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Abstract

We estimate the size and orbital distributions of Near Earth Asteroids (NEAs) that are expected to be in the 1:1 mean motion resonance with
Venus in a steady state scenario. We predict that the number of such objects with absolute magnitudes H < 18 and H < 22 is 0.14 ± 0.03 and
3.5 ± 0.7, respectively. We also map the distribution in the sky of these Venus coorbital NEAs and we see that these objects, as the Earth coorbital
NEAs studied in a previous paper, are more likely to be found by NEAs search programs that do not simply observe around opposition and that
scan large areas of the sky.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In Morais and Morbidelli (2002), hereafter referred to as
Paper I, we estimated the population of Near Earth Asteroids
(NEAs) that are in the 1:1 mean motion resonance (i.e., are
coorbital1) with the Earth in a steady state scenario where
NEAs are constantly being supplied by the main belt sources
(Morbidelli et al., 2002). Here, we will apply the same method-
ology to estimate the population of NEAs that are in the 1:1
mean motion resonance with Venus.

Numerical integrations of the orbits of NEAs showed that
these objects can become temporary coorbitals of the terres-
trial planets. Wiegert and Innanen (1997) showed that (3753)
Cruithne has an asymmetric horseshoe orbit2 with the Earth.
Namouni (1999) later explained in detail the behavior of this
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1 Coorbital objects can have tadpole orbits around the triangular equilibria L4
or L5, horseshoe orbits, quasi-satellite orbits, compound and transition orbits
that include the previous modes (Namouni, 1999; Nesvorný et al., 2002).

2 Asymmetric horseshoe (tadpole) orbits are compound orbits that in-
volve horseshoe (tadpole) modes and quasi-satellite modes (Namouni, 1999;
Nesvorný et al., 2002).
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object with a theory based on the restricted three body problem
at high eccentricity and inclination. Christou (2000) performed
a 0.2 Myr integration of the orbits of NEAs in the vicinity of
the terrestrial planets, namely (3362) Khufu, (10563) Izhdubar,
1994 TF2 and 1989 VA, showing that the first three could be-
come coorbitals of the Earth while the fourth could become
coorbital of Venus. Michel (1997) had previously performed a
2 Myr integration of the orbit of (45660) Nereus showing that
this object could be captured in the 1:1 mean motion resonance
with Venus.

Recently, other examples of current Earth and Venus coor-
bitals were found. Connors et al. (2002) showed that 2002
AA29 is in a horseshoe orbit with the Earth. Wiegert et al.
(2002) showed that 2000 PH5 and 2001 GO2 are also in horse-
shoe orbits with the Earth. Connors et al. (2004) showed that
2003 YN107 is a quasi-satellite of the Earth. Finally, we know
2 examples of current Venus coorbitals: Mikkola et al. (2004)
showed that 2002 VE68 is a quasi-satellite of Venus and Brasser
et al. (2004) showed that 2001 CK32 has an asymmetric horse-
shoe orbit with Venus.

In this paper we will test the hypothesis of the existence of
a population of Venus coorbital NEAs which are constantly be-
ing supplied by main belt sources. Using as a starting point the
predictions of the NEA model of Bottke et al. (2000, 2002),
we will estimate the steady state number (according to size) of
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Venus coorbital NEAs, we will obtain their orbital elements’
distribution, and finally we will investigate their observability.
We will also compare these results with those obtained in Paper
I for the population of Earth coorbital NEAs.

2. Methodology

The methodology for estimating the population of Venus
coorbital NEAs is the same as the one described in Paper I.
We followed the evolution of test bodies with e and I cho-
sen according to the NEA model of Bottke et al. (2000, 2002)
for 0.8 < a < 0.9 AU (our intermediate source region) as they
became coorbital with the Venus (our target region) and un-
til they collide with the Sun or a terrestrial planet, or achieve
a > 10 AU. The orbital elements of these test bodies (as well
as those of the planets) were outputted every 100 years as a
compromise between being able to accurately identify coorbital
motion with Venus (the coorbital period of Venus’ tadpole or-
bits is about 150 years3) and generating manageable amounts
of data.

