NOTES ON THE PRODUCT OF LOCALES

JORGE PICADO AND ALEŠ PULTR

Dedicated to Richard N. Ball on the occasion of his retirement

Abstract

Products of locales (generalized spaces) are coproducts of frames. Because of the algebraic nature of the latter they are often viewed as algebraic objects without much topological connotation. In this paper we first analyze the frame construction emphasizing its tensor product carrier. Then we show how it can be viewed topologically, that is, in the sum-of-the-open-rectangles perspective. The main aim is to present the product from different points of view, as an algebraic and a geometric object, and persuade the reader that both of them are fairly transparent.

Introduction

Pointfree spaces (locales) can be, roughly (but not very roughly) speaking, viewed as generalized topological spaces. Therefore, one wishes and expects to be able to carry out with these objects as with spaces, and hopes for a transparent relationship between the corresponding concepts.

One of such constructions is the product, an operation without which one would not make headway with any serious development of the theory. Now there are (at least) two circumstances indicating that a product of locales may not be very intuitive, and that its connection with the product of spaces may not be very transparent:

- the category of locales is substantially bigger than that of topological spaces (more precisely, sober topological spaces but this does not really influence the situation); thus, the product (the categorical product) confronts the spaces entering the operation with a much

[^0]bigger class of objects than they have to cope with, in contrast to the classical case of spaces,

- and, from the technical point of view, the category of locales, although it can be given a covariant space-like interpretation, is first of all the dual of the category of frames, a category of algebraic objects that may require a specific algebraic construction; this is something one does not have in classical spaces and hence the geometric intuition is in fact missing.
Nevertheless, the localic product can be made transparent, and this is the aim of the present paper.

In Section 2 we concentrate on the algebraic aspects of the construction. First, we point out the striking similarity of the construction with the construction of the tensor product of abelian groups. Then we show that this similarity has some flaws, and finally explain what the exact parallels are: frames enrich a certain structure in a distributive manner in full analogy with that of the multiplication of commutative rings enriching the abelian group structure (and both are part of a much more general phenomenon) and there is indeed a tensor product involved. Instead of one imperfect analogy we obtain two perfect fittings.

In Section 3 we explain what happens in a product of spaces respectively locales from the geometric (topological) point of view. We show that as for spaces, where the open sets are unions of rectangles $U \times V(U, V$ open $)$, we have here again "sums of rectangles" $a \oplus b$ and that the difference between $X \times Y$ in the category of spaces and in the category of locales is in that the sums may be somewhat looser, and we explain when they are exactly the same.

In the last section we mention a few cases showing that this difference can in fact be beneficent rather than an unpleasant consequence of the generalization.

It is not the intention of this paper to present new results but to enable the reader to see the locale product from a number of different perspectives based on well-known constructions in various categories. In the process we hope that we have thereby emphasised that it is something natural and, in particular, geometrically transparent.

1. Preliminaries

1.1. Recall that a frame L is a complete lattice satisfying the distribution law

$$
(\bigvee A) \wedge b=\bigvee\{a \wedge b \mid a \in A\}
$$

and that a frame homomorphism preserves all joins (including the bottom element 0) and all finite meets (including the top element 1). The resulting category of frames will be denoted by Frm.

A typical frame is the lattice $\Omega(X)$ of all open sets of a topological space X, and if $f: X \rightarrow Y$ is a continuous map we have a frame homomorphism $\Omega(f)=\left(U \mapsto f^{-1}[U]\right): \Omega(Y) \rightarrow \Omega(X)$. Thus one obtains a contravariant functor Ω : Top $\rightarrow \mathbf{F r m}$. The dual to Frm is called the category of locales and will be denoted by Loc, and we now have a covariant functor

$$
\begin{equation*}
\Omega: \operatorname{Top} \rightarrow \text { Loc. } \tag{cov}
\end{equation*}
$$

Not every locale can be represented as an $\Omega(X)$. Those that can are said to be spatial.
1.2. A filter F in L is said to be completely prime if we have for arbitrary joins

$$
\bigvee A \in F \quad \Rightarrow \quad \exists a \in A, a \in F
$$

A typical completely prime filter in $\Omega(X)$ is

$$
\mathcal{F}(x)=\{U \in \Omega(X) \mid x \in U\}
$$

the system of all open neighbourhoods of a point $x \in X$. A space X is sober if there are no other completely prime filters in $\Omega(X)$ (that is, "each completely prime filter has a center"; thus, sobriety is a sort of very weak completeness requirement). For instance, every Hausdorff space is sober.

The functor Ω restricted to the subcategory of sober spaces $\mathbf{S o b} \subseteq \mathbf{T o p}$ is a full embedding. Thus, we can think of Loc as an extension of Sob to a more general type of spaces (in fact, one usually views locales as generalized topological spaces, sober or not).
1.3. Spectrum. One can think of a point x in a topological space as represented by the $\mathcal{F}(x)$; this is what one does when realistically contemplating points in a space: not as an entity without extent, but as a system of spots with diminishing extent concentrating to it.

This naturally leads to the concept of a point in a frame L defined as a completely prime filter $F \subseteq L$. The set ΣL of all points of L endowed with the topology

$$
\left\{\Sigma_{a} \mid a \in L\right\} \text { where } \Sigma_{a}=\{F \in \Sigma L \mid a \in F\}
$$

is called the spectrum of L. Note that:
(1) $\Sigma_{0}=\emptyset, \Sigma_{1}=\Sigma L, \Sigma_{a \wedge b}=\Sigma_{a} \cap \Sigma_{b}$ and $\Sigma_{\bigvee a_{i}}=\bigcup \Sigma_{a_{i}}$.
(2) If X is a sober space then $\Sigma \Omega(X)$ is naturally isomorphic to X by the map $x \mapsto \mathcal{F}(x)$.

For a frame homomorphism $h: L \rightarrow M$ we have a continuous map $\Sigma h: \Sigma M \rightarrow$ ΣL sending F to $h^{-1}[F]$ (note that $\Omega(f)^{-1}[\mathcal{F}(x)]=\left\{U \in \Omega(Y) \mid f^{-1}[U] \ni\right.$ $x\}=\{U \in \Omega(Y) \mid f(x) \in U\}=\mathcal{F}(f(x))$.

