21

2 1

21

2

1

21

2 1

21

2

Figure 3.3. A Hamilton cycle in NCB(2)

The construction of a Gray code for the noncrossing partitions of type B, given in the
next result, follows the same lines used in type A.

Theorem 5. For n ≥ 2 there is a Hamilton cycle π1, . . . , πs−1, πs in NCB(n) which
starts with the all singleton partition π1 = sing and ends with the partitions πs−1 =
{±n,±(n− 1)}/sing and πs = ±n/ sing, where s =

(
2n
n

)
.
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Proof. The proof is by induction on n ≥ 3. The cases n = 2, 3 are depicted in Figures
3.3 and 3.4. Assume the result holds for n− 1 ≥ 3 and let π1, . . . , πs−1, πs be a Hamilton
cycle in NCB(n − 1), with π1 = 1/ 1/ · · · /(n − 1)/ n− 1, πs−1 = {±(n − 2),±(n −
1)}/1/ 1/ · · · /n− 3/ n− 3 and πs = ±(n− 1)/1/ 1/ · · · /n− 2/ n− 2.

Consider the partitions π†1 = ±n/sing and π†s = {±n,±(n−1)}/sing, children of π1 and

πs respectively, and construct the sets C1, . . . , Cs, where C1 = C(π1) \ {π†1}, Ci = C(πi),
for i = 2, . . . , s − 1 and Cs = C(πs) \ {π†s}. For each i = 1, . . . , s − 1, consider also the
partitions π∗i 6= π�ii ∈ Ci and π∗i+1 6= π�ii+1 ∈ Ci+1, obtained in Lemma 4 applied to the
pair πi ∼ πi+1.

Finally, consider the sequence obtained applying Algorithm 1 to the sequence C1, . . . , Cs,
followed by π†s and π†1.

We have π†s ∼ π†1 and, as in the proof of Theorem 3, we can use Lemmas 1 and 4 to
show that any other two consecutive partitions in the sequence obtained by the algorithm
above have distance less than or equal to 2. Note also that the distance between the
last partition π†1 and the first partition π∗1 of the sequence is 1. Moreover, this sequence
exhausts all elements of NCB(n), since any partition on this set has a unique parent in

NCB(n − 1). It remains to show that π†1 6= π�11 and, since the integer s =
(
2(n−1)
n−1

)
is

even (see for instance [9]), that π†s 6= π�s−1
s . The first inequality follows immediately from

Lemma 4, since π�11 is obtained by adding the letters n and n to the singletons containing
some letter i < n − 1 and i. For the second inequality, notice that again by Lemma 4,
π
�s−1

s−1 and π�s−1
s are obtained from πs−1 and πs by placing the letters n and n in the blocks

containing the letters 1 and 1, respectively, and so we must have π†s 6= π�s−1
s . �

3.3. Type D noncrossing partitions. For the construction of a Gray code for the set
of all noncrossing partitions of type Dn, we start by identifying the partitions in NCD(n)
which have a parent in NCD(n− 1).

Lemma 6. A partition π ∈ NCD(n) is a child of some partition in NCD(n − 1) if and
only if its zero-block, when present, is not the set {±1,±n}.
Proof. Any partition π ∈ NCD(n) whose zero-block, when present, is not {±1,±n}, is a
child of the type Dn−1 noncrossing partition obtained from π by removing the letters ±n.
On the other hand, if {±1,±n} is the zero-block of π, then it cannot be a child of a Dn−1
noncrossing partition, since the zero-block of any such partition must have at least four
elements, ±1 and ±j, for some |j| ≤ n− 1, and thus the distance between the children of
any such partition and π is at least equal to 4, contradicting the result of Lemma 1. �

Lemma 7. Let σ, π ∈ NCD(n − 1) with σ ∼ π and n ≥ 3. Then, there are children
σ� ∈ C(σ) and π� ∈ C(π) such that σ� 6= σ∗, π� 6= π∗, and σ� ∼ π�.

Proof. First assume that σ = sing is the all singleton partition in [±(n − 1)]. Then we
must have π = ij/ i j/sing, where |i| < |j| ∈ [n − 1]. Let σ� and π� be obtained from σ

and π by adding the letters n and n to the blocks having the letter |j| and |j|, respectively.
If σ = {±1,±(n− 1)}/sing and π has the same zero-block as σ, then we must have

π = {±1,±(n− 1)}/ij/ i j/sing,
for some integers positive integers i, j ∈ [2, n − 1]. In this case we let σ� and π� be the
partitions obtained from σ and π by adding the letters n and n to the blocks having the
letters 2 and 2, respectively.

