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Abstract. Products of locales (generalized spaces) are coproducts of
frames. Because of the algebraic nature of the latter they are often
viewed as algebraic objects without much topological connotation. In
this paper we first analyze the frame construction emphasizing its tensor
product carrier. Then we show how it can be viewed topologically, that
is, in the sum-of-the-open-rectangles perspective. The main aim is to
present the product from different points of view, as an algebraic and a
geometric object, and persuade the reader that both of them are fairly
transparent.

Introduction

Pointfree spaces (locales) can be, roughly (but not very roughly) speaking,
viewed as generalized topological spaces. Therefore, one wishes and expects
to be able to carry out with these objects as with spaces, and hopes for a
transparent relationship between the corresponding concepts.

One of such constructions is the product, an operation without which one
would not make headway with any serious development of the theory. Now
there are (at least) two circumstances indicating that a product of locales
may not be very intuitive, and that its connection with the product of spaces
may not be very transparent:

— the category of locales is substantially bigger than that of topolog-
ical spaces (more precisely, sober topological spaces but this does
not really influence the situation); thus, the product (the categorical
product) confronts the spaces entering the operation with a much
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bigger class of objects than they have to cope with, in contrast to
the classical case of spaces,

— and, from the technical point of view, the category of locales, al-
though it can be given a covariant space-like interpretation, is first
of all the dual of the category of frames, a category of algebraic ob-
jects that may require a specific algebraic construction; this is some-
thing one does not have in classical spaces and hence the geometric
intuition is in fact missing.

Nevertheless, the localic product can be made transparent, and this is the
aim of the present paper.

In Section 2 we concentrate on the algebraic aspects of the construction.
First, we point out the striking similarity of the construction with the con-
struction of the tensor product of abelian groups. Then we show that this
similarity has some flaws, and finally explain what the exact parallels are:
frames enrich a certain structure in a distributive manner in full analogy
with that of the multiplication of commutative rings enriching the abelian
group structure (and both are part of a much more general phenomenon)
and there is indeed a tensor product involved. Instead of one imperfect
analogy we obtain two perfect fittings.

In Section 3 we explain what happens in a product of spaces respectively
locales from the geometric (topological) point of view. We show that as for
spaces, where the open sets are unions of rectangles U × V (U, V open), we
have here again “sums of rectangles” a⊕ b and that the difference between
X × Y in the category of spaces and in the category of locales is in that the
sums may be somewhat looser, and we explain when they are exactly the
same.

In the last section we mention a few cases showing that this difference can
in fact be beneficent rather than an unpleasant consequence of the general-
ization.

It is not the intention of this paper to present new results but to enable
the reader to see the locale product from a number of different perspectives
based on well-known constructions in various categories. In the process we
hope that we have thereby emphasised that it is something natural and, in
particular, geometrically transparent.

1. Preliminaries

1.1. Recall that a frame L is a complete lattice satisfying the distribution
law

(
∨

A) ∧ b =
∨
{a ∧ b | a ∈ A},
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and that a frame homomorphism preserves all joins (including the bottom
element 0) and all finite meets (including the top element 1). The resulting
category of frames will be denoted by Frm.

A typical frame is the lattice Ω(X) of all open sets of a topological space
X, and if f : X → Y is a continuous map we have a frame homomorphism
Ω(f) = (U 7→ f−1[U ]) : Ω(Y ) → Ω(X). Thus one obtains a contravariant
functor Ω: Top → Frm. The dual to Frm is called the category of locales
and will be denoted by Loc, and we now have a covariant functor

Ω: Top→ Loc. (covΩ)

Not every locale can be represented as an Ω(X). Those that can are said to
be spatial.

1.2. A filter F in L is said to be completely prime if we have for arbitrary
joins ∨

A ∈ F ⇒ ∃a ∈ A, a ∈ F.

A typical completely prime filter in Ω(X) is

F(x) = {U ∈ Ω(X) | x ∈ U},

the system of all open neighbourhoods of a point x ∈ X. A space X is
sober if there are no other completely prime filters in Ω(X) (that is, “each
completely prime filter has a center”; thus, sobriety is a sort of very weak
completeness requirement). For instance, every Hausdorff space is sober.

The functor Ω restricted to the subcategory of sober spaces Sob ⊆ Top
is a full embedding. Thus, we can think of Loc as an extension of Sob to a
more general type of spaces (in fact, one usually views locales as generalized
topological spaces, sober or not).