Thus we obtain the spectrum functor

$$
\Sigma: \text { Loc } \rightarrow \text { Top. }
$$

When interpreting Ω and Σ geometrically - that is, as something happening with spaces - we use the localic notation and interpretation, however computing is usually done in frames. No confusion should arise.

We have the adjunction

$$
\Omega \dashv \Sigma \quad(\Omega \text { to the left, } \Sigma \text { to the right })
$$

connecting the category of topological spaces with the category of more general spaces, that is, locales, sending $h: \Omega(X) \rightarrow L$ in Loc to $\bar{h}=(x \mapsto$ $\left.h^{-1}[\mathcal{F}(x)]\right): X \rightarrow \Sigma L$, and $f: X \rightarrow \Sigma L$ to $\tilde{f}=\left(a \mapsto f^{-1}\left[\Sigma_{a}\right]\right): L \rightarrow \Omega(X)$.
1.4. We will also consider the category SLat of (bounded) meet-semilattices (that is, meet-semilattices with 0 and 1). Note that in this category the cartesian product carries the biproduct

$$
L_{i} \xrightarrow{\iota_{i}} L_{1} \times L_{2} \xrightarrow{\pi_{j}} L_{j} \quad(i, j=1,2)
$$

with $\iota_{1}(x)=(x, 1), \iota_{2}(x)=(1, x)$ and $\pi_{i}\left(x_{1}, x_{2}\right)$, characterized by the equalities

$$
\pi_{i} \iota_{j}=\left\{\begin{array}{l}
\operatorname{id}_{L_{i}} \text { if } i=j, \\
1 \text { if } i \neq j
\end{array} \quad \text { and } \quad \iota_{1} \pi_{1} \wedge \iota_{2} \pi_{2}=\operatorname{id}_{L_{1} \times L_{2}}\right.
$$

1.5. In a poset we write, as usual,

$$
\downarrow M=\{x \mid x \leq m \text { for some } m \in M\},
$$

and abbreviate $\downarrow\{m\}$ to $\downarrow m$. For a (bounded) meet-semilattice L we set

$$
\mathfrak{D}(L)=\{U \subseteq L \mid \emptyset \neq U=\downarrow U\} .
$$

$\mathfrak{D}(L)$ is a frame (with the intersection for meet and the union for join) and we have the following
Fact. Define $\alpha_{L}: L \rightarrow \mathfrak{D}(L)$ by $\alpha_{L}(x)=\downarrow x$. Let M be a frame. Then for every semilattice homomorphism $f: L \rightarrow M$ there is precisely one frame homomorphism $h: \mathfrak{D}(L) \rightarrow M$ such that $h \cdot \alpha_{L}=f$.
(Namely the mapping defined by $h(U)=\bigvee\{f(x) \mid x \in U\}$.)
Thus, the system $\alpha_{L}: L \rightarrow \mathfrak{D}(L)$ constitutes a free extension of semilattices to frames. A similar construction will be discussed in 3.1 below.

For more about frames the reader can consult, e.g., [10, 18] or [15].

2. A striking similarity and its flaws

2.1. Recall the construction of the coproduct of two objects L_{1}, L_{2} in the category of frames. See the following diagram:

Take, first, the product (carried by the cartesian product) $L_{1} \times L_{2}$. Then, take the downset frame $\mathfrak{D}\left(L_{1} \times L_{2}\right)$ and the embedding

$$
\alpha=(a \mapsto \downarrow a): L_{1} \times L_{2} \rightarrow \mathfrak{D}\left(L_{1} \times L_{2}\right) .
$$

Finally, take the quotient

$$
\kappa: \mathfrak{D}\left(L_{1} \times L_{2}\right) \rightarrow \mathfrak{D}\left(L_{1} \times L_{2}\right) / R
$$

by (the congruence generated by) the relation R consisting of all the pairs

$$
\begin{equation*}
\left(\downarrow\left(\bigvee a_{i}, b\right), \bigcup \downarrow\left(a_{i}, b\right)\right) \quad \text { and } \quad\left(\downarrow\left(a, \bigvee b_{i}\right), \bigcup \downarrow\left(a, b_{i}\right)\right) \tag{2.1.1}
\end{equation*}
$$

If we consider the mappings $i_{j}: L_{j} \rightarrow L_{1} \times L_{2}$ defined by $i_{1}(a)=(a, 1)$, $i_{2}(a)=(1, a)$ we easily see that the resulting $\iota_{j}=\kappa \alpha i_{j}$ are frame homomorphisms. Now let $h_{j}: L_{j} \rightarrow M$ be arbitrary frame homomorphisms. Realizing that the cartesian product $L_{1} \times L_{2}$ is a biproduct in the category of bounded semilattices we obtain a semilattice homomorphism $f: L_{1} \times L_{2} \rightarrow M$ such that $f \cdot i_{j}=h_{j}$. It is not a frame homomorphism; this is partly mended by lifting to a frame homomorphism \bar{f} such that $\bar{f} \cdot \alpha=f$. This is still not good enough: the αi_{j} are not yet frame homomorphisms. But the factorization κ finishes the job: we have the already mentioned frame homomorphisms $\iota_{j}=\kappa \alpha i_{j}$, and \bar{f} is easily seen to factorize through κ to the desired h such that $h \cdot \iota_{j}=h_{j}$.
2.2. Concentrating on the path from the L_{j} to the $\mathfrak{D}\left(L_{1} \times L_{2}\right) / R$ we see a striking similarity between this construction and the construction of a tensor
product of two abelian groups A_{1} and A_{2} : there one starts with taking the cartesian product, forgetting the structure (we have forgotten at this stage a part of the structure of $L_{1} \times L_{2}$ as well), then takes the free group over the product, and, finally, one adjusts it to fit the additive structure. See the following table in which we have omitted, for easier comparison, the \downarrow 's.

coproduct in Frm	tensor product in $\mathbf{A b}$
$L_{1} \times L_{2}$	$A_{1} \times A_{2}$
cartesian product	cartesian product
$\mathfrak{D}\left(L_{1} \times L_{2}\right)$	$\mathfrak{F}\left(A_{1} \times A_{2}\right)$
free construction	free construction
adjustment for $\bigvee:$	adjustment for $+:$
$\left(\bigvee a_{i}, b\right) \sim \bigvee\left(a_{i}, b\right)$	$\left(a_{1}+a_{2}, b\right) \sim\left(a_{1}, b\right)+\left(a_{2}, b\right)$
$\left(a, \bigvee b_{i}\right) \sim \bigvee\left(a, b_{i}\right)$	$\left(a, b_{1}+b_{2}\right) \sim\left(a, b_{1}\right)+\left(a, b_{2}\right)$

