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Abstract. This paper introduces the frame of partially defined real numbers and the lattice-
ordered ring of partial real functions on a frame. This is then used to construct the or-
der completion of rings of pointfree continuous real functions. The bounded and integer-
valued cases are also analysed. The application of this pointfree approach to the classical
case C(X) of the ring of continuous real-valued functions on a topological space X yields
a new construction for the Dedekind completion of C(X), considerably more direct and
natural than the known procedure using Hausdorff continuous functions.

Keywords. Frame of reals, frame of partial reals, continuous real function, partial real
function, order complete, Dedekind completion, completely regular frame, extremally
disconnected frame, zero-dimensional frame.

2010 Mathematics Subject Classification. 06D22, 06B23, 54C30, 26A15.

Introduction

Our main goal with this paper is to construct the Dedekind completion of the
ring C(X) in the most direct and transparent way, avoiding the use of Hausdorff
continuous functions in [1]. For that, we approach the problem from a pointfree
viewpoint, replacing spaces by an abstraction of their lattices of open sets. The
lattices involved here are the frames (or locales), which form the object of study
of pointfree topology.

Let L(R) denote the frame of reals [3], that is, the frame generated by all or-
dered pairs (p, q) of rationals, subject to the relations

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),

(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,
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(R3) (p, q) =
∨
{(r, s) | p < r < s < q},

(R4)
∨
{(p, q) | p, q ∈ Q} = 1.

For any frame L the real continuous functions on L are the frame homomor-
phisms L(R)→ L. They form a lattice-ordered ring (`-ring) [3] that we shall de-
note by C(L). The correspondence L 7→ C(L) extends that for spaces: if L = OX
(the frame of open sets of a space X), then the classical function ring C(X) is
naturally isomorphic to C(L), see [3].

Order completeness of an `-ring [7], it may be recalled, means that each non-
void set of elements that is bounded from above has a supremum. What can one say
about the Dedekind completion of C(L) and, in particular, of C(X) for any space
X? In general, due to axiom (R2) above, C(L) fails to be order complete. The best
known result is a theorem of Banaschewski and Hong [7] that extends familiar
facts concerning topological spaces that go back to Nakano [18] and Stone [23]:
for a completely regular L, the ring C(L) is order complete if and only if L is
extremally disconnected if and only if L is zero-dimensional and the Boolean part
of L is complete.

That the completion of C(L) exists at all is a classical theorem that traces back
to Dedekind and was fully articulated by MacNeille [17] (see [8, 10] for details).
What is sought here is a pointfree construction of the order completion of C(L)
in the category of function rings. In order to achieve it we must find in some way
the smallest order complete lattice containing C(L). A natural idea is to avoid
the problem caused by (R2) by deleting it from the list of axioms. So our main
device will be the frame L(IR) of partially defined real numbers, presented by
the same generators as L(R) and by all relations except relation (R2). Of course,
this is a bigger frame in which L(R) embeds canonically. Then C(L) also embeds
canonically in the class IC(L) = Frm(L(IR), L) of partial real functions on L.
We prove that IC(L) is Dedekind complete (Section 2) and describe (in Section 3)
the Dedekind completion D(C(L)) of C(L) inside IC(L) by

D(C(L)) = {h ∈ IC(L) | (a) there exist f, g ∈ C(L) such that f ≤ h ≤ g,
(b) h(p,−)∗ ≤ h(−, q) and h(−, q)∗ ≤ h(p,−)

for any p < q}.

We also show that, alternatively, the elements of D(C(L)) are precisely the maxi-
mal elements of IC(L) (with respect to a certain partial order v) that satisfy con-
dition (a). The bounded and integer-valued cases are then analysed (Sections 4 and
5). In particular, the aforementioned result of Banaschewski-Hong [7] follows as
an immediate corollary from our construction. Finally, in Section 6, we show that
the application of these ideas to the classical case of the ring C(X) of continuous
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real-valued functions on a topological space X provides a new construction for its
order completion. In particular, the results of Anguelov [1] and Danet [11] follow
easily from our approach.