In any other case there must be an integer j ∈ [n − 1] such that j and/or j change
blocks between partitions σ and π. Now, if j 6= 2 then define σ� and π� as the partitions
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Figure 3.4. A Hamilton cycle in NCB(3)

obtained from σ and π adding the letters n and n to the blocks having the letters 2 and
2, respectively. Otherwise, σ� and π� are obtained by adding the letters n and n to the
blocks of σ and π having the letter n− 1 and n− 1, respectively.

In all cases, the partitions σ� and π� are noncrossing and their distance is 2. �

We are now ready to start the construction of a Hamilton cycle in NCD(n) in which
every two consecutive noncrossing partitions have distance 2. This construction will make
use of the construction made for An noncrossing partitions given in Theorem 3.

Theorem 8. For n ≥ 2 there is a Hamilton path π1, π2, . . . , πs−1, πs in NCD(n) such
that π1 = sing, π2 = {1, n}/{1, n}/sing, π1 ∼ π3 and πs = {±1,±n}/sing, where
s =

(
2n
n

)
−
(
2n−2
n−1

)
. Moreover, when n ≥ 4, the zero-block of πs−1 is {±1,±n}.

Proof. The proof is by induction on n ≥ 3. The cases n = 2, 3 are depicted in Figures
3.5 and 3.6. Assume the result holds for n − 1 ≥ 3 and let π1, π2, . . . , πs be a Hamilton
path in NCD(n− 1), with π1 = 1/ 1/ · · · /(n− 1)/ n− 1, π2 = {1, n− 1}/{1, n− 1}/sing,
π1 ∼ π3 and πs = {±1,±(n − 1)}/sing. For the construction of a Hamilton path for
NCD(n) we start by ordering the elements of C(π1): start with π∗1, π

′
1 and transverse in
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any order the remaining children of π1, ending in π′′1 = {n− 1, n}/{n− 1, n}/sing, where

π′1 = {1, n}/{1, n}/sing.

Next, apply Algorithm 1 to the sequence C2, . . . , Cs, followed by π†s, where Ci = C(πi),
for i = 2, . . . , s−1, and Cs = C(πs)\{π†s} with π†s = {±1,±(n−1),±n}/sing, and where
for each i = 2, . . . , s− 1, the partitions π∗i 6= π�ii ∈ Ci and π∗i+1 6= π�ii+1 ∈ Ci+1 are the ones
obtained by Lemma 7 applied to the pair πi ∼ πi+1.

Since the set C(π1) has more than 4 elements, by Lemma 1 the distance between π∗1
and the third element considered in the first step of the algorithm above is at most 2.
Note that π′′1 ∼ π∗2 = {1, n − 1}/{1, n− 1}/sing. For the algorithm to work we need to
show that π†s 6= π�s−1

s whenever s − 1 is even, that is whenever the last child of πs−1 to
be placed in the sequence is π

�s−1

s−1 (note that by construction, π†s 6= π∗s). When n− 1 = 3
the integer s− 1 is odd and thus the last child of πs−1 in the sequence is π∗s−1 as we can
check in Figure 3.6. For n − 1 ≥ 4 the partitions πs−1 and πs share the same zero-block
{±1,±(n − 1)}, and thus by Lemma 7 we have π†s 6= π�s−1

s . Therefore, the construction
above originates a sequence σ1, . . . , σt of type D noncrossing partitions of [±n], with

σ1 = π∗1 = sing,

σ2 = {1, n}/{1, n}/sing,
σ1 ∼ σ3 and

σt = π†s = {±1,±(n− 1),±n}/sing.

Next, use Theorem 3 and the obvious isomorphism NC[n−2] ∼= NC[2, n−1] to obtain a
Hamilton cycle ω1, . . . , ωq for type A noncrossing partitions of [2, n−1] = {2, 3, . . . , n−1},
where ω1 = 2/ · · · /n− 1 and ωq = {n− 1, n− 2}/2/ · · · /n− 3. Define

σt+` := {±1,±n}/ω`/ω`,

for each ` = 1, . . . , q, where q = #NC(n − 2) ≥ 2 since we are assuming n − 1 ≥ 3.
Finally, consider the sequence

(3.1) σ1, . . . , σt, σt+q, . . . , σt+1.