2.3. At a closer scrutiny, however, we see that we have neglected important differences as well. See the following table, where the similarity somewhat fades.

coproduct in Frm	tensor product in $\mathbf{A b}$
$L_{1} \times L_{2}$	$A_{1} \times A_{2}$
biproduct in SLat	cartesian product
STRUCTURED	UNSTRUCTURED
$\mathfrak{D}\left(L_{1} \times L_{2}\right)$	$\mathfrak{F}\left(A_{1} \times A_{2}\right)$
free construction SLat \rightarrow Frm	free group OVER A SET
(the semilattice structure is important)	
adjustment for $\bigvee:$	adjustment for $+:$
$\left(\bigvee a_{i}, b\right) \sim \bigvee\left(a_{i}, b\right)$	$\left(a_{1}+a_{2}, b\right) \sim\left(a_{1}, b\right)+\left(a_{2}, b\right)$
$\left(a, \bigvee b_{i}\right) \sim \bigvee\left(a, b_{i}\right)$	TO MAKE A BIMORPHISM
TO MAKE inJECTIONS	INTO A MORPHISM
HOMOMORPHIC	

First, on the left hand side it is important that the $L_{1} \times L_{2}$ is a biproduct in SLat, something structurally very specific; at the same stage on the right hand side we have simply a cartesian product. In the next line, on the left hand side there is a free construction linking a weaker (but fundamentally
engaged) structure with a stronger one, while on the other side one has a standard free algebra formed on an unstructured set. The last line seems to be really quite the same thing: adjusting the additive structure. But the purpose is different: on the left hand side we make the injections into homomorphisms, on the right hand side we make bihomomorphisms into homomorphisms.
2.4. On the other hand, look at the coproduct in the category of commutative rings with unit (see for instance [4]). It can be constructed via the underlying abelian additive structure. One has the free construction

$$
\mathfrak{F}^{\prime}: \text { CSgr } \rightarrow \text { CRing }
$$

from commutative semigroups to rings carried by the free group $\mathfrak{F}^{\prime}(S)$ which can be thought of as the set of formal linear combinations $\sum_{x \in S} k_{x} x$ with k_{x} integers and all but finitely many of them 0 , endowed with the multiplication

$$
\left(\sum_{x \in S} k_{x} x\right) \cdot\left(\sum_{y \in S} l_{y} y\right)=\sum_{x, y \in S}\left(k_{x} l_{y}\right)(x y)
$$

Proving that the coproduct is obtained goes along the same lines as the procedure used for frames. Now we have a perfect fit for coproducts as depicted in the following table.

coproduct in Frm	coproduct in CRing
$L_{1} \times L_{2}$	$A_{1} \times A_{2}$
structure partially forgotten	structure partially forgotten
biproduct in SLat	biproduct in $\mathbf{C S g r}$
$\mathfrak{D}\left(L_{1} \times L_{2}\right)$	$\mathfrak{F}^{\prime}\left(A_{1} \times A_{2}\right)$
free functor SLat $\rightarrow \mathbf{F r m}$	free functor $\mathbf{C S g r} \rightarrow \mathbf{C R i n g}$
adjustment for $\bigvee:$	adjustment for $+:$
$\left(\bigvee a_{i}, b\right) \sim \bigvee\left(a_{i}, b\right)$	$\left(a_{1}+a_{2}, b\right) \sim\left(a_{1}, b\right)+\left(a_{2}, b\right)$
$\left(a, \bigvee b_{i}\right) \sim \bigvee\left(a, b_{i}\right)$	$\left(a, b_{1}+b_{2}\right) \sim\left(a, b_{1}\right)+\left(a, b_{2}\right)$
to make the injections	to make the injections
homomorphic	homomorphic

In the original observation in 2.2 , however, we had a striking similarity between the construction of a coproduct in one context and a tensor product in another one. The tensor product, which has now vanished from the scene, is an important construction providing a universal bimorphism. The universality of coproducts is of a different nature and we have here different
categorical phenomena. The question arises whether, besides the coproduct vs. coproduct fit as above, there also is a tensor vs. tensor one. In the next section we will show that there is a tensor product directly connected with the coproduct of frames, fitting well into the left hand side of the picture.

3. Tensor products in SupLat

3.1. Recall from [11] the category

SupLat

of complete lattices with \bigvee-preserving maps; in this context one usually speaks of sup-lattices and sup-homomorphisms.

The downset construction from 1.5 can be modified to a functor

$$
\mathfrak{D}^{\prime}: \text { Pos } \rightarrow \text { SupLat, } \quad \mathfrak{D}^{\prime}(X, \leq)=(\{M \subseteq X \mid \downarrow M=M\}, \subseteq)
$$

($M=\emptyset$ is now allowed) and we have again a free extension.
3.1.1. Proposition. Set $\alpha(x)=\downarrow x$. Then $\alpha: X \rightarrow \mathfrak{D}^{\prime}(X)$ is monotone, and for every monotone $f: X \rightarrow Y$ with X a poset and Y a complete lattice there is precisely one sup-homomorphism $\bar{f}: \mathfrak{D}^{\prime}(X) \rightarrow Y$ such that $\bar{f} \cdot \alpha=f$.

Proof. Since $U \in \mathfrak{D}^{\prime}(X)$ is the join $\bigcup\{\downarrow u \mid u \in U\}$ there is at most one such \bar{f} and we have $\bar{f}(U)=\bigvee_{u \in U} \bar{f}(\downarrow u)=\bigvee_{u \in U} f(u)$, which, on the other hand, is a formula defining a sup-homomorphism.
3.2. Recall computing a quotient of a frame from e.g. [18, 15] (basically, already from [10]). It can be done as follows. For a binary relation $R \subseteq L \times L$ call an element $s \in L R$-saturated if

$$
\begin{equation*}
\forall a, b, c \quad a R b \Rightarrow(a \wedge c \leq s \text { iff } b \wedge c \leq s) \tag{f-sat}
\end{equation*}
$$

Then one has the following:

- Any meet of R-saturated elements is R-saturated and hence set $\mu(x)=\bigwedge\{s$ saturated $\mid x \leq s\}$.
- μ is monotone, $x \leq \mu(x), \mu \mu(x)=\mu(x)$ and $\mu(x \wedge y)=\mu(x) \wedge \mu(y)$.
- If we set

$$
L / R=\{x \in L \mid x=\mu(x)\}
$$

we obtain a frame (with the supremum given by the formula $\bigsqcup a_{i}=$ $\left.\mu\left(\bigvee a_{i}\right)\right)$ and an onto frame homomorphism $\mu: L \rightarrow L / R$.