1 Preliminaries

1.1 Order completion

For any subset A of a partially ordered set (P,≤), we will denote by
∨PA (resp.∧PA) the supremum (resp. infimum) of A in P in case it exists (we shall omit the

superscript if it is clear from the context).
A Dedekind-MacNeille completion (also called normal completion, completion

by cuts or just MacNeille completion) of a poset P is a join- and meet-dense em-
bedding ϕ : P → M(P ) in a complete lattice (as usual, a map ϕ : P → M(P ) is
said to be join-dense if and only if so is its image in M(P ); that is, each element
of M(P ) is a join of elements from ϕ[P ]; meet-density is defined dually). The
Dedekind-MacNeille completion is the only complete lattice in which the given
poset is join- and meet-dense.

There are various abstract characterizations of Dedekind-MacNeille comple-
tions (see, e.g. [5, 8, 9, 20, 22]). The existence of such completions is given by the
well-known construction of MacNeille [8, 17].

For our purposes in this paper, since we are dealing with a P that is a group,
it will be more useful to consider a completion of P , denoted by D(P ), that is
slightly smaller than M(P ) in case P has no 0 and 1 [22, Theorem 1.3.4]. It
is called the Dedekind completion of P and it is defined in the following way
[7, 10, 22]:

A poset (P,≤) is Dedekind complete (elsewhere also referred as conditionally
complete) if every non-void subset A of P which is bounded from above has a
supremum in P (in particular, every non-void subset B of P which is bounded
from below will have a infimum in P ). A Dedekind completion of a poset P is a
join- and meet-dense embedding Φ : P → D(P ) in a Dedekind complete poset.
D(P ) is the only Dedekind complete poset in which the given poset is join- and
meet-dense. So D(P ) satisfies

p̂ =

D(P )∨
{Φ(p) | Φ(p) ≤ p̂} =

D(P )∧
{Φ(p) | Φ(p) ≥ p̂}

for every p̂ ∈ D(P ).
For more information on universal properties of the Dedekind completion see

[22, 1.3].
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1.2 Frames

A frame (or locale) L is a complete lattice such that a∧
∨
B =

∨
{a∧ b | b ∈ B}

for all a ∈ L and B ⊆ L; equivalently, it is a complete Heyting algebra with
Heyting operation → satisfying the standard equivalence a ∧ b ≤ c if and only
if a ≤ b→ c. The pseudocomplement of an a ∈ L is the element

a∗ = a→ 0 =
∨
{b ∈ L | a ∧ b = 0}.

An element a is regular if a∗∗ = a (equivalently, if a = b∗ for some b). A frame
homomorphism is a map h : L→M between frames which preserve finitary meets
(including the top element 1) and arbitrary joins (including the bottom element 0).
Then Frm is the corresponding category of frames and their homomorphisms.

The most typical example of a frame is the latticeOX of open subsets of a topo-
logical spaceX . The correspondenceX 7→ OX is clearly functorial (by taking in-
verse images), and consequently we have a contravariant functor O : Top→ Frm
where Top denotes the category of topological spaces and continuous maps. There
is also a functor in the opposite direction, the spectrum functor Σ : Frm→ Top
which assigns to each frame L its spectrum ΣL, the space of all homomorphisms
ξ : L→ {0, 1} with open sets Σa = {ξ ∈ ΣL | ξ(a) = 1} for any a ∈ L, and to
each frame homomorphism h : L→M the continuous map Σh : ΣM → ΣL such
that Σh(ξ) = ξh. The spectrum functor is right adjoint toO, with adjunction maps
ηL : L→ OΣL, ηL(a) = Σa and εX : X → ΣOX , εX(x) = x̂, x̂(U) = 1 if and
only if x ∈ U (the former is the spatial reflection of the frame L).