1.3. Spectrum. One can think of a point x in a topological space as repre-
sented by the F(x); this is what one does when realistically contemplating
points in a space: not as an entity without extent, but as a system of spots
with diminishing extent concentrating to it.

This naturally leads to the concept of a point in a frame L defined as a
completely prime filter F ⊆ L. The set ΣL of all points of L endowed with
the topology

{Σa | a ∈ L} where Σa = {F ∈ ΣL | a ∈ F}

is called the spectrum of L. Note that:

(1) Σ0 = ∅, Σ1 = ΣL, Σa∧b = Σa ∩ Σb and Σ∨
ai =

⋃
Σai .

(2) If X is a sober space then ΣΩ(X) is naturally isomorphic to X by
the map x 7→ F(x).
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For a frame homomorphism h : L→M we have a continuous map Σh : ΣM →
ΣL sending F to h−1[F ] (note that Ω(f)−1[F(x)] = {U ∈ Ω(Y ) | f−1[U ] 3
x} = {U ∈ Ω(Y ) | f(x) ∈ U} = F(f(x)).

Thus we obtain the spectrum functor

Σ: Loc→ Top.

When interpreting Ω and Σ geometrically – that is, as something happen-
ing with spaces – we use the localic notation and interpretation, however
computing is usually done in frames. No confusion should arise.

We have the adjunction

Ω a Σ (Ω to the left, Σ to the right)

connecting the category of topological spaces with the category of more
general spaces, that is, locales, sending h : Ω(X) → L in Loc to h = (x 7→
h−1[F(x)]) : X → ΣL, and f : X → ΣL to f̃ = (a 7→ f−1[Σa]) : L→ Ω(X).

1.4. We will also consider the category SLat of (bounded) meet-semilattices
(that is, meet-semilattices with 0 and 1). Note that in this category the
cartesian product carries the biproduct

Li
ιi−−−→ L1 × L2

πj−−−→ Lj (i, j = 1, 2)

with ι1(x) = (x, 1), ι2(x) = (1, x) and πi(x1, x2), characterized by the equal-
ities

πiιj =

{
idLi

if i = j,

1 if i 6= j
and ι1π1 ∧ ι2π2 = idL1×L2 .

1.5. In a poset we write, as usual,

↓M = {x | x ≤ m for some m ∈M},
and abbreviate ↓{m} to ↓m. For a (bounded) meet-semilattice L we set

D(L) = {U ⊆ L | ∅ 6= U = ↓U}.
D(L) is a frame (with the intersection for meet and the union for join) and
we have the following

Fact. Define αL : L → D(L) by αL(x) = ↓ x. Let M be a frame. Then
for every semilattice homomorphism f : L→M there is precisely one frame
homomorphism h : D(L)→M such that h · αL = f .

(Namely the mapping defined by h(U) =
∨
{f(x) | x ∈ U}.)

Thus, the system αL : L → D(L) constitutes a free extension of semilat-
tices to frames. A similar construction will be discussed in 3.1 below.

For more about frames the reader can consult, e.g., [10, 18] or [15].
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2. A striking similarity and its flaws

2.1. Recall the construction of the coproduct of two objects L1, L2 in the
category of frames. See the following diagram:

L1 ⊕ L2 = D(L1 × L2)/R

h

""

D(L1 × L2)

κ
44

f

,,L1 × L2

α
77

f // M

Lj

ιj

//

ij

OO

hj

33

Take, first, the product (carried by the cartesian product) L1×L2. Then,
take the downset frame D(L1 × L2) and the embedding

α = (a 7→ ↓a) : L1 × L2 → D(L1 × L2).

Finally, take the quotient

κ : D(L1 × L2)→ D(L1 × L2)/R

by (the congruence generated by) the relation R consisting of all the pairs(
↓
(∨

ai, b
)
,
⋃
↓(ai, b)

)
and

(
↓
(
a,
∨

bi
)
,
⋃
↓(a, bi)

)
. (2.1.1)

If we consider the mappings ij : Lj → L1 × L2 defined by i1(a) = (a, 1),
i2(a) = (1, a) we easily see that the resulting ιj = καij are frame homomor-
phisms. Now let hj : Lj →M be arbitrary frame homomorphisms. Realizing
that the cartesian product L1×L2 is a biproduct in the category of bounded
semilattices we obtain a semilattice homomorphism f : L1 × L2 → M such
that f · ij = hj. It is not a frame homomorphism; this is partly mended by

lifting to a frame homomorphism f such that f ·α = f . This is still not good
enough: the αij are not yet frame homomorphisms. But the factorization
κ finishes the job: we have the already mentioned frame homomorphisms
ιj = καij, and f is easily seen to factorize through κ to the desired h such
that h · ιj = hj.