- For all $(a, b) \in R$ we have $\mu(a)=\mu(b)$ and for every frame homomorphism $h: L \rightarrow M$ such that $(a, b) \in R$ implies $h(a)=h(b)$ there is precisely one homomorphism $\bar{h}: L / R \rightarrow M$ such that $\bar{h} \cdot \mu=h$; furthermore, $\bar{h}=\left.h\right|_{L / R}$.
3.3. Computing quotients of sup-lattices is similar. For an $R \subseteq L \times L$ call an element $s \in L R$ - \bigvee saturated if

$$
\forall a, b \quad a R b \Rightarrow(a \leq s \text { iff } b \leq s)
$$

Obviously, again, any meet of R - \bigvee saturated sets is R - \bigvee saturated; consequently, we have the R - \bigvee saturated

$$
\nu(a)=\bigwedge\{s \in L \mid s \text { is } R \text { - } \bigvee \text { saturated and } a \leq s\}
$$

and we easily see that one has

$$
x \leq \nu(x), \quad x \leq y \Rightarrow \nu(x) \leq \nu(y), \quad \text { and } \quad \nu \nu(x)=\nu(x)
$$

and if we set

$$
L / R=\nu[L]=\{x \in L \mid \nu(x)=x\}
$$

we have a factorization theorem quite like in frames.
3.3.1. Theorem. L / R is a sup-lattice with suprema $\bigsqcup x_{i}=\nu\left(\bigvee x_{i}\right)$ and the corestriction $\nu_{R}: L \rightarrow L / R$ of ν to $L \rightarrow L / R$ is a(n onto) suphomomorphism such that for aRb we have $\nu_{R}(a)=\nu_{R}(b)$.

For every sup-homomorphism $h: L \rightarrow M$ such that

$$
a R b \Rightarrow h(a)=h(b)
$$

there is a sup-homomorphism $\bar{h}: L / R \rightarrow M$ such that $\bar{h} \cdot \nu_{R}=h$. Moreover, $\bar{h}(a)=h(a)$ for all $a \in L / R$.
Proof. If $x \in L / R$ is such that $x \geq x_{j}$ for all j then $x \geq \bigvee x_{i}$ and $x=$ $\nu(x) \geq \nu\left(\bigvee x_{i}\right)=\bigsqcup x_{i}$. Further, we have $\nu\left(\bigvee x_{i}\right) \leq \nu\left(\bigvee \nu\left(x_{i}\right)\right)=\bigsqcup \nu\left(x_{i}\right) \leq$ $\nu\left(\bigvee x_{i}\right)$, the last inequality being trivial.

Now if $a R b$ then $b \leq \nu(a)$ since $a \leq \nu(a)$ and $\nu(a)$ is R - \bigvee saturated. Hence $\nu(b) \leq \nu(a)$ and by symmetry $\nu(b)=\nu(a)$.

Finally if $h: L \rightarrow M$ is a sup-homomorphism such that $a R b$ implies $h(a)=$ $h(b)$ set $\sigma(x)=\bigvee\{y \mid h(y) \leq h(x)\}$. Obviously $x \leq \sigma(x)$ and $h \sigma(x)=h(x)$. If $a R b$ and $a \leq \sigma(x)$ then $h(b)=h(a) \leq h \sigma(x)=h(x)$ and hence $b \leq \sigma(x)$. Thus, σ is $R-\bigvee$ saturated. and we see that $x \leq \nu(x) \leq \sigma(x)$ and hence $h(x) \leq h \nu(x) \leq h \sigma(x)=h(x)$ so that $h \nu(x)=h(x)$ and the statement follows.
3.4. An important observation. If L is a frame and if $R \subseteq L \times L$ respects the meet (that is, if $a R b$ implies $(a \wedge c) R(b \wedge c)$ for all c) then the formula (f-sat) can be replaced by (V -sat). Thus we have
3.4.1. Corollary. If L is a frame and if $R \subseteq L \times L$ respects the meet then L / R taken as a quotient frame coincides with the L / R taken as a quotient sup-lattice. In particular this holds for the relation R given by (2.1.1).
3.5. Tensor product in SupLat. Let X_{1}, X_{2} and Y be sup-lattices. A mapping $\phi: X_{1} \times X_{2} \rightarrow Y$ is said to be a bimorphism if each $\phi\left(x_{1},-\right): X_{2} \rightarrow$ Y and each $\phi\left(-, x_{2}\right): X_{1} \rightarrow Y$ is a morphism.

For X_{1}, X_{2} in SupLat construct $X_{1} \otimes X_{2}$ as $\mathfrak{D}^{\prime}\left(X_{1} \times X_{2}\right) / R$ with the R from 2.1 (extended for sup-lattices). We will speak of $X_{1} \otimes X_{2}$ as the tensor product of X_{1} and X_{2}.
3.5.1. Theorem. The mapping $\nu=\kappa \alpha: X_{1} \times X_{2} \rightarrow X_{1} \otimes X_{2}$ is a bimorphism and for every bimorphism $\phi: \underset{\sim}{X}{ }_{1} \times X_{2} \rightarrow Y$ there is precisely one morphism $\widetilde{\phi}: X_{1} \otimes X_{2} \rightarrow Y$ such that $\widetilde{\phi} \nu=\phi$. This property determines $X_{1} \otimes X_{2}$ up to isomorphism.

If X_{1}, X_{2} are frames then the tensor product $X_{1} \otimes X_{2}$ coincides with the coproduct $X_{1} \oplus X_{2}$.

Proof. Consider the following diagram (note that it is almost identical to the diagram in 2.1, but the interpretation slightly differs).