For general notions and results concerning frames we refer to Johnstone [14] or
the recent Picado–Pultr [19]. The particular notions we will need are the following:
a frame L is

• completely regular if a =
∨
{b ∈ L | b≺≺ a} for each a ∈ L, where b≺≺ a

means that there is {cr | r ∈ Q ∩ [0, 1]} ⊆ L such that a ≤ c0, c1 ≤ b and
cr ≺ cs (i.e. c∗r ∨ cs = 1) whenever r < s;

• extremally disconnected if a∗ ∨ a∗∗ = 1 for every a ∈ L; and

• zero-dimensional if each element of L is a join of complemented elements.

1.3 Real functions

It will be useful here (as it has been also in [6]) to adopt the equivalent descrip-
tion of L(R) with the elements (r,−) =

∨
s∈Q(r, s) and (−, s) =

∨
r∈Q(r, s) as

primitive notions.
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Specifically, the frame of reals L(R) is equivalently defined by generators (r,−)
and (−, r) for r ∈ Q and the following relations:

(r1) (r,−) ∧ (−, s) = 0 whenever r ≥ s,
(r2) (r,−) ∨ (−, s) = 1 whenever r < s,

(r3) (r,−) =
∨
s>r(s,−), for every r ∈ Q,

(r4) (−, r) =
∨
s<r(−, s), for every r ∈ Q,

(r5)
∨
r∈Q(r,−) = 1,

(r6)
∨
r∈Q(−, r) = 1.

With (p, q) = (p,−) ∧ (−, q) one goes back to (R1)–(R4).
Regarding the frame homomorphisms L(R)→ L, for a general frame L, as

the continuous real functions on L provides a natural extension of the classical
notion since continuous real functions on a space X may be represented as frame
homomorphisms h : L(R)→ OX (see [3] for a detailed account).

There is a useful way of specifying continuous real functions on L with the help
of scales. A scale in L is a map σ : Q→ L such that

(1) σ(r) ∨ σ(s)∗ = 1 whenever r < s,

(2)
∨
r∈Q σ(r) = 1 =

∨
r∈Q σ(r)

∗.

For any scale σ the formulas

f(r,−) =
∨
{σ(s) | s > r} and f(−, r) =

∨
{σ(s)∗ | s < r} (r ∈ Q)

determine a continuous real function f : L(R)→ L.

Note. The meaning of the term scale used here differs from its use in [14] where it
refers to maps from the unit interval of Q (and not all of Q) into L. In [3] the term
descending trail is used instead.

The ring C(L) = Frm(L(R), L) is partially ordered by

f ≤ g iff f(r,−) ≤ g(r,−) for all r ∈ Q

iff g(−, r) ≤ f(−, r) for all r ∈ Q.
(1.3.1)

Example 1.1. (1) For each r ∈ Q, the constant function r determined by r is de-
fined by

r(s,−) =

{
0 if s ≥ r,
1 if s < r,

and r(−, s) =

{
1 if s > r,

0 if s ≤ r,

for every s ∈ Q.
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(2) For each complemented a ∈ L, the characteristic function χa determined
by a is given by

χa(s,−) =


0 if s ≥ 1,
a if 0 ≤ s < 1,
1 if s < 0,

and χa(−, s) =


1 if s > 1,
a∗ if 0 < s ≤ 1,
0 if s ≤ 0,

for every s ∈ Q.

An f ∈ C(L) is said to be bounded if there exist p, q ∈ Q such that p ≤ f ≤ q.
Equivalently, f is said to be bounded if and only if there is some rational r such
that f((−,−r) ∨ (r,−)) = 0, that is, f(−r, r) = 1. We shall denote by C∗(L) the
set of all bounded members of C(L). Obviously, all constant functions and all
characteristic functions are in C∗(L).

As it is well known, in general neither C(L) nor C∗(L) are Dedekind complete
[7].