In order to decide if a test body is captured in the 1:1 mean
motion resonance with Venus we checked for oscillation of its
semi-major axis around 0.72 AU. Oscillations with periodic-
ity larger than 10,000 years (thus much larger than a typical
coorbital period; see above) or that happened for less than 10
consecutive output times were rejected.

As in Paper I, we stress that the setting of the intermedi-
ate source (IS) as the NEA region with 0.8 < a < 0.9 AU is
correct as any test bodies coming from the main belt will en-
ter this region before becoming Venus coorbitals and are also
likely to remain in this region for a time larger than 10,000 years
(the interval at which the output of the numerical integrations
is sampled in the NEA model) with the exception of those rare
cases in which they jump over the IS region due to a deep plan-
etary close encounter. The advantage of this choice of IS region
is that, in this way, we increase the likelihood of a test body be-
ing captured as a Venus coorbital (because we start with a large
population in a region already quite close to the target region)
and can therefore obtain better statistics than if we followed the
test bodies all the way from the main belt sources. Obviously,
we could not follow this methodology if we did not have yet a
prediction of the NEAs orbital and size distribution in the re-
gion with 0.8 < a < 0.9 AU.

In a steady state scenario, the population in the target (TR)
region is

(1)NTR = F × LTR,

where F is the flux of entrance in the TR region and LTR is the
mean life-time in the TR region.

The quantity LTR can be obtained directly from the simu-
lations. In order to compute F , we follow the same method
described in Paper I. We know that our simulated situation cor-
responds to a steady state scenario in which we suddenly stop

3 Coorbital period is the period of the motion of the coorbital object relative to

the planet. Tadpole orbits have coorbital period equal to [(27/4)μ]−1/2 orbital
periods (Message, 1966) where μ is the planet to Sun mass ratio.
feeding the IS region. Therefore, the subpopulation of the IS re-
gion that feeds the TR region, Ns , which is initially a fraction
f of the total population of the IS region (i.e., Ns(0) = f NIS),
starts decaying into the TR region at a rate

(2)
dNs

dt
= −rISNs,

where rIS is the fractional decay rate into the TR region which
is approximately constant for small t .

On the other hand, the number of bodies in the IS region that
still have not entered the TR region at time t is

(3)N(t) = Ns(t) + NIS − f NIS,

where NIS is the initial population in the IS region.
We obtain Ns(t) by solving Eq. (2) with initial condition

Ns(0) = f NIS. Then we substitute this into Eq. (3) and expand
it in a Taylor series up to first order around t = 0, obtaining

(4)N(t) = NIS exp[−rISf t],
which is valid for small t .

Finally, as the chosen initial conditions are representative of
the steady state orbital distribution in the IS region, the flux of
entrance in the TR region is given by

(5)F = rISf NIS

and we can estimate rISf by fitting the data from the simula-
tions to Eq. (4).

3. Results and discussion

3.1. The numerical integration scheme

As in Paper I, all our numerical integrations were made using
the “swift-rmvs3” integrator (Levison and Duncan, 1994) with
a time-step of 4 days. This is a modification of the symplectic
algorithm proposed by Wisdom and Holman (1991) which is
able to deal with planetary close encounters.

3.2. Statistics from the numerical integrations

We followed a set of 2000 test bodies initially in the IS re-
gion as their orbits evolve subject to gravitational perturbations
from the 7 planets Venus to Neptune. This set was followed first
for 5 Myr, in order to estimate the flux of entrance in the TR re-
gion.

Now, according to Eq. (5), the flux of entrance in the TR re-
gion depends on the rate rISf and NIS (the steady state number
of NEAs in the IS region).

The quantity rISf is, according to Eq. (4), the absolute value
of the slope of ln[N(t)]. In Fig. 1a we show the plot of ln[N(t)]
and in Fig. 1b we show the plot of rISf ; this latter one is the
absolute value of the slope of ln[N(t)] obtained by applying
the method of linear regression in the interval [0, T ] where T

ranges from 0.5 to 5 Myr.
Now, the computation of the fractional decay rate for T too

small is unreliable due to the small number of data points avail-
able. On the other hand, for T too large we are attempting to fit
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Fig. 1. The decay rate from the IS region into the TR region: (a) logarithm of
the population left in the IS region as a function of time; (b) fractional decay
rate into the TR region obtained by fitting a straight line to the graphic (a) in
the interval [0, T ].

a straight line to a part of ln[N(t)] where the decay rate deviates
from an exponential law. By inspection of Fig. 1b we decided
to compute an average fractional decay rate by including only
the values of the slopes between T = 1 and 3 Myr, which gives
rISf = −0.0255 ± 0.0015 Myr−1.