We claim that (3.1) is a Hamilton path for NCD(n).
First, note that by direct inspection we have

σt ∼ σt+q = {±1,±n}/{n− 1, n− 2}/{n− 1, n− 2}/sing.

Moreover, the distance between any other two consecutive integers of the sequence (3.1)
is 1 or 2 by Lemma 7 and Theorem 3.

Finally, by Lemma 6, any partition π ∈ NCD(n) whose zero-block, when present, is not
{±1,±n}, is a child of some type D noncrossing partition of [n− 1], and thus it must be

one of the partitions σ1, . . . , σt, π
†
1. If {±1,±n} is the zero-block of π, then it is not a child

of a type D partition of [n − 1], and any other block B of π must satisfy B ⊆ [2, n − 1]
or −B ⊆ [2, n− 1]. Therefore, the positive part of π, excluding the zero-block, is a type
A noncrossing partition of [2, n− 1]. It follows that (3.1) is an exhaustive list of the type
D noncrossing partitions of [n]. �

See Figure 3.6 for a Hamilton path in NCD(3) constructed by applying the algorithm
described in the theorem above, starting from the Hamilton path for NCD(2) given in
Figure 3.5. In this case, n = 3, there is only one partition with zero-block {±1,±n} since
the set of type A noncrossing partitions NC(n− 2) = NC(1) has only one element.
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22
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22 1
1 22 1

1
22

±1

Figure 3.5. A Hamilton cycle in NCD(2)

Corollary 9. For n ≥ 2 there is a Hamilton cycle in NCD(n).

Proof. The case n = 2 is given in Figure 3.5. For n ≥ 3 consider the Hamilton path
π1, π2, π3, . . . , πs−1, πs of NCD(n), given by the theorem above, where π1 = sing, π2 =
{1, n}/{1, n}/sing, π1 ∼ π3, and πs = {±1,±n}/sing. Since πs ∼ π2 ∼ π1, it follows that
the sequence

π1, π3, . . . , πs−1, πs, π2

is a Hamilton cycle in NCD(n). �
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Figure 3.6. A Hamilton path in NCD(3)

3.4. Type B nonnesting partitions. We now turn our attention to the exhaustive
listing of nonnesting partitions of types Bn and Dn, starting with the construction of a
Hamilton cycle in type B.

Lemma 10. Let σ, π ∈ NNB(n − 1) with σ ∼ π and n ≥ 3. Then, there are children
σ� ∈ C(σ) and π� ∈ C(π) such that σ� 6= σ∗, π� 6= π∗, and σ� ∼ π�.

Proof. If the letters n−1 and n− 1 do not change blocks between the partitions σ and π,
then let σ� and π� be the partitions obtained from σ and π by placing the letters n and n
in the blocks containing the letters n − 1 and n− 1, respectively. Otherwise, set σ� and
π� as the partitions obtained from σ and π by placing the letters n and n in the blocks
containing the letters n− 2 and n− 2, respectively. It is clear that σ� and π� satisfy the
required conditions. �
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Theorem 11. For n ≥ 2 there is a Hamilton cycle π1, . . . , πs−1, πs in NNB(n) which
starts with the all singleton partition π1 = sing and ends with the partition πs = {±1}/ sing,
where s =

(
2n
n

)
.

Proof. The proof is by induction over n ≥ 2. The case n = 2 is depicted in Figure 3.7.
Assuming the result for n − 1 ≥ 2, let π1, . . . , πs be a Hamilton cycle for the type B
nonnesting partitions of [n− 1], with π1 = sing and πs = {±1}/ sing.

Apply Algorithm 1 to the sequence C1, . . . , Cs, where Ci = C(πi) for i = 1, . . . , s − 1
and Cs = C(πs) \ {π∗s}, with

π∗s = ±1/n/n/sing ∈ NC(n),

and for each i = 1, . . . , s− 1, the partitions π∗i 6= π�ii ∈ Ci and π∗i+1 6= π�ii+1 ∈ Ci+1 are the
ones obtained by Lemma 10. Let σ1, . . . , σq−1 be the sequence of partitions obtained by
this procedure, and add at its right end the partition σq = π∗s .