The operations on the algebra C(L) are determined by the operations of Q as
lattice-ordered ring as follows (see [3] and [13] for more details):

(1) For � = +, ·,∧,∨,

(f � g)(p, q) =
∨
{f(r, s) ∧ g(t, u) | 〈r, s〉 � 〈t, u〉 ⊆ 〈p, q〉}

where 〈· , ·〉 stands for open interval in Q and the inclusion on the right means
that x � y ∈ 〈p, q〉 whenever x ∈ 〈r, s〉 and y ∈ 〈t, u〉.

(2) (−f)(p, q) = f(−q,−p).

(3) For each r ∈ Q, the nullary operation r is defined as in Example 1.1 (1) above.

(4) For each 0 < λ ∈ Q, (λ · f)(p, q) = f( pλ ,
q
λ).

These operations satisfy all the identities which hold for their counterparts in Q
and hence they determine an f -ring structure in C(L).

2 Partial real functions

Let IR denote the set of compact intervals a = [a, a] of the real line ordered by
reverse inclusion (which we denote by v):

a v b iff [a, a] ⊇ [b, b] iff a ≤ b ≤ b ≤ a.

The pair (IR,v) is a domain [12], referred to as the partial real line (also
interval-domain). The interval domain was proposed by Dana Scott in [21] as a
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domain-theoretic model for the real numbers. It is a successful idea that has in-
spired a number of computational models for real numbers.

The way-below relation of IR is given by

a� b iff a < b ≤ b < a

and we denote
↑↑a = {b ∈ IR | a� b}.

The family {↑↑a | a ∈ IR, a, a ∈ Q} forms a countable basis of the Scott topol-
ogy OIR on (IR,v).

Remark 2.1. (1) Let π1, π2 : IR→ R be the projections defined for each a ∈ IR
by π1(a) = a and π2(a) = a. Then for each r ∈ Q,

π−1
1 (r,+∞) = {a ∈ IR | r < a}

=
⋃

β∈R, β>r
{a ∈ IR | r < a ≤ a < β}

=
⋃

β∈R, β>r

↑↑[r, β]

and

π−1
2 (−∞, r) = {a ∈ IR | a < r}

=
⋃

α∈R, α<r
{a ∈ IR | α < a ≤ a < r}

=
⋃

α∈R, α<r

↑↑[α, r].

It follows that for the upper τu and lower τl topologies in R, π1 : IR→ (R, τu)
is continuous, (i.e., π1 is lower semicontinuous) and π2 : IR→ (R, τl) is contin-
uous, (i.e., π2 is upper semicontinuous). Hence, for any f ∈ C(X, IR), we have
π1 ◦ f ∈ LSC(X,R), π2 ◦ f ∈ USC(X,R) and π1 ◦ f ≤ π2 ◦ f .

Note further that for each a ∈ IR one has ↑↑a = π−1
1 (a,+∞) ∩ π−1

2 (−∞, a).
Consequently, the Scott topology on IR is the initial topology with respect to
π1 : IR→ (R, τu) and π2 : IR→ (R, τl).

(2) Let e : R→ IR be given by e(a) = [a, a] for each a ∈ R. It is easy to check
that e is an embedding of R endowed with the usual topology into (IR,OIR).
Sometimes we shall identify R with its homeomorphic copy e(R) ⊆ IR. Similarly,
a real-valued function f : X → R will be identified with e ◦ f : X → IR.
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When investigating the existence of suprema of families of continuous real
functions on a frame, one immediately realizes that the problem lies on the defining
relation (r2) (or (R2)). This urged us to consider the partial variant of L(R) defined
by generators (r,−) and (−, r) for r ∈ Q and relations (r1), (r3)–(r6). We call
it the frame of partial reals L(IR). There is of course a basic homomorphism
% : L(IR)→ L(R) defined on generators by (r,−) 7→ (r,−) and (−, r) 7→ (−, r).