Finally, from the NEA model (Bottke et al., 2000, 2002)
we can obtain the steady state number of NEAs with ab-
solute magnitude H < H0 in the IS region. In particular, NIS =
16.2 ± 2.4 for H0 = 18 and this value scales approximately as
100.35(H0−18) for 18 < H0 < 22. We can then apply Eq. (5)
to obtain the flux of entrance in the TR region: this is F =
0.41 ± 0.09 test bodies Myr−1 for H < 18.

Now, according to Eq. (1), in order to obtain the steady state
number of Venus coorbital NEAs we need to compute LTR (the
mean life-time in the target region). In order to obtain this quan-
tity, we followed up to 100 Myr the set of test bodies that after
5 Myr had at some stage been coorbital with Venus. This inte-
gration timespan proved to be long enough for our purposes as,
at the end of it, not only there were very few surviving test bod-
ies but also new captures in the 1:1 mean motion resonance
were then very unlikely (indeed at the end of the 100 Myr
timespan the cumulative time spent in the TR region had al-
most reached a plateau). We obtained a mean life-time in the 1:1
mean motion resonance with Venus, LTR = 0.34 Myr. Apply-
ing Eq. (1) we can then predict the steady state number of Venus
coorbital NEAs: this is NTR = 0.14±0.03 and NTR = 3.5±0.7
for H < 18 and H < 22, respectively.4

In Paper I, we saw that the steady state number of Earth
coorbital NEAs was NTR = 0.65 ± 0.12 and NTR = 16 ± 3 for
H < 18 and H < 22, respectively. Therefore, the population of
Venus coorbitals is a factor 0.21 ± 0.09 of the population of
Earth coorbitals. Since the average lifetimes in the 1:1 mean
motion resonance are very similar, this difference is due to the
fact that the flux of coorbital captures is much smaller for Venus
than for the Earth.

We can understand why this is so. The flux of coorbital cap-
tures is given by the number of bodies, NIS, available in the
IS region, times the capture probability. We can obtain a rough
measure of the latter quantity by assuming that it scales as the
area of the coorbital region5 which is 4πa2(μ/3)1/3, where
a is the planet’s semi-major axis and μ is the planet to Sun
mass ratio. Therefore, the ratio of the capture probabilities for
Venus and the Earth is 0.486. On the other hand, the ratio of the
number of bodies available in Venus’ and Earth’s IS regions is
0.516; hence the ratio of the coorbital capture fluxes for Venus
and the Earth is about 0.25. This agrees, within the error bars,
with the value 0.21 ± 0.09 which we obtained from the numer-
ical integrations.

We also saw that these Venus’ coorbitals, like the Earth coor-
bitals, typically experience several captures/escapes in/from the
1:1 mean motion resonance. The average duration of a Venus
coorbital episode is around 32,000 years with 8 episodes lasting
longer than 1 Myr. In Paper I, we saw that the average duration
of an Earth coorbital episode was around 25,000 years with
no episodes lasting longer than 1 Myr. The existence of long
coorbital episodes for Venus as compared to the Earth can be
explained by the respective eccentricity distributions, as we will
see in Section 3.4.

3.3. Comparison between model and observations

We currently know two Venus coorbitals: these are 2001
CK32 with H = 18.9 and 2002 VE68 with H = 20.3. On the
other hand, we currently know five Earth coorbitals. However,
with the exception of (3753) Cruithne with H = 15.1, all the
other objects are quite small with H > 22. Our work is based
on the model by Bottke et al. (2000, 2002) which only applies
in the size range corresponding to H < 22.