Since ϕ is obviously monotone, we have by 3.1.1 a sup-homomorphism $\bar{\phi}$ such that $\bar{\phi} \alpha=\phi$. We have

$$
\bar{\phi}\left(\bigcup \downarrow\left(a_{i}, b\right)\right)=\bigvee \bar{\phi}\left(\downarrow\left(a_{i}, b\right)\right)=\bigvee \phi\left(a_{i}, b\right)=\phi\left(\bigvee a_{i}, b\right)=\bar{\phi}\left(\downarrow\left(\bigvee a_{i}, b\right)\right)
$$

and similarly $\bar{\phi}\left(\bigcup \downarrow\left(a, b_{i}\right)\right)=\bar{\phi}\left(\downarrow\left(a, \bigvee b_{i}\right)\right)$ and hence there is a suphomomorphism $\widetilde{\phi}$ such that $\widetilde{\phi} \kappa=\bar{\phi}$ and finally $\widetilde{\phi} \nu=\widetilde{\phi} \kappa \alpha=\phi$.

The uniqueness is obvious.
3.5.2. Note. This tensor product can be extended to a closed monoidal structure in SupLat. Namely, for sup-lattices Y, Z consider

$$
\operatorname{Hom}(Y, Z)=\{h: Y \rightarrow Z \mid h \in \operatorname{SupLat}\}
$$

naturally ordered by $h_{1} \leq h_{2}$ if for all $y \in Y, h_{1}(y) \leq h_{2}(y)$. Then we have the supremum $\bigvee_{j \in J} h_{j}$ defined by $\left(\bigvee_{j \in J} h_{j}\right)(y)=\bigvee_{j \in J} h_{j}(y)$. Setting for a sup-preserving $f: X \otimes Y \rightarrow Z, f^{\prime}(x)(y)=(f \nu)(x, y)$ we easily check that we have defined a mapping $f^{\prime}: X \rightarrow \operatorname{Hom}(Y, Z)$; on the other hand, for a $g: X \rightarrow \operatorname{Hom}(Y, Z)$ we have obviously a bimorphism $h: X \times Y \rightarrow Z$ defined by $h(x, y)=g(x)(y)$ and we can define $g^{\circ}: X \otimes Y \rightarrow Z$ by $g^{\circ} \nu=h$. Then
$\left(g^{\circ}\right)^{\prime}(x)(y)=\left(g^{\circ} \nu\right)(x, y)=g(x)(y)$ and $\left(f^{\prime}\right)^{\circ} \nu(x, y)=f^{\prime}(x)(y)=f \nu(x, y)$ making also $\left(f^{\prime}\right)^{\circ}=f$; checking that the correspondences $\left(f \mapsto f^{\prime}\right)$ and ($g \mapsto g^{\circ}$) are natural is straightforward.
3.5.3. Now we have the situation from 2.3 mended to

tensor product in SupLat	tensor product in $\mathbf{A b}$
$L_{1} \times L_{2}$	$A_{1} \times A_{2}$
product of posets	product of sets
$\mathfrak{D}\left(L_{1} \times L_{2}\right)$	$\mathfrak{F}\left(A_{1} \times A_{2}\right)$
free construction Pos \rightarrow SupLat	free construction Set $\rightarrow \mathbf{A b}$
adjustment for $\bigvee:$	adjustment for $+:$
$\left(\bigvee a_{i}, b\right) \sim \bigvee\left(a_{i}, b\right)$	$\left(a_{1}+a_{2}, b\right) \sim\left(a_{1}, b\right)+\left(a_{2}, b\right)$
$\left(a, \bigvee b_{i}\right) \sim \bigvee(a, b i)$	$\left(a, b_{1}+b_{2}\right) \sim\left(a, b_{1}\right)+\left(a, b_{2}\right)$
to make a bimorphism	to make a bimorphism
into a morphism	into a morphism

There is still a difference, but not a very important one: instead of sets we have partially ordered sets. But the products on the both sides play the same role, there is no biproduct property involved.
3.6. The coproduct as an almost tensor product in Frm. Contemplating 3.4.1 we can try to interpret the diagram from the previous subsection in the category Frm. Now if we define a bimorphism $\phi: L_{1} \times L_{2} \rightarrow M$ as a mapping such that all the $\phi(a,-): L_{2} \rightarrow M$ and all the $\phi(-, b): L_{1} \rightarrow M$ are frame homomorphisms, the $\bar{\phi}$ (not to speak of the induced map $\widetilde{\phi}$) is in general not a frame homomorphism. The trouble is with the meet. Luckily enough, the mapping ν has a special property which can be used to mend the definition. Namely we have $\nu\left(x_{1}, x_{2}\right)=\nu\left(x_{1}, 1\right) \wedge \nu\left(1, x_{2}\right)$ and if we define a frame bimorphism in $\mathbf{F r m}$ as a mapping

$$
\phi: L_{1} \times L_{2} \rightarrow M
$$

such that all the $\phi(a,-): L_{2} \rightarrow M$ and all the $\phi(-, b): L_{1} \rightarrow M$ are frame homomorphisms and moreover

$$
\begin{equation*}
\forall x_{i} \in L_{i}, \quad \phi\left(x_{1}, x_{2}\right)=\phi\left(x_{1}, 1\right) \wedge \phi\left(1, x_{2}\right) \tag{3.6.1}
\end{equation*}
$$

we obtain a (very restricted) tensor behavior.
3.6.1. Proposition. Let L_{1}, L_{2} be frames. Then (replacing in 3.5.1 X_{i} by L_{i}) we have a frame bimorphism $\nu: L_{1} \times L_{2} \rightarrow L_{1} \otimes L_{2}$ universal in the sense that for every frame bimorphism $\phi: L_{1} \times L_{2} \rightarrow M$ there is precisely one frame homomorphism $\widetilde{\phi}$ such that $\widetilde{\phi} \nu=\phi$.