2.2. Concentrating on the path from the Lj to the D(L1 × L2)/R we see a
striking similarity between this construction and the construction of a tensor
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product of two abelian groups A1 and A2: there one starts with taking the
cartesian product, forgetting the structure (we have forgotten at this stage
a part of the structure of L1 × L2 as well), then takes the free group over
the product, and, finally, one adjusts it to fit the additive structure. See the
following table in which we have omitted, for easier comparison, the ↓ ’s.

coproduct in Frm tensor product in Ab

L1 × L2 A1 × A2

cartesian product cartesian product

D(L1 × L2) F(A1 × A2)

free construction free construction

adjustment for
∨

: adjustment for +:(∨
ai, b

)
∼
∨

(ai, b) (a1 + a2, b) ∼ (a1, b) + (a2, b)(
a,
∨
bi
)
∼
∨

(a, bi) (a, b1 + b2) ∼ (a, b1) + (a, b2)

2.3. At a closer scrutiny, however, we see that we have neglected important
differences as well. See the following table, where the similarity somewhat
fades.

coproduct in Frm tensor product in Ab

L1 × L2 A1 × A2

biproduct in SLat cartesian product

structured unstructured

D(L1 × L2) F(A1 × A2)

free construction SLat→Frm free group over a set
(the semilattice structure is important)

adjustment for
∨

: adjustment for +:(∨
ai, b

)
∼
∨

(ai, b) (a1 + a2, b) ∼ (a1, b) + (a2, b)(
a,
∨
bi
)
∼
∨

(a, bi) (a, b1 + b2) ∼ (a, b1) + (a, b2)

to make injections to make a bimorphism
homomorphic into a morphism

First, on the left hand side it is important that the L1×L2 is a biproduct
in SLat, something structurally very specific; at the same stage on the right
hand side we have simply a cartesian product. In the next line, on the left
hand side there is a free construction linking a weaker (but fundamentally
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engaged) structure with a stronger one, while on the other side one has a
standard free algebra formed on an unstructured set. The last line seems
to be really quite the same thing: adjusting the additive structure. But
the purpose is different: on the left hand side we make the injections into
homomorphisms, on the right hand side we make bihomomorphisms into
homomorphisms.

2.4. On the other hand, look at the coproduct in the category of commu-
tative rings with unit (see for instance [4]). It can be constructed via the
underlying abelian additive structure. One has the free construction

F′ : CSgr→ CRing

from commutative semigroups to rings carried by the free group F′(S) which
can be thought of as the set of formal linear combinations

∑
x∈S kxx with kx

integers and all but finitely many of them 0, endowed with the multiplication(∑
x∈S

kxx
)
·
(∑
y∈S

lyy
)

=
∑
x,y∈S

(kxly)(xy).

Proving that the coproduct is obtained goes along the same lines as the
procedure used for frames. Now we have a perfect fit for coproducts as
depicted in the following table.

coproduct in Frm coproduct in CRing

L1 × L2 A1 × A2

structure partially forgotten structure partially forgotten

biproduct in SLat biproduct in CSgr

D(L1 × L2) F′(A1 × A2)

free functor SLat→Frm free functor CSgr→CRing

adjustment for
∨

: adjustment for +:(∨
ai, b

)
∼
∨

(ai, b) (a1 + a2, b) ∼ (a1, b) + (a2, b)(
a,
∨
bi
)
∼
∨

(a, bi) (a, b1 + b2) ∼ (a, b1) + (a, b2)

to make the injections to make the injections
homomorphic homomorphic

In the original observation in 2.2, however, we had a striking similarity be-
tween the construction of a coproduct in one context and a tensor product in
another one. The tensor product, which has now vanished from the scene,
is an important construction providing a universal bimorphism. The uni-
versality of coproducts is of a different nature and we have here different
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categorical phenomena. The question arises whether, besides the coproduct
vs. coproduct fit as above, there also is a tensor vs. tensor one. In the next
section we will show that there is a tensor product directly connected with
the coproduct of frames, fitting well into the left hand side of the picture.

3. Tensor products in SupLat

3.1. Recall from [11] the category

SupLat

of complete lattices with
∨

-preserving maps; in this context one usually
speaks of sup-lattices and sup-homomorphisms.