In Table 1 we show the predicted number of Venus coorbital
NEAs (Section 3.2) and Earth coorbital NEAs (Paper I, Sec-
tion 3.2) with H < H0 for 18 � H0 � 22. At first sight we could

4 Note that the relative error in NTR (21%) is simply the sum of the relative
error in the slope rISf (6%) with the relative error in NIS (15%).

5 The coorbital region can be defined as the area of the circular ring with

mean radius a (the planet’s semi-major axis) and half width a(μ/3)1/3 (the
planet’s Hill’s radius).
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Table 1
Estimated number of Venus and Earth coorbital NEAs

Coorbitals H < 18 H < 19 H < 20 H < 21 H < 22

Venus 0.14 ± 0.03 0.31 ± 0.07 0.70 ± 0.15 1.57 ± 0.34 3.5 ± 0.7
Earth 0.65 ± 0.12 1.45 ± 0.27 3.26 ± 0.60 7.29 ± 1.35 16.3 ± 3.0

conclude that the survey for Venus coorbitals is complete for
H < 21 (since we know 2 objects) while the survey for Earth
coorbitals is complete for H < 18 (since we know one object).
However, as already stated in Paper I, the quantities in Table 1
are average estimates of the population of Venus’ and Earth’s
coorbital NEAs and thus should be compared with the number
of NEAs which become coorbital with these planets over a large
enough timespan.

Christou (2000) searched a database of known NEAs for
objects with semi-major axis close to that of Venus and the
Earth, and followed them for 0.2 Myr. He found that 1989
VA (H = 17.9) had a 3/7 probability of becoming coorbital
with Venus during the integration timespan, while (10563) Izh-
dubar (H = 16.9), (3362) Khufu (H = 18.3) and 1994 TF2
(H = 19.3) had each 4/7 probability of becoming coorbital
with the Earth over the same timespan (Christou, 2005, private
communication). Additionally, we know that (3753) Cruithne
(H = 15.1) is currently a coorbital of the Earth. We can thus
say that, at the time of Christou (2000) article, we knew 0.43
objects with H < 18 that became coorbital with Venus and 2.14
objects with H � 18 (or, excluding (3362) Khufu, 1.57 objects
with H < 18) that became coorbital with the Earth during the
0.2 Myr timespan.

On the other hand, according to our model, the number of
objects with H < H0 that become coorbital with a planet over a
timespan �t is N ×�t/�t1:1, where N is the steady state num-
ber of coorbitals and �t1:1 is the average duration of a coorbital
episode.

In the case of Venus we have �t1:1 = 32,000 years hence
we estimate that (0.14 ± 0.03) × �t/�t1:1 = 0.88 ± 0.19 ob-
jects with H < 18 become coorbital with this planet during
the 0.2 Myr timespan. We can thus say that, at the time of the
search by Christou (2000), the completeness of observations for
H < 18 near a = 0.72 AU was 39–59% The NEA model pre-
sented in the article of Bottke et al. (2000), written at around
the same time, predicts completeness of 37–47% for H < 18
near a = 0.72 AU. We can thus conclude that our estimates for
the population of Venus coorbitals are in reasonable agreement
with the observations.

In the case of the Earth we have �t1:1 = 25,000 years (see
Paper I) hence we estimate that (0.65 ± 0.12) × �t/�t1:1 =
5.2±0.9 objects with H < 18 become coorbital with this planet
during the 0.2 Myr timespan. We can thus conclude that at the
time of the search by Christou (2000), the completeness of ob-
servations for H � 18 near a = 1 AU was 35–49%. However,
if we exclude (3362) Khufu with H = 18.3 from the sam-
ple, we see that the completeness of observations for H < 18
near a = 1 AU was 26–36%. The NEA model of Bottke et
al. (2000) predicts completeness of 31–40% for H < 18 near
a = 0.72 AU. Therefore, as stated in Paper I, we conclude that
Fig. 2. The binned eccentricity (a) and inclination (b) distributions for the Venus
coorbitals from our simulations.

our estimates for the population of Earth coorbitals are in good
agreement with the observations.