Proof. We will prove that $\bar{\phi}$ is a frame homomorphism (for which it suffices to check it preserves meets). Then it follows that $\widetilde{\phi}$ is a frame homomorphism (and the uniqueness is obvious). We have

$$
\begin{aligned}
\bar{\phi}(U) \wedge \bar{\phi}(V) & =\bigvee_{\left(u_{1}, u_{2}\right) \in U} \phi\left(u_{1}, u_{2}\right) \wedge \bigvee_{\left(v_{1}, v_{2}\right) \in V} \phi\left(v_{1}, v_{2}\right) \\
& =\bigvee\left\{\phi\left(u_{1}, u_{2}\right) \wedge \phi\left(v_{1}, v_{2}\right) \mid\left(u_{1}, u_{2}\right) \in U,\left(v_{1}, v_{2}\right) \in V\right\} \\
& =\bigvee\left\{\phi\left(u_{1}, 1\right) \wedge \phi\left(1, u_{2}\right) \wedge \phi\left(v_{1}, 1\right) \wedge \phi\left(1, v_{2}\right) \mid \cdots\right\} \\
& =\bigvee\left\{\phi\left(u_{1} \wedge v_{1}, 1\right) \wedge \phi\left(1, u_{2} \wedge v_{2}\right) \mid \cdots\right\} \\
& =\bigvee\left\{\phi\left(u_{1} \wedge v_{1}, u_{2} \wedge v_{2}\right) \mid\left(u_{1}, u_{2}\right) \in U,\left(v_{1}, v_{2}\right) \in V\right\} \\
& \leq \bigvee\left\{\phi\left(x_{1}, x_{2}\right) \mid\left(x_{1}, x_{2}\right) \in U \cap V\right\} \\
& =\bar{\phi}(U \cap V) \leq \bar{\phi}(U) \wedge \bar{\phi}(V) .
\end{aligned}
$$

3.6.2. Notes. (1) Recall the construction from 2.1. The coproduct $L_{1} \oplus L_{2}$ is obviously join-generated by the $\kappa\left(\downarrow\left(x_{1}, x_{2}\right)\right)$. These elements will be denoted by $x_{1} \oplus x_{2}$. The condition (3.6.1) is necessary to have $\widetilde{\phi}$ a frame homomorphism. We have $\nu\left(x_{1}, x_{2}\right)=\kappa\left(\downarrow\left(x_{1}, x_{2}\right)\right)=x_{1} \oplus x_{2}$ and hence in particular

$$
\begin{aligned}
\phi\left(x_{1}, x_{2}\right) & =\widetilde{\phi} \nu\left(x_{1}, x_{2}\right)=\widetilde{\phi}\left(x_{1} \oplus x_{2}\right)=\widetilde{\phi}\left(\left(x_{1} \oplus 1\right) \wedge\left(1 \oplus x_{2}\right)\right)= \\
& =\widetilde{\phi}\left(x_{1} \oplus 1\right) \wedge \widetilde{\phi}\left(1 \oplus x_{2}\right)=\phi\left(x_{1}, 1\right) \wedge \phi\left(1, x_{2}\right) .
\end{aligned}
$$

(2) One cannot extend this tensor product to a closed tensor structure in Frm as in 3.5.2. Indeed, if L, M are frames, $\operatorname{Hom}(L, M)$ is generally not a frame and even if it were the $f: K \oplus L \rightarrow M$ associated with a frame homomorphism $g: K \rightarrow \operatorname{Hom}(L, M)$ would violate (3.6.1): we would have $f \nu(x, 1) \wedge f \nu(1, y)=g(x)(1) \wedge g(1)(y)=1$, which is very seldom equal to $f \nu(x, y)$.
3.7. Note. The construction of the coproduct we have outlined in 2.1 can be obviously generalized. What one needed was the biproduct behaviour of the semilattices, and a transparent quotient κ, as one has in commutative quantales with unit. A more general treatment of the coproducts of enriched objects obtained from tensor products of underlying objects enriched by an
additional operation can be found in [1]. Even more generally one can produce in this vein all colimits in a category in which the objects are endowed by an operation distributing over a basic structure (see [3]).

4. The geometry of the product of locales

4.1. The category of locales is much larger than the category of topological spaces (more exactly, than the category of sober spaces, but the distinction is not important for our analysis of the phenomena here). Thus, we cannot expect the product in Loc to be an immediate extension of the product in Top. Yet its geometric nature is in fact more transparent than what one might expect. This will be seen when analysing the phenomena in view of the spectrum adjunction connecting Loc and Top (recall 1.3).
4.2. The functor Ω is a left adjoint and hence it should not be expected to preserve products, and indeed it does not. But the situation is not as bad as one might fear, and we easily gain insight into the situation.

Consider a product of topological spaces $p_{i}: X_{1} \times X_{2} \rightarrow X_{i}(i=1,2)$ and the diagram

where π is the unique homomorphism satisfying $\pi \iota_{i}=\Omega\left(p_{i}\right), i=1,2$.
4.2.1. Recall the $a \oplus b=\kappa(\downarrow(a, b))$ from 3.6.2. It is a standard and often used fact that $a \oplus 0=0 \oplus b=0, a \oplus b=0$ only if $a=0$ or $b=0$, and if $a_{1}, a_{2} \neq 0$ and $a_{1} \oplus a_{2} \leq b_{1} \oplus b_{2}$ then $a_{i} \leq b_{i}$ for both $i=1,2$.

The basic elements $U_{1} \oplus U_{2}$ in $\Omega\left(X_{1}\right) \oplus \Omega\left(X_{2}\right)$ are closely associated with the basic open rectangles in the space $X_{1} \times X_{2}$. We have

Observation. For open $U_{i} \subseteq X_{i}, \pi\left(U_{1} \oplus U_{2}\right)=U_{1} \times U_{2}$.
(Indeed, $\pi\left(U_{1} \oplus U_{2}\right)=\pi\left(\left(U_{1} \oplus 1\right) \wedge\left(1 \oplus U_{2}\right)\right)=\pi\left(\iota_{1}\left(U_{1}\right) \wedge \iota_{2}\left(U_{2}\right)\right)=p_{1}^{-1}\left[U_{1}\right] \wedge$ $p_{2}^{-1}\left[U_{2}\right]=U_{1} \times U_{2}$.)
4.2.2. Proposition. π is an onto dense homomorphism. Thus, in the localic language, π embeds $\Omega\left(X_{1} \times X_{2}\right)$ into $\Omega\left(X_{1}\right) \oplus \Omega\left(X_{2}\right)$ as a dense sublocale.