The downset construction from 1.5 can be modified to a functor

D′ : Pos→ SupLat, D′(X,≤) =
(
{M ⊆ X | ↓M = M},⊆

)
(M = ∅ is now allowed) and we have again a free extension.

3.1.1. Proposition. Set α(x) = ↓ x. Then α : X → D′(X) is monotone,
and for every monotone f : X → Y with X a poset and Y a complete lattice
there is precisely one sup-homomorphism f : D′(X)→ Y such that f ·α = f .

Proof. Since U ∈ D′(X) is the join
⋃
{ ↓ u | u ∈ U} there is at most one

such f and we have f(U) =
∨
u∈U f( ↓u) =

∨
u∈U f(u), which, on the other

hand, is a formula defining a sup-homomorphism. �

3.2. Recall computing a quotient of a frame from e.g. [18, 15] (basically,
already from [10]). It can be done as follows. For a binary relation R ⊆ L×L
call an element s ∈ L R-saturated if

∀a, b, c aRb ⇒ (a ∧ c ≤ s iff b ∧ c ≤ s). (f-sat)

Then one has the following:

• Any meet of R-saturated elements is R-saturated and hence set
µ(x) =

∧
{s saturated | x ≤ s}.

• µ is monotone, x ≤ µ(x), µµ(x) = µ(x) and µ(x ∧ y) = µ(x) ∧ µ(y).
• If we set

L/R = {x ∈ L | x = µ(x)}
we obtain a frame (with the supremum given by the formula

⊔
ai =

µ(
∨
ai)) and an onto frame homomorphism µ : L→ L/R.

• For all (a, b) ∈ R we have µ(a) = µ(b) and for every frame homo-
morphism h : L→ M such that (a, b) ∈ R implies h(a) = h(b) there
is precisely one homomorphism h : L/R → M such that h · µ = h;
furthermore, h = h|L/R.
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3.3. Computing quotients of sup-lattices is similar. For an R ⊆ L× L call
an element s ∈ L R-

∨
saturated if

∀a, b aRb ⇒ (a ≤ s iff b ≤ s). (
∨

-sat)

Obviously, again, any meet of R-
∨

saturated sets is R-
∨

saturated; conse-
quently, we have the R-

∨
saturated

ν(a) =
∧
{s ∈ L | s is R-

∨
saturated and a ≤ s}

and we easily see that one has

x ≤ ν(x), x ≤ y ⇒ ν(x) ≤ ν(y), and νν(x) = ν(x)

and if we set

L/R = ν[L] = {x ∈ L | ν(x) = x}
we have a factorization theorem quite like in frames.

3.3.1. Theorem. L/R is a sup-lattice with suprema
⊔
xi = ν(

∨
xi)

and the corestriction νR : L → L/R of ν to L → L/R is a(n onto) sup-
homomorphism such that for aRb we have νR(a) = νR(b).

For every sup-homomorphism h : L→M such that

aRb ⇒ h(a) = h(b)

there is a sup-homomorphism h : L/R→M such that h · νR = h. Moreover,
h(a) = h(a) for all a ∈ L/R.

Proof. If x ∈ L/R is such that x ≥ xj for all j then x ≥
∨
xi and x =

ν(x) ≥ ν(
∨
xi) =

⊔
xi. Further, we have ν(

∨
xi) ≤ ν(

∨
ν(xi)) =

⊔
ν(xi) ≤

ν(
∨
xi), the last inequality being trivial.

Now if aRb then b ≤ ν(a) since a ≤ ν(a) and ν(a) is R-
∨

saturated. Hence
ν(b) ≤ ν(a) and by symmetry ν(b) = ν(a).

Finally if h : L→M is a sup-homomorphism such that aRb implies h(a) =
h(b) set σ(x) =

∨
{y | h(y) ≤ h(x)}. Obviously x ≤ σ(x) and hσ(x) = h(x).