3.4. Eccentricity and inclination distributions

The binned eccentricity and inclination distributions, ob-
tained while the test bodies were in the 1:1 mean motion res-
onance with Venus, are shown in Figs. 2a and 2b, respectively.
We see that the distribution of eccentricities is broad. There is a
significant peak centered at e = 0.2; this is due to a long coor-
bital capture (as an L4 trojan) that last about 9.5 Myr which
we show in Fig. 3. Such long coorbital capture represents about
11% of the total time spent in the 1:1 mean motion resonance
by all test particles in the simulation. In Fig. 3 we see that the
average eccentricity is around 0.2, always remaining below 0.3.
As Venus coorbitals require eccentricity e � 0.388 in order to
be on Earth crossing orbits, this object is protected against close
encounters with the Earth therefore its orbit is very stable.

From the eccentricity distribution we can compute the frac-
tion of time spent with e � 0.388 which is 56%. This gives



The population of NEAs in coorbital motion with Venus 33
Fig. 3. Long Venus’ coorbital episode (L4 trojan). From bottom to top panel: difference in semi-major axes between the coorbital and Venus, difference in mean
longitudes between the coorbital and Venus, eccentricity and inclination of coorbital.
us a measure of the probability of a Venus coorbital having an
Earth-crossing orbit. Conversely, a Venus coorbital has a 44%
probability of not having an Earth-crossing orbit which lead us
to conclude that 44% of these objects are IEOs (Inner Earth
Objects). However, as the eccentricity distribution in Fig. 2a is
not smooth, we may be overestimating the percentage of IEOs
within the population of Venus coorbitals possibly by as much
as 10%.

On the other hand, in Paper I we saw that most Earth coor-
bitals had Venus crossing orbits and that many had also Mars
crossing orbits. We can also quantify these probabilities by
computing the fraction of time spent with e � 0.28 and e � 0.52
from the respective eccentricity distribution. This gives 75%
and 35% for Venus’ and Mars’ crossing orbits, respectively.
Therefore, an Earth coorbital has only 25% probability of not
having a (potentially unstable) Venus crossing orbit which ex-
plains why the coorbital episodes in the Earth simulations tend
to be shorter than those in the Venus simulations.

The inclination distribution in Fig. 2b allows us to estimate
the most likely inclinations for Venus coorbitals; the probability
for orbits with 5◦ < I < 40◦ is 75%. In Paper I we saw that most
Earth coorbitals had 10◦ < I < 45◦; the associated probability
is 74%. We thus conclude that the average inclination of Venus
coorbitals is only slightly smaller (about 5◦) than the average
inclination of Earth coorbitals.

3.5. The distribution of coorbitals in the sky

We obtain the distribution in the sky of Venus coorbitals fol-
lowing the same method we used in Paper I. We compute the
time spent by the Venus coorbitals in each 5◦ × 5◦ cell in eclip-
tic longitude and latitude coordinates; then we normalize this
by the total time spent in the 1:1 mean motion resonance thus
obtaining the residence-time probability distribution of Venus
coorbital NEAs.

In Fig. 4a we show the average probability density of Venus
coorbital NEAs as function of geocentric ecliptic longitude and
latitude. As Venus is not fixed in this coordinate frame, this
is the residence-time probability distribution that we expect to
see if we observe the sky over a time which is longer than the
period of motion of a Venus’ coorbital relative to the Earth (if
the coorbital exactly shares Venus’ orbit this is about 1.6 years).
Such scenario makes sense in the context of the NEAs search
programmes that have been scanning the sky for several years
(http://neo.jpl.nasa.gov/programs).

In Fig. 4b we show the average extinction, V − H , i.e., the
difference between the visual magnitude, V , and the absolute
magnitude, H . This was obtained by computing the average
of the individual extinctions (according to Eq. (7) from Pa-
per I with the same slope parameter used there) for each output
timestep spent by a coorbital test body within each 5◦ × 5◦ cell
in geocentric ecliptic longitude and latitude coordinates.