Proposition 2.2. The space of partial reals with the Scott topology is homeomor-
phic to ΣL(IR). The homeomorphism τ : ΣL(IR)→ IR is such that

τ(ξ) =
∨
{r ∈ Q | ξ(r,−) = 1} and τ(ξ) =

∧
{s ∈ Q | ξ(−, s) = 1}

for each ξ ∈ ΣL(IR).

Proof. Let ξ ∈ ΣL(IR). We first note that by (r1), (r5) and (r6) there exists a pair
of rationals r1 < r2 such that

ξ(−, r1) = ξ(r2,−) = 0 and ξ(r1,−) = ξ(−, r2) = 1.

Indeed, if ξ(r,−) = 0 for every r ∈ Q, then ξ(
∨
r∈Q(r,−)) =

∨
r∈Q ξ(r,−) = 0,

contradicting (r5) by the compactness of {0, 1}. Therefore there exists some r1∈Q
such that ξ(r1,−) = 1 and then, by (r1),

0 = ξ(0) = ξ((r1,−) ∧ (−, r1)) = ξ(−, r1).

By a similar argument, using (r1) and (r6), we may conclude that ξ(−, r2) = 1
and ξ(r2,−) = 1 for some r2 ∈ Q. Finally,

1 = ξ(r1,−) ∧ ξ(−, r2) = ξ((r1,−) ∧ (−, r2))

implies r1 < r2, by (r1).
It now follows that we have

τ(ξ) =
∨
{r ∈ Q | ξ(r,−) = 1} ∈ R

and
τ(ξ) =

∧
{s ∈ Q | ξ(−, s) = 1} ∈ R.

For any such r, s,

ξ((r,−) ∧ (−, s)) = ξ(r,−) ∧ ξ(−, s) = 1

and thus, by (r1), r < s. Hence τ(ξ) ≤ τ(ξ) and τ(ξ) =
[
τ(ξ), τ(ξ)

]
belongs in

fact to IR.
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In order to show that τ is one-to-one, let ξ1 6= ξ2. Then there exists an r ∈ Q
such that, say, ξ1(r,−) = 1 and ξ2(r,−) = 0. Then, by (r3),

1 = ξ1(r,−) = ξ1

(∨
p>r

(p,−)
)
.

Thus there exists a p > r such that ξ1(p,−) = 1, and hence r < p ≤ τ(ξ1). On the
other hand, since ξ2(q,−) = 0 for each q ≥ r, it follows that

τ(ξ2) =
∨
{q ∈ Q | ξ2(q,−) = 1} ≤ r.

Hence τ(ξ2) ≤ r < p ≤ τ(ξ1). The arguments for the other cases are analogous.
The function τ is also surjective. Indeed, given a ∈ IR, let ξa : L(IR)→ {0, 1}

be given by ξa(r,−) = 1 if and only if r < a and ξa(−, r) = 1 if and only if a < r
for every r ∈ Q. It is easy to check that this correspondence turns the defining re-
lations (r1), (r3)–(r6) into identities in {0, 1} and so each ξa is a frame homomor-
phism. Moreover

τ(ξa) =
∨
{r ∈ Q | ξa(r,−) = 1} =

∨
{r ∈ Q | r < a} = a

and
τ(ξa) =

∧
{r ∈ Q | ξa(−, r) = 1} =

∧
{r ∈ Q | a < r} = a.

Hence τ(ξa) = a.
It remains to show τ is a homeomorphism. Now, for each basic Scott open

set ↑↑a (with a ∈ IR and a, a ∈ Q) we have that

τ−1(↑↑a) = {ξb ∈ ΣL(IR) | a� b}

= {ξb ∈ ΣL(IR) | a < b ≤ b < a}
= {ξb ∈ ΣL(IR) | ξb(a,−) = 1 and ξb(−, a) = 1}
= Σ(a,−) ∩ Σ(−,a).