If aRb and a ≤ σ(x) then h(b) = h(a) ≤ hσ(x) = h(x) and hence b ≤ σ(x).
Thus, σ is R-

∨
saturated. and we see that x ≤ ν(x) ≤ σ(x) and hence

h(x) ≤ hν(x) ≤ hσ(x) = h(x) so that hν(x) = h(x) and the statement
follows. �

3.4. An important observation. If L is a frame and if R ⊆ L × L
respects the meet (that is, if aRb implies (a ∧ c)R(b ∧ c) for all c) then the
formula (f-sat) can be replaced by (

∨
-sat). Thus we have

3.4.1. Corollary. If L is a frame and if R ⊆ L× L respects the meet then
L/R taken as a quotient frame coincides with the L/R taken as a quotient
sup-lattice. In particular this holds for the relation R given by (2.1.1). �
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3.5. Tensor product in SupLat. Let X1, X2 and Y be sup-lattices. A
mapping φ : X1×X2 → Y is said to be a bimorphism if each φ(x1,−) : X2 →
Y and each φ(−, x2) : X1 → Y is a morphism.

For X1, X2 in SupLat construct X1 ⊗X2 as D′(X1 ×X2)/R with the R
from 2.1 (extended for sup-lattices). We will speak of X1⊗X2 as the tensor
product of X1 and X2.

3.5.1. Theorem. The mapping ν = κα : X1 × X2 → X1 ⊗ X2 is a bi-
morphism and for every bimorphism φ : X1×X2 → Y there is precisely one

morphism φ̃ : X1 ⊗ X2 → Y such that φ̃ν = φ. This property determines
X1 ⊗X2 up to isomorphism.

If X1, X2 are frames then the tensor product X1 ⊗X2 coincides with the
coproduct X1 ⊕X2.

Proof. Consider the following diagram (note that it is almost identical to
the diagram in 2.1, but the interpretation slightly differs).

X1 ⊗X2 = D′(X1 ×X2)/R

φ̃

%%

D′(X1 ×X2)

κ
44

φ

--X1 ×X2

α
77

φ // Y

Since φ is obviously monotone, we have by 3.1.1 a sup-homomorphism φ
such that φα = φ. We have

φ
(⋃

↓(ai, b)
)

=
∨

φ( ↓(ai, b)) =
∨

φ(ai, b) = φ
(∨

ai, b
)

= φ
(
↓(
∨

ai, b)
)

and similarly φ
(⋃
↓ (a, bi)

)
= φ

(
↓ (a,

∨
bi)
)

and hence there is a sup-

homomorphism φ̃ such that φ̃κ = φ and finally φ̃ν = φ̃κα = φ.
The uniqueness is obvious. �

3.5.2. Note. This tensor product can be extended to a closed monoidal
structure in SupLat. Namely, for sup-lattices Y, Z consider

Hom(Y, Z) = {h : Y → Z | h ∈ SupLat}
naturally ordered by h1 ≤ h2 if for all y ∈ Y , h1(y) ≤ h2(y). Then we have
the supremum

∨
j∈J hj defined by (

∨
j∈J hj)(y) =

∨
j∈J hj(y). Setting for a

sup-preserving f : X ⊗ Y → Z, f ′(x)(y) = (fν)(x, y) we easily check that
we have defined a mapping f ′ : X → Hom(Y, Z); on the other hand, for a
g : X → Hom(Y, Z) we have obviously a bimorphism h : X ×Y → Z defined
by h(x, y) = g(x)(y) and we can define g◦ : X ⊗ Y → Z by g◦ν = h. Then
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(g◦)′(x)(y) = (g◦ν)(x, y) = g(x)(y) and (f ′)◦ν(x, y) = f ′(x)(y) = fν(x, y)
making also (f ′)◦ = f ; checking that the correspondences (f 7→ f ′) and
(g 7→ g◦) are natural is straightforward.

3.5.3. Now we have the situation from 2.3 mended to

tensor product in SupLat tensor product in Ab

L1 × L2 A1 × A2

product of posets product of sets

D(L1 × L2) F(A1 × A2)

free construction Pos→SupLat free construction Set→Ab

adjustment for
∨

: adjustment for +:(∨
ai, b

)
∼
∨

(ai, b) (a1 + a2, b) ∼ (a1, b) + (a2, b)(
a,
∨
bi
)
∼
∨

(a, bi) (a, b1 + b2) ∼ (a, b1) + (a, b2)

to make a bimorphism to make a bimorphism
into a morphism into a morphism

There is still a difference, but not a very important one: instead of sets we
have partially ordered sets. But the products on the both sides play the
same role, there is no biproduct property involved.