In Fig. 4c we show the average rate of longitudinal motion
and in Fig. 4d we show the average rate of latitudinal motion,
both with respect to the Earth and as functions of geocentric
ecliptic coordinates. We would like to point out a mistake in
our previous article: in Figs. 4c and 4d (Paper I) we do not see
the rates of motion but the relative velocities with respect to
the Earth in units 4.25 AU/century. The correct figures with
the rates of motion of Earth coorbitals in geocentric ecliptic co-
ordinates can be found in http://www.astro.mat.uc.pt/~hmorais/
earthcoorbs.pdf.

http://neo.jpl.nasa.gov/programs
http://www.astro.mat.uc.pt/~hmorais/earthcoorbs.pdf
http://www.astro.mat.uc.pt/~hmorais/earthcoorbs.pdf
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Fig. 4. Representation in geocentric ecliptic coordinates of several characteristics of the distribution of Venus coorbitals. The color in each 5◦ × 5◦ cell indicates for
these objects: (a) the average probability density; (b) the average extinction; (c) the average longitudinal rate of motion and (d) the average latitudinal rate of motion
(both rates measured in ′′ h−1). The opposition has geocentric ecliptic latitude and longitude 0◦ .
The probability density of Venus coorbitals in geocentric
ecliptic coordinates, at a given moment of time, will depend on
the position of Venus relative to the Earth. We show some ex-
amples in Fig. 5a (Venus at inferior conjunction with the Earth),
Fig. 5b (Venus at superior conjunction with the Earth), Fig. 5c
(Venus at 90◦ from the Earth) and Fig. 5d (Venus at −90◦ from
the Earth). In Fig. 6 we show the geocentric ecliptic longitude
with respect to opposition, glon, of Venus and the Lagrangian
points L3, L4 and L5, as a function of the position of Venus rel-
ative to the Earth which is measured by the Venus–Sun–Earth
angle.

Although the distributions in Figs. 5a and 5b are not sym-
metric, these asymmetries are solely due to the long coorbital
capture around L4 shown in Fig. 3 (in fact, while in Fig. 5a L4

is located at glon ≈ 136◦ and L5 at glon ≈ −136◦, in Fig. 5b
L4 is located at glon ≈ −155.5◦ and L5 at glon ≈ 155.5◦)
and therefore do not imply “real” asymmetries in the expected
distribution of Venus coorbitals. On the other hand, the asym-
metries in the distributions in Figs. 5c and 5d are due to a “real”
asymmetry in the location of Venus’ Lagrangian points in the
geocentric frame for these configurations, as can be seen in
Fig. 6.

The small asymmetries in Figs. 5c, 5d and 6, which are
function of the location of Venus when viewed from the Earth,
do not change the overall properties of the probability density.
Moreover, as can be seen in Fig. 4a, these small asymmetries
average out with the motion of Venus with respect to the Earth.
We will use this average probability density in order to make
predictions about the distribution in geocentric ecliptic coordi-
nates of Venus coorbitals. We recall that, as stated above, this
average distribution makes more sense in the context of long-
term surveys like the NEAs search programmes.

By looking at Fig. 4a above and Fig. 4a from Paper I we
see that both Venus’ and Earth’s coorbital NEAs when viewed



The population of NEAs in coorbital motion with Venus 35
Fig. 5. The probability density of Venus coorbitals in geocentric ecliptic coordinates for different positions of Venus relative to the Earth: (a) Venus at inferior
conjunction; (b) Venus at superior conjunction; (c) Venus at 90◦ from the Earth and (d) Venus at −90◦ from the Earth. The opposition has geocentric ecliptic
latitude and longitude 0◦ .
from the Earth are more likely to be concentrated in the di-
rection of the Sun where they cannot be detected. We can
quantify the probability densities in different regions of the
geocentric coordinate frame. We choose four distinct regions:
(I) the observable sky (−100◦ < glon < 100◦ and |glat| < 45◦);
(II) the extended6 observable sky (−135◦ < glon < 135◦ and
|glat| < 45◦); (III) the unobservable sky (135◦ < glon < 180◦
or −180◦ < glon < −135◦ and |glat| < 45◦); (IV) the region
of high inclination orbits (|glat| > 45◦). The probability densi-
ties for Venus and Earth coorbitals in these regions are shown
in Table 2. The regions I, II and III are represented in Fig. 7.