Note that since the integer s =
(
2(n−1)
n−1

)
is even (see for instance [9]), the first child of

C(πs) to be placed in the sequence is π�s−1
s . By Lemmas 1 and 10, any two consecutive

partitions of σ1, . . . , σq have distance at most 2, and σq ∼ σ1 = π∗1 = sing. Finally, since
each partition in NNB(n) is a child of a unique partition in NNB(n − 1), the sequence
σ1, . . . , σq is a complete list of all Bn nonnesting partitions. Thus it forms a Hamilton
cycle with distance 2 for the set NNB(n). �

2 1 0 1 2 2 1 0 1 2 2 1 0 1 2

2 1 0 1 22 1 0 1 22 1 0 1 2

Figure 3.7. A Hamilton cycle in NNB(2)

In [6], an algorithm GenTot(n) was presented to generate all type A nonnesting parti-
tions of [n] in lexicographic order of their arcs, i.e. first according to the number of arcs
and then, for partitions with the same number of arcs, according to their openers.

Using the identification of type Bn nonnesting partitions with type Bn partitions of
NN([±n] ∪ {0}) ∼= NN(2n + 1), we may define a type B lexicographic order on the set
NNB(n) as in type A, that is, we order the partitions first according to the number of
arcs and then, for partitions with the same number of arcs, according to the openers of
their arcs.

With this definition, we can use the GenTot(n) algorithm of type An to generate in
lexicographic order all type Bn nonnesting partitions as follows. First, apply GenTot(2n+
1) to list all nonnesting partitions of [2n+1] in lexicographic order. Using the identification
[2n+1] ∼= [±n]∪{0}, translate all partitions in the list into partitions of the set NN([±n]∪
{0}). Then, according to the definitions, the sublist formed by all those partitions with
at most one zeroblock and for which for each arc (i, j) there is also the arc (−j,−i) is the
list of all type Bn nonnesting partitions arranged in lexicographic order.

Proposition 12. The procedure above combinatorially generates all type B nonnesting
partitions of [n] in lexicographic order.
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2 1 0 1 2
≤`

2 1 0 1 2
≤`

2 1 0 1 2

[`

2 1 0 1 2
≥`

2 1 0 1 2
≥`

2 1 0 1 2

Figure 3.8. The elements of NNB(2) in lexicographic order.

3.5. Type D nonnesting partitions. We were not able to construct a Gray code for
type D nonnesting partitions, but we present a construction for the generation of all
partitions in NND(n). This construction has two steps. First we construct a Gray
code for all type D nonnesting partitions without zero-block, and then we give a list in
lexicographic order of all those nonnesting partitions having zero-block. The union of
these two lists generates all elements in NND(n).

As for noncrossing partitions of type Dn, we can identify the nonnesting partitions in
NND(n) which have a parent in NND(n− 1).

Lemma 13. A partition π ∈ NND(n) is a child of some partition in NND(n− 1) if and
only if its zero-block, when present, is not the set {±1,±n}.

Proof. Analogous to the proof of Lemma 6. �

Lemma 14. Let σ, π ∈ NND(n − 1) with σ ∼ π and n ≥ 3. Then, there are children
σ� ∈ C(σ) and π� ∈ C(π) such that σ� 6= σ∗, π� 6= π∗, and σ� ∼ π�.

Proof. If the letters n−1 and n− 1 do not change blocks between the partitions σ and π,
then let σ� and π� be the partitions obtained from σ and π by placing the letters n and n
in the blocks containing the letters n − 1 and n− 1, respectively. Otherwise, set σ� and
π� as the partitions obtained from σ and π by placing the letters n and n in the blocks
containing the letters n− 2 and n− 2, respectively. It is clear that σ� and π� satisfy the
required conditions. �

Proposition 15. For n ≥ 2 there is a Hamilton cycle π1, . . . , πs−1, πs in the subset of
NND(n) formed by those partitions without zero-block with π1 = sing, πs = 12/1 2/sing
and πs−1 = 12n/1 2n/sing if n ≥ 3, or πs−1 = 12/12 if n = 2.

Proof. The proof is by induction over n ≥ 3. The cases n = 2 and n = 3 are depicted
in Figures 3.9 and 3.10. Assuming the result for n − 1 ≥ 3, let π1, . . . , πs−1, πs be a
Hamilton cycle for the type Dn nonnesting partitions of [±(n−1)] without zero-block, with
π1 = sing, πs−1 = 12(n− 1)/1 2(n− 1)/sing and πs = 12/1 2/sing. Next, apply the first
two steps of Algorithm 1 to the first s−1 sets of the sequence C1 = C(π1), . . . , Cs = C(πs).