Proof. π is onto since the $U_{1} \times U_{2}$ generate the topology of $X_{1} \times X_{2}$ by unions. Now if $\pi(x)=\emptyset$ then

$$
\emptyset=\pi\left(\bigvee\left\{U_{1} \oplus U_{2} \mid U_{1} \oplus U_{2} \leq x\right\}\right)=\bigcup\left\{U_{1} \times U_{2} \mid U_{1} \oplus U_{2} \leq x\right\}
$$

so that if $U_{1} \oplus U_{2} \leq x$ then either U_{1} or U_{2} is \emptyset, and hence $x=0$.
4.3. Thus, the localic product $\Omega\left(X_{1}\right) \times \Omega\left(X_{2}\right)$ (that is, frame coproduct $\left.\Omega\left(X_{1}\right) \oplus \Omega\left(X_{2}\right)\right)$ is not quite so far from $\Omega\left(X_{1} \times X_{2}\right)$, the product of spaces embedded into Loc. This can be made more intuitive as follows.

The topology of the product $X \times Y$ of spaces consists of the unions of rectangles $\bigcup_{i \in J}\left(U_{i} \times V_{i}\right)$ with U_{i} open in X and V_{i} open in Y. This can be also viewed as taking "free joins" $\bigvee_{i \in I}\left(U_{i} \times V_{i}\right)$ and factorizing the set of such free joins by the equivalence

$$
\begin{equation*}
\bigvee_{i \in J}\left(U_{i} \times V_{i}\right) \sim \bigvee_{i \in J^{\prime}}\left(U_{i}^{\prime} \times V_{i}^{\prime}\right) \quad \text { iff } \quad \bigcup_{i \in J}\left(U_{i} \times V_{i}\right)=\bigcup_{i \in J^{\prime}}\left(U_{i}^{\prime} \times V_{i}^{\prime}\right) \tag{*}
\end{equation*}
$$

The condition on the right hand side is of course heavily point dependent. In some very special particular cases such an equality of unions can be freed of this dependence, though. Namely, this is the case of the unions where all the V_{i} and V_{i}^{\prime} coincide with the common value V, or the unions where all the U_{i} and U_{i}^{\prime} coincide with the common value U, that is, of the unions

$$
\bigcup_{i \in J}\left(U_{i} \times V\right)=\bigcup_{i \in J^{\prime}}\left(U_{i}^{\prime} \times V\right) \quad \text { and } \quad \bigcup_{i \in J}\left(U \times V_{i}\right)=\bigcup_{i \in J^{\prime}}\left(U \times V_{i}^{\prime}\right) .
$$

These special cases produce an equivalence \approx generated by

$$
\bigvee_{i \in J}\left(U_{i} \times V\right) \approx \bigvee_{i \in J^{\prime}}\left(U_{i}^{\prime} \times V\right) \quad \text { and } \quad \bigvee_{i \in J}\left(U \times V_{i}\right) \approx \bigvee_{i \in J^{\prime}}\left(U \times V_{i}^{\prime}\right)
$$

The equivalence \approx is in general weaker than \sim, causing the $\Omega\left(X_{1}\right) \oplus \Omega\left(X_{1}\right)$ to have in general more elements than $\Omega\left(X_{1} \times X_{2}\right)$. But in some important cases the equivalence \approx does after all coincide with \sim.
4.4. A necessary and sufficient condition. The full embedding Ω : Sob \rightarrow Top from 1.1 produces an isomorphic copy $\mathbf{S o b}^{\prime}$ of $\mathbf{S o b}$ in Loc. Thus, whenever we have that for X, Y sober, $\Omega(X) \oplus \Omega(Y)$ is spatial, then it is a copy of $X \times Y$ in $\mathbf{S o b}^{\prime}$. Hence we have

Proposition. For sober spaces X, Y the equivalence \approx coincides with \sim (and hence the product of X and Y as locales is the same as their product as spaces) iff $\Omega(X) \oplus \Omega(X)$ is spatial.

Here are two important special cases:
4.4.1. Proposition. Let either X and Y be (1) sober locally compact or (2) admit complete metrics. Then their product as locales coincide with their product as spaces.

Proof. (1): Proposition 2.13 in Chapter II of [10]; see also [8] and [6].
(2): It is well known that a space X admits a (complete) metric iff it admits a (complete) countable generated uniformity. Then the coproduct $\Omega(X) \oplus \Omega(Y)$ admits a countably generated uniformity and by [19] it admits a complete one; by [2] (see also Theorem X.2.2 of [15]) this makes $\Omega(X) \oplus \Omega(Y)$ spatial.
4.5. The product seen from the perspective of the spectrum. A locale (frame) L is generally a richer space than the picture obtained by exploring it by means of spectral points, that is than ΣL. Still, it is useful to realize that in this perspective the $L_{1} \oplus L_{2}$ always appears as the classical product.

To be more precise, since Σ is a right adjoint, the ψ in the diagram

satisfying $p_{i} \psi=\Sigma \iota_{i}$ (where p_{i} are the cartesian projections, $i=1,2$) is an isomorphism (that is, a homeomorphism of spaces). If we write (F_{1}, F_{2}) for $\psi(F)$ we have $F_{i}=\Sigma \iota_{i}(F)=\iota_{i}^{-1}[F]$. Now consider the open set $\Sigma_{a_{1} \oplus a_{2}}$. We have

$$
a_{1} \in F_{1} \text { iff } a_{1} \oplus 1 \in F \quad \text { and } \quad a_{2} \in F_{1} \text { iff } 1 \oplus a_{2} \in F
$$

yielding that

$$
\begin{array}{r}
\left(F_{1}, F_{2}\right) \in \Sigma_{a_{1}} \times \Sigma_{a_{2}} \quad \text { iff } \quad a_{i} \in F_{i} \quad \text { iff } \quad a_{1} \oplus 1 \in F \text { and } 1 \oplus a_{2} \in F \\
\text { iff } \quad a_{1} \oplus a_{2}=\left(a_{1} \oplus 1\right) \wedge\left(1 \oplus a_{2}\right) \in F \quad \text { iff } \quad F \in \Sigma_{a_{1} \oplus a_{2}}
\end{array}
$$

so that the homeomorphism ψ translates $\Sigma_{a_{1} \oplus a_{2}}$ into $\Sigma_{a_{1}} \times \Sigma_{a_{2}}$ and consequently, by taking unions, a general open set in $\Sigma\left(L_{1} \oplus L_{2}\right)$ into a general open set in $\Sigma L_{1} \times \Sigma L_{2}$.