We see that Venus coorbitals are more likely to be in the un-
observable sky (region III) than Earth coorbitals (78% against
54%). Conversely, Venus coorbitals are less likely to be in the

6 This includes the region where it is difficult (but not impossible) to detect
NEAs due to the proximity of the Sun (see for instance (Tholen et al., 2005)).
observable sky (region I) than Earth coorbitals (3% against
15%). Finally, Venus coorbitals are less likely to be on high in-
clination orbits (region IV) than Earth coorbitals (3.5% against
9%).

By comparing Fig. 4b above with Fig. 4b from Paper I we
see that the average extinction for Venus coorbitals is typi-
cally smaller than the average extinction for Earth coorbitals.
In the observable sky this difference in brightness is around −2
while in the extended observable sky this difference drops to
around −1. We conclude that Venus coorbitals are, on average,
brighter that Earth coorbitals with the same absolute magni-
tude.

It is also important to point out that while Venus coorbitals
move fast with respect to the Earth (we saw above that the pe-
riod of relative motion of a coorbital that exactly shares Venus’
orbit is 1.6 years), Earth coorbitals move slowly with respect to
the Earth (the speed of the motion is dictated by the coorbital
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Table 2
Probability densities for Venus and Earth coorbitals viewed in geocentric frame

Region I
(observable sky)

Region II
(extended observable sky)

Region III
(unobservable sky)

Region IV
(high inclination)

Venus 3% 18.5% 78% 3.5%
Earth 15% 37% 54% 9%
Fig. 6. The geocentric ecliptic longitude of Venus Lagrangian points L3, L4
and L5 as a function of the position of Venus relative to the Earth represented
by the angle Venus–Sun–Earth.

Fig. 7. The ecliptic coordinate frame with the orbits of the Earth (dashed circle)
and Venus (solid circle). The gray lines at ±135◦ angles separate the extended
observable region (to the right) from the unobservable region (to the left). The
observable region is limited (on the left) by the black lines at ±100◦ angles.

period which is about 200 years for Earth tadpole orbits—see
footnote 2). Therefore, although Venus coorbitals spend most
of the time in the unobservable sky, they can appear frequently,
although very briefly, in the observable sky. On the other hand,
Earth coorbitals are either in the observable sky at the moment
or will probably remain undetected for many decades.

3.6. Comparison with the sky distribution of trojans

We also compare our sky distribution of Venus coorbitals
with the sky distribution of an hypothetical population of Venus
trojans obtained by Evans and Tabachnik (2000). Venus trojans
approximately share Venus’ orbit at a = 0.72 AU thus their
elongation (the angle Sun–Earth–Object) must be 46◦ > l >

−46◦. Furthermore, their velocity as seen from Earth has two
minima at the extremes of the apparent motion, i.e., at elon-
gation l = ±46◦, and a maxima at l = 0◦. This explains why
the sky distribution of Venus trojans has maxima at l = ±46◦,
as seen in Fig. 1 of Evans and Tabachnik (2000). In our co-
ordinate frame, 46◦ > l > −46◦ corresponds to the regions
−180◦ < glon < −134◦ and 134◦ < glon < 180◦. However,
the sky distribution of Venus coorbital NEAs occupies a much
broader region. In Fig. 4a we see that the probability density is
still considerable at glon = ±120◦ and in Table 2 we see that
Venus coorbitals have a small but non-zero (3%) probability of
being in the region with −100◦ < glon < 100◦ (this is due to
the large amplitude epicyclic motion caused by large eccentric-
ities).

Similarly, we can compare the sky distribution of Earth coor-
bitals obtained in Paper I with the sky distribution of Earth
trojans also obtained by Evans and Tabachnik (2000). The sky
distribution of Earth trojans seen in Fig. 2 of Evans and Tabach-
nik (2000) is, as we would expect, symmetric with respect to
l = 0◦ and has highest concentration near L4 and L5 which
are located at l = ±60◦. As stated in Paper I, the sky distribu-
tion of Earth coorbital NEAs does not have maxima near L4 or
L5 which are located at glon = ±120◦ in our coordinate frame
(Fig. 4a, Paper I). On the other hand, Earth trojans can never
be at opposition (in fact, the minimum possible angular sepa-
ration from the Earth, which is measured along Earth’s orbit,
is about 6.3◦ and occurs at the extrema of the largest ampli-
tude stable horseshoe orbit7) while Earth coorbital NEAs can
(if they are on quasi-satellite orbits or compound orbits that
involve quasi-satellite modes like asymmetric horseshoe and
asymmetric tadpole orbits—see footnote 1).