Following the application of Algorithm 1, if the sets C(πs−1) and C(πs) are to be linked
by π

�s−1

s−1 and π�s−1
s , then by Lemma 14 we must have π�s−1

s = 12/1 2/(n−2)n/(n− 2)n/sing.
Transverse the remaining children of πs ending with 12n/1 2n/sing and π∗s = 12/1 2/sing.
On the other hand, if C(πs−1) and C(πs) are to be linked by π∗s−1 and π∗s , then replace π∗s
with its sibling

σ = 12/1 2/(n− 1)n/(n− 1)n/sing ∈ C(πs),

which satisfies π∗s−1 ∼ σ. Transverse the remaining children of πs ending with 12n/1 2n/sing
and π∗s = 12/1 2/sing.
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By Lemmas 1 and 14, any two consecutive partitions in the sequence generated by this
algorithm have distance at most 2. Since by Lemma 13 any Dn nonnesting partition
without zero-block is the child of a unique Dn−1 nonnesting partition without zero-block,
it follows that the sequence obtained by the procedure above is an exhaustive list of the
elements of NND(n) with no zero-block. �

2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2

Figure 3.9. A Hamilton path in NND(2) with a Hamilton cycle for the
partitions without zero-block.

Since a type Dn nonnesting partition with zero-block must have an arc (1, 1), then no
arc (i, j) linking a negative integer i to a positive integer j can exist in such partition,
since otherwise we would have a nest: i < 1, 1 < j. Thus, if we restrict ourselves to the
subset of NND(n) formed by those nonnesting partition π having a zero-block, then any
other block B of π satisfies B ⊂ [2, n] or −B ⊂ [2, n]. This property can be used to order
all type Dn nonnesting partition with zero-block, according to the openers of its positive
arcs.

Apply the algorithm GenTot(n) given in [6] to generate in lexicographic order the list
of all type A nonnesting partitions of [n], and consider the sublist π1, . . . , πk formed by
those nonnesting partitions in which the integer 1 is in a non-singleton block. For each
partition πi = B1/ · · · /B` in this sublist, where 1 ∈ B1, let −πi = −B1/ · · · /−B` be the
nonnesting partition of [−n,−1] obtained by negating all integers of π, and let

π′i = B1 ∪ −B1/B2/ · · · /B`/−B2/ · · · /−B`

be the partition of [±n] obtained from the union of πi with −πi with the blocks containing
1 and −1 merged. It follows that π′i is a type Dn nonnesting partition with zero-block
B1 ∪ −B1. Moreover, from the discussion above, all type Dn nonnesting partition with
zero-block arise from this process. It follows that π′1, . . . , π

′
k is a list of all type D nonnest-

ing partitions of [n] that have zero-block, arranged in lexicographic order according to
the openers of its positive arcs. Note also that by construction and definition of the
lexicographic order, we must have π′1 = {±1,±2}/sing.

Proposition 16. The procedure above combinatorially generates all type D nonnesting
partitions of [n] that have zero-block, in lexicographic order, starting with the partition
{±1,±2}/sing.

Concatenating the Hamilton path π1, . . . , πs formed by all nonnesting partitions of
NND(n) without zero-block given by Proposition 15 with the sequence πs+1, . . . , πs+t, of
all nonnesting partitions of NND(n) with zero-block obtained in Proposition 16, we get
the sequence

π1, . . . , πs, πs+1, . . . , πs+t
of all partitions in NND(n), where

πi ∼ πi+1, for i = 1, . . . , s,

and
πi ≤` πi+1, for i = s+ 1, . . . , s+ t− 1 (lexicographic order).
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See Figure 3.10 for the list of partitions in NND(3) with a Hamilton cycle for the
partitions without zeroblock, and the partitions with zero-block arranged in lexicographic
order.

3 2 1 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3

3 2 1 1 2 33 2 1 1 2 33 2 1 1 2 3

3 2 1 1 2 33 2 1 1 2 33 2 1 1 2 3

3 2 1 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3

Figure 3.10. The list of partitions in NND(3) with a Hamilton cycle for
the partitions without zeroblock.
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