3.6. The coproduct as an almost tensor product in Frm. Contem-
plating 3.4.1 we can try to interpret the diagram from the previous subsec-
tion in the category Frm. Now if we define a bimorphism φ : L1×L2 →M as
a mapping such that all the φ(a,−) : L2 →M and all the φ(−, b) : L1 →M

are frame homomorphisms, the φ (not to speak of the induced map φ̃) is in
general not a frame homomorphism. The trouble is with the meet. Luckily
enough, the mapping ν has a special property which can be used to mend
the definition. Namely we have ν(x1, x2) = ν(x1, 1)∧ν(1, x2) and if we define
a frame bimorphism in Frm as a mapping

φ : L1 × L2 →M

such that all the φ(a,−) : L2 → M and all the φ(−, b) : L1 → M are frame
homomorphisms and moreover

∀xi ∈ Li, φ(x1, x2) = φ(x1, 1) ∧ φ(1, x2) (3.6.1)

we obtain a (very restricted) tensor behavior.
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3.6.1. Proposition. Let L1, L2 be frames. Then (replacing in 3.5.1 Xi

by Li) we have a frame bimorphism ν : L1 × L2 → L1 ⊗ L2 universal in the
sense that for every frame bimorphism φ : L1 × L2 → M there is precisely

one frame homomorphism φ̃ such that φ̃ν = φ.

Proof. We will prove that φ is a frame homomorphism (for which it suffices to

check it preserves meets). Then it follows that φ̃ is a frame homomorphism
(and the uniqueness is obvious). We have

φ(U) ∧ φ(V ) =
∨

(u1,u2)∈U

φ(u1, u2) ∧
∨

(v1,v2)∈V

φ(v1, v2)

=
∨
{φ(u1, u2) ∧ φ(v1, v2) | (u1, u2) ∈ U, (v1, v2) ∈ V }

=
∨
{φ(u1, 1) ∧ φ(1, u2) ∧ φ(v1, 1) ∧ φ(1, v2) | · · · }

=
∨
{φ(u1 ∧ v1, 1) ∧ φ(1, u2 ∧ v2) | · · · }

=
∨
{φ(u1 ∧ v1, u2 ∧ v2) | (u1, u2) ∈ U, (v1, v2) ∈ V }

≤
∨
{φ(x1, x2) | (x1, x2) ∈ U ∩ V }

= φ(U ∩ V ) ≤ φ(U) ∧ φ(V ). �

3.6.2. Notes. (1) Recall the construction from 2.1. The coproduct L1⊕L2

is obviously join-generated by the κ( ↓ (x1, x2)). These elements will be

denoted by x1 ⊕ x2. The condition (3.6.1) is necessary to have φ̃ a frame
homomorphism. We have ν(x1, x2) = κ( ↓ (x1, x2)) = x1 ⊕ x2 and hence in
particular

φ(x1, x2) = φ̃ν(x1, x2) = φ̃(x1 ⊕ x2) = φ̃((x1 ⊕ 1) ∧ (1⊕ x2)) =

= φ̃(x1 ⊕ 1) ∧ φ̃(1⊕ x2) = φ(x1, 1) ∧ φ(1, x2).

(2) One cannot extend this tensor product to a closed tensor structure in
Frm as in 3.5.2. Indeed, if L,M are frames, Hom(L,M) is generally not
a frame and even if it were the f : K ⊕ L → M associated with a frame
homomorphism g : K →Hom(L,M) would violate (3.6.1): we would have
fν(x, 1) ∧ fν(1, y) = g(x)(1) ∧ g(1)(y) = 1, which is very seldom equal to
fν(x, y).

3.7. Note. The construction of the coproduct we have outlined in 2.1 can
be obviously generalized. What one needed was the biproduct behaviour of
the semilattices, and a transparent quotient κ, as one has in commutative
quantales with unit. A more general treatment of the coproducts of enriched
objects obtained from tensor products of underlying objects enriched by an
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additional operation can be found in [1]. Even more generally one can pro-
duce in this vein all colimits in a category in which the objects are endowed
by an operation distributing over a basic structure (see [3]).

4. The geometry of the product of locales

4.1. The category of locales is much larger than the category of topological
spaces (more exactly, than the category of sober spaces, but the distinction
is not important for our analysis of the phenomena here). Thus, we cannot
expect the product in Loc to be an immediate extension of the product in
Top. Yet its geometric nature is in fact more transparent than what one
might expect. This will be seen when analysing the phenomena in view of
the spectrum adjunction connecting Loc and Top (recall 1.3).

4.2. The functor Ω is a left adjoint and hence it should not be expected to
preserve products, and indeed it does not. But the situation is not as bad
as one might fear, and we easily gain insight into the situation.