7 The minimum possible angular separation from the Earth is (8μ)/(3a0)

where a0 = 0.74(μ/3)1/3 is the normalized half-width of the largest amplitude
stable horseshoe orbit (Dermott and Murray, 1981).
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The comparisons presented here show that the distributions
of Venus and Earth transient coorbitals are very different from
distributions of primordial trojans of these planets. However,
we would like to point out that these populations of primor-
dial trojans are solely hypothetical as none of these objects was
found to date. In fact, the distributions of primordial trojans ob-
tained by Evans and Tabachnik (2000) were based on limited
numerical integrations which followed these objects only up to
100 Myr. Recently, Scholl et al. (2005) studied the stability of
Venus’ trojans performing numerical integrations for the age
of the Solar System. They showed that all objects disappear in
about 1.2 Gyr hence they conclude that primordial venusian tro-
jans could not have survived to the present date.

4. Conclusion

In this paper we obtained the number (according to absolute
magnitude H ) and the orbital distribution of NEAs that are ex-
pected to be in the 1:1 mean motion resonance with Venus in a
steady state scenario. This work is a continuation of a previous
article about the population of NEAs that are in the 1:1 mean
motion resonance with the Earth (Paper I) and is based on the
NEA model developed by Bottke et al. (2000, 2002). In short,
we followed synthetic NEAs initially located in a region close
to the Venusian coorbital region (whose size and orbital distri-
bution we known à priori from the NEA model) and monitored
those that are trapped in the 1:1 mean motion resonance with
Venus.

We predict that the number of Venus coorbital NEAs with
H < 18 and H < 22 is 0.14 ± 0.03 and 3.5 ± 0.7, respectively.
The comparison with the current number of Venus coorbitals
seems to imply that the survey for these objects is complete up
to H < 21. This result is a little surprising (we do not expect
completeness up to such small sizes) and could imply that we
are underestimating the population of Venus coorbitals. How-
ever, this may also be due to the fact that we obtained average
estimates of the number of Venus coorbital NEAs which do not
necessarily match the present day observations. In fact, we saw
that our results are in good agreement with the work of Christou
(2000) who followed the known NEAs in the vicinity of Venus
for 200,000 years and calculated the probability of them be-
coming coorbital with this planet during that timespan.

In Paper I we predicted that the number of Earth coorbital
NEAs with H < 18 and H < 22 is 0.65 ± 0.12 and 16 ± 3,
respectively. We currently know only one such object, (3753)
Cruithne, which lead us to conclude that the survey for Earth
coorbitals is probably complete up to H < 18. These results
were also in good agreement with the work of Christou (2000)
who followed the known NEAs in the vicinity of the Earth for
200,000 years and calculated the probability of them becoming
coorbital with this planet during that timespan.

We obtained the sky distribution of Venus coorbital NEAs
and saw that these, as the Earth coorbital NEAs studied in Pa-
per I, spend most of their time away from opposition and are
spread over a large sky area. Therefore, these objects are more
likely to be found by NEAs search programmes that do not sim-
ply observe around opposition and that scan large areas of the
sky.

We saw that Venus coorbitals are, on average, brighter than
Earth coorbitals with the same absolute magnitude. We also saw
that due to the speed of the relative motion with respect to the
Earth, Venus coorbitals can move considerably across the sky in
a matter of months and thus can reach (and exit) favorable view-
ing geometries reasonably quickly. On the other hand, Earth
coorbitals are either in favorable viewing geometries at the mo-
ment or will probably remain undetected for a long time.

Finally, the recent work of Scholl et al. (2005) showed
that any primordial population of venusian trojan would have
disappeared by now. Therefore, our conclusions regarding
the population of transient Venus’ coorbitals that we present
in this article are the most relevant for any observational
searches.
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