5. The discrepancy helps

In the previous section we have seen that the difference in the product of spaces as spaces and their product as locales is limited (the former is a dense sublocale of the latter, recall 4.2.2). Still, it can be substantial, and the question naturally arises whether this tribute to the generalizing of the
concept of space is not an unpleasant complication of the theory. In fact, it is often rather beneficent as we will illustrate on a few examples.
5.1. Paracompact locales. The class of paracompact spaces is an important generalization of the metric ones, often appearing in applications. These spaces, however, behave very badly in constructions: even a product of a paracompact space with a metric one is not necessarily paracompact. In contrast with this, the category of paracompact locales is very well behaved: it is reflective in the category of all locales. This is due to the product that always exists (although it is not necessarily spatial for spatial factors). The satisfactory behaviour of this category is also connected with Isbell's beautiful characterization of paracompactness [7]:
a locale is paracompact iff it admits a complete uniformity,
a fact that has no counterpart in classical spaces.
5.2. Uniformities in the point-free context. As in spaces, a uniformity on a frame (locale) L can be introduced as a special system of covers of L, or as a suitable system of neighbourhoods of the (co)diagonal in $L \oplus L$. While the former is a straightforward extension of the space concept, the latter is not, since $L \oplus L$ (in the case of a space $X, \Omega(X) \oplus \Omega(X)$) does not exactly corresponds to the product $X \times X$. However, somewhat surprisingly, the two approaches can be shown to be equivalent also here [14, 16]. This equivalence is now a deeper fact, and sometimes a mightier tool in proofs.
5.3. Localic groups. A topological group is not always a localic one because the operation $X \times X \rightarrow X$ results just in a localic morphism $\Omega(X \times$ $X) \rightarrow \Omega(X)$, not in an operation $\Omega(X) \oplus \Omega(X) \rightarrow \Omega(X)$, and neither can be necessarily lifted (over the π from 4.2) to one. It turns out that the nice topological groups (roughly speaking, those that are complete in the natural uniformity) are localic. In particular we have the Closed Subgroup Theorem $([9,16]$, Chapter XV of [15]):
each localic subgroup of a localic group is closed,
again a fact without a spatial counterpart.
5.4. Connectedness. The intuition of connectedness is expressed by the connected locally connected spaces better than by the plainly connected one. This is seen in the behaviour of locales where the connected locally connected ones behave as expected while the plainly connected do not ([12, 13], Chapter XIII of [15]). In particular, the product of two connected locally connected locales is connected locally connected, but the product of two plainly connected locales is not necessarily connected.

Acknowledgement. The authors are indebted to the referee for several detailed comments and suggestions that have improved the readability of the paper.

References

[1] BANASCHEWSKI, B.-NELSON, E.: Tensor products and bimorphisms, Canad. Math. Bull. 19 (1976), 385-402.
[2] BANASCHEWSKI, B.-PULTR, A.: Cauchy points of metric locales, Canad. J. Math. 41 (1989), 830-854.
[3] BANASCHEWSKI, B.-PULTR, A.: Distributive algebras in linear categories, Algebra Universalis 30 (1993), 101-118.
[4] BORCEUX, F.: Handbook of categorical algebra. Encyclopedia of Mathematics and its Applications, Vol. 1, Cambridge University Press, 1994.
[5] DOWKER, C. H.-STRAUSS, D.: Sums in the category of frames, Houston J. Math. 3 (1977), 17-32.
[6] HOFMANN, K. H.-LAWSON, J. D.: The spectral theory of distributive continuous lattices, Trans. Amer. Math. Soc. 246 (1978), 285-310.
[7] ISBELL, J. R.: Atomless parts of spaces, Math. Scand. 31 (1972), 5-32.
[8] ISBELL, J. R.: Product spaces in locales, Proc. Amer. Math. Soc. 81 (1981), 116-118.
[9] ISBELL, J. R.-KŘÍŽ, I.-PULTR, A.-ROSICKÝ, J.: Remarks on localic groups. In: Categorical Algebra and its Applications (F. Borceux, ed.), Lecture Notes in Math. 1348, Springer, Berlin, pp. 154-172.
[10] JOHNSTONE, P. T.: Stone Spaces. Studies in Advanced Mathematics, No. 3, Cambridge University Press, Cambridge, 1982.
[11] JOYAL, A.-TIERNEY, M.: An extension of the Galois theory of Grothendieck. Mem. Amer. Math. Soc. 51, No. 309, 1984.
[12] KŘÍŽ, I.-PULTR, A.: Products of locally connected locales, Rend. Circ. Mat. Palermo (2) Suppl. 11 (1985), 61-70.
[13] KŘÍŽ, I.-PULTR, A.: Peculiar behaviour of connected locales, Cahiers Topologie Géom. Différentielle Catég. 30 (1989), 25-43.
[14] PICADO, J.: Weil uniformities for frames, Comment. Math. Univ. Carolin. 36 (1995), 357-370.
[15] PICADO, J.-PULTR, A.: Frames and Locales. Topology without points. Frontiers in Mathematics, No. 28, Springer, Basel, 2012.
[16] PICADO, J.-PULTR, A.: Entourages, covers and localic groups, Appl. Categ. Structures 21 (2013), 49-66.
[17] PLEWE, T.: Localic products of spaces, Proc. London Math. Soc. (3) 73 (1996), 642-678.
[18] PULTR, A.: Frames. In: Handbook of Algebra (M. Hazewinkel, ed.), Vol. 3, Elsevier, 2003, pp. 791-857.
[19] PULTR, A.-TOZZI, A.: Completion and coproducts of nearness frames. In: Symposium on Categorical Topology, Univ. Cape Town, Rondebosch, 1999, pp. 177-186.

CMUC, Department of Mathematics
University of Coimbra
Apartado 3008, 3001-501 Coimbra
PORTUGAL
E-mail address: picado@mat.uc.pt

Department of Applied Mathematics and ITI, MFF
Charles University
Malostranské nám. 24, 11800 Praha 1
CZECH REPUBLIC
E-mail address: pultr@kam.ms.mff.cuni.cz

[^0]: Date: October 19, 2012.
 2010 Mathematics Subject Classification. Primary 06D22; Secondary 18A30, 54B10, 54B30.

 Key words and phrases. frame, locale, spatial frame, spectrum, meet-semilattice, suplattice, tensor product, frame coproduct, localic product, free construction, paracompact locale, localic group.

 This work was partially supported by CMUC/FCT (through the program COMPETE/FEDER), CEITI (under the project P202/12/G061 of GAČR) and grant MTM2009-12872-C02-02 (Ministry of Science and Innovation of Spain).