Consider a product of topological spaces pi : X1×X2 → Xi (i = 1, 2) and
the diagram

Ω(X1)⊕ Ω(X2)
π // Ω(X1 ×X2)

Ω(Xi)

ιi

gg

Ω(pi)

88

where π is the unique homomorphism satisfying πιi = Ω(pi), i = 1, 2.

4.2.1. Recall the a ⊕ b = κ( ↓ (a, b)) from 3.6.2. It is a standard and often
used fact that a ⊕ 0 = 0 ⊕ b = 0, a ⊕ b = 0 only if a = 0 or b = 0, and if
a1, a2 6= 0 and a1 ⊕ a2 ≤ b1 ⊕ b2 then ai ≤ bi for both i = 1, 2.

The basic elements U1⊕U2 in Ω(X1)⊕Ω(X2) are closely associated with
the basic open rectangles in the space X1 ×X2. We have

Observation. For open Ui ⊆ Xi, π(U1 ⊕ U2) = U1 × U2.

(Indeed, π(U1⊕U2) = π((U1⊕1)∧(1⊕U2)) = π(ι1(U1)∧ ι2(U2)) = p−1
1 [U1]∧

p−1
2 [U2] = U1 × U2.)

4.2.2. Proposition. π is an onto dense homomorphism. Thus, in the lo-
calic language, π embeds Ω(X1×X2) into Ω(X1)⊕Ω(X2) as a dense sublocale.



14 JORGE PICADO AND ALEŠ PULTR

Proof. π is onto since the U1 × U2 generate the topology of X1 × X2 by
unions. Now if π(x) = ∅ then

∅ = π
(∨
{U1 ⊕ U2 | U1 ⊕ U2 ≤ x}

)
=
⋃
{U1 × U2 | U1 ⊕ U2 ≤ x}

so that if U1 ⊕ U2 ≤ x then either U1 or U2 is ∅, and hence x = 0. �

4.3. Thus, the localic product Ω(X1) × Ω(X2) (that is, frame coproduct
Ω(X1)⊕Ω(X2)) is not quite so far from Ω(X1 ×X2), the product of spaces
embedded into Loc. This can be made more intuitive as follows.

The topology of the product X × Y of spaces consists of the unions of
rectangles

⋃
i∈J(Ui × Vi) with Ui open in X and Vi open in Y . This can be

also viewed as taking “free joins”
∨
i∈I(Ui × Vi) and factorizing the set of

such free joins by the equivalence∨
i∈J

(Ui × Vi) ∼
∨
i∈J ′

(U ′i × V ′i ) iff
⋃
i∈J

(Ui × Vi) =
⋃
i∈J ′

(U ′i × V ′i ). (∗)

The condition on the right hand side is of course heavily point dependent.
In some very special particular cases such an equality of unions can be freed
of this dependence, though. Namely, this is the case of the unions where all
the Vi and V ′i coincide with the common value V , or the unions where all
the Ui and U ′i coincide with the common value U , that is, of the unions⋃

i∈J

(Ui × V ) =
⋃
i∈J ′

(U ′i × V ) and
⋃
i∈J

(U × Vi) =
⋃
i∈J ′

(U × V ′i ). (∗∗)

These special cases produce an equivalence ≈ generated by∨
i∈J

(Ui × V ) ≈
∨
i∈J ′

(U ′i × V ) and
∨
i∈J

(U × Vi) ≈
∨
i∈J ′

(U × V ′i ).

The equivalence ≈ is in general weaker than ∼, causing the Ω(X1)⊕Ω(X1)
to have in general more elements than Ω(X1 ×X2). But in some important
cases the equivalence ≈ does after all coincide with ∼.

4.4. A necessary and sufficient condition. The full embedding Ω: Sob→
Top from 1.1 produces an isomorphic copy Sob′ of Sob in Loc. Thus, when-
ever we have that for X, Y sober, Ω(X)⊕ Ω(Y ) is spatial, then it is a copy
of X × Y in Sob′. Hence we have

Proposition. For sober spaces X, Y the equivalence ≈ coincides with ∼
(and hence the product of X and Y as locales is the same as their product
as spaces) iff Ω(X)⊕ Ω(X) is spatial. �

Here are two important special cases:
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4.4.1. Proposition. Let either X and Y be (1) sober locally compact or
(2) admit complete metrics. Then their product as locales coincide with their
product as spaces.

Proof. (1): Proposition 2.13 in Chapter II of [10]; see also [8] and [6].
(2): It is well known that a space X admits a (complete) metric iff it
admits a (complete) countable generated uniformity. Then the coproduct
Ω(X) ⊕ Ω(Y ) admits a countably generated uniformity and by [19] it ad-
mits a complete one; by [2] (see also Theorem X.2.2 of [15]) this makes
Ω(X)⊕ Ω(Y ) spatial. �

4.5. The product seen from the perspective of the spectrum. A
locale (frame) L is generally a richer space than the picture obtained by
exploring it by means of spectral points, that is than ΣL. Still, it is useful
to realize that in this perspective the L1⊕L2 always appears as the classical
product.

To be more precise, since Σ is a right adjoint, the ψ in the diagram

Σ(L1 ⊕ L2)
isomorphism ψ //

Σιi &&

ΣL1 × ΣL2

pixx
Σ(Li)

satisfying piψ = Σιi (where pi are the cartesian projections, i = 1, 2) is an
isomorphism (that is, a homeomorphism of spaces). If we write (F1, F2) for
ψ(F ) we have Fi = Σιi(F ) = ι−1

i [F ]. Now consider the open set Σa1⊕a2 . We
have

a1 ∈ F1 iff a1 ⊕ 1 ∈ F and a2 ∈ F1 iff 1⊕ a2 ∈ F
yielding that

(F1, F2) ∈Σa1 × Σa2 iff ai ∈ Fi iff a1 ⊕ 1 ∈ F and 1⊕ a2 ∈ F
iff a1 ⊕ a2 = (a1 ⊕ 1) ∧ (1⊕ a2) ∈ F iff F ∈ Σa1⊕a2

so that the homeomorphism ψ translates Σa1⊕a2 into Σa1 × Σa2 and conse-
quently, by taking unions, a general open set in Σ(L1 ⊕ L2) into a general
open set in ΣL1 × ΣL2.

5. The discrepancy helps

In the previous section we have seen that the difference in the product
of spaces as spaces and their product as locales is limited (the former is a
dense sublocale of the latter, recall 4.2.2). Still, it can be substantial, and
the question naturally arises whether this tribute to the generalizing of the
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concept of space is not an unpleasant complication of the theory. In fact, it
is often rather beneficent as we will illustrate on a few examples.

5.1. Paracompact locales. The class of paracompact spaces is an im-
portant generalization of the metric ones, often appearing in applications.
These spaces, however, behave very badly in constructions: even a product
of a paracompact space with a metric one is not necessarily paracompact. In
contrast with this, the category of paracompact locales is very well behaved:
it is reflective in the category of all locales. This is due to the product
that always exists (although it is not necessarily spatial for spatial factors).
The satisfactory behaviour of this category is also connected with Isbell’s
beautiful characterization of paracompactness [7]:

a locale is paracompact iff it admits a complete uniformity,

a fact that has no counterpart in classical spaces.

5.2. Uniformities in the point-free context. As in spaces, a uniformity
on a frame (locale) L can be introduced as a special system of covers of
L, or as a suitable system of neighbourhoods of the (co)diagonal in L ⊕ L.
While the former is a straightforward extension of the space concept, the
latter is not, since L⊕L (in the case of a space X, Ω(X)⊕Ω(X) ) does not
exactly corresponds to the product X×X. However, somewhat surprisingly,
the two approaches can be shown to be equivalent also here [14, 16]. This
equivalence is now a deeper fact, and sometimes a mightier tool in proofs.

5.3. Localic groups. A topological group is not always a localic one
because the operation X×X → X results just in a localic morphism Ω(X×
X) → Ω(X), not in an operation Ω(X) ⊕ Ω(X) → Ω(X), and neither can
be necessarily lifted (over the π from 4.2) to one. It turns out that the nice
topological groups (roughly speaking, those that are complete in the natural
uniformity) are localic. In particular we have the Closed Subgroup Theorem
([9, 16], Chapter XV of [15]):

each localic subgroup of a localic group is closed,

again a fact without a spatial counterpart.

5.4. Connectedness. The intuition of connectedness is expressed by the
connected locally connected spaces better than by the plainly connected
one. This is seen in the behaviour of locales where the connected locally
connected ones behave as expected while the plainly connected do not ([12,
13], Chapter XIII of [15]). In particular, the product of two connected
locally connected locales is connected locally connected, but the product of
two plainly connected locales is not necessarily connected.
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