Hence τ is continuous. On the other hand, for any open sets Σ(r,−) or Σ(−,r) of
ΣL(IR),

τ(Σ(r,−)) = {τ(ξ) | ξ ∈ ΣL(IR) and ξ(r,−) = 1}

= {τ(ξa) | a ∈ IR and ξa(r,−) = 1}
= {a ∈ IR | r < a}

=
⋃

β∈R, β>r
{a ∈ IR | r < a ≤ a < β} =

⋃
β∈R, β>r

↑↑[r, β].
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and

τ
(
Σ(−,r)

)
= {τ(ξ) | ξ ∈ ΣL(IR) and ξ(−, r) = 1}

= {τ(ξa) | a ∈ IR and ξa(−, r) = 1}
= {a ∈ IR | a < r}

=
⋃

α∈R, α<r
{a ∈ IR | α < a ≤ a < r} =

⋃
α∈R, α<r

↑↑[α, r]

are Scott open sets.

Remark 2.3. The homeomorphism τ−1 : IR→ ΣL(IR) induces an isomorphism

OΣL(IR)→ OIR, Σ(r,−) 7→ π−1
1 (r,+∞), Σ(−,r) 7→ π−1

2 (−∞, r).

Thus the homomorphism L(IR)→ OIR taking (r,−) to π−1
1 (r,+∞) and (−, r)

to π−1
2 (−∞, r) is the spatial reflection map ηL(IR) of the frame of partial real

numbers. Note that this homomorphism is an isomorphism. Indeed, ηL(IR) is onto,
since for each a ∈ IR with a, a ∈ Q,

ηL(IR)
(
(a,−) ∧ (−, a)

)
= {b ∈ IR | a < b and b < a} = ↑↑a,

and Ψ : OIR→ L(IR), given by

Ψ(↑↑a) = (a,−) ∧ (−, a) for each a ∈ IR such that a, a ∈ Q,

is a left inverse of ηL(IR):

Ψ ◦ ηL(IR)(r,−) = Ψ
(
{a ∈ IR | r < a}

)
= Ψ

(⋃
{↑↑b | b = r, b ∈ Q}

)
=
∨{

(r,−) ∧ (−, b) | b ∈ Q
}

= (r,−) ∧
∨{

(−, b) | b ∈ Q
}
= (r,−),

and
Ψ ◦ ηL(IR)(−, r) = Ψ({a ∈ IR | a < r})

= Ψ

(⋃
{↑↑b | b ∈ Q, b < r}

)
=
∨
{(b,−) ∧ (−, r) | b ∈ Q}

= (−, r) ∧
∨
{(b,−) | b ∈ Q} = (−, r).
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Definition 2.4. A continuous partial real function on a frame L is a frame homo-
morphism h : L(IR)→ L.

As in the case of continuous real functions on a space X , one can easily show
that continuous functions X → IR may be represented as frame homomorphisms
h : L(IR)→ OX , which justifies the preceding definition:

Corollary 2.5. For each topological space (X,OX) there is a natural isomor-
phism

Φ : Frm(L(IR),OX)→∼ Top(X, IR).

Proof. By the (dual) adjunction between the contravariant functorsO : Top→ Frm
and Σ : Frm→ Top there is a natural isomorphism Frm(L,OX)→∼ Top(X,ΣL)
for all L andX . Combining this for the case L = L(IR) with the homeomorphism
τ : Σ(L(IR))→ IR from Proposition 2.2 one obtains the isomorphism.

Specifically, Φ is given by the correspondence h 7→ h̃ where

h̃(x) =
[∨
{r ∈ Q | x ∈ h(r,−)},

∧
{r ∈ Q | x ∈ h(−, r)}

]
for every x ∈ X.

In the opposite direction, given f ∈ C(X, IR) the corresponding h is defined by

h(r,−) = (π1 ◦ f)−1(r,+∞),

h(−, r) = (π2 ◦ f)−1(−∞, r) for every r ∈ Q.

We shall denote by IC(L) the set Frm(L(IR), L), partially ordered by

f ≤ g iff f(r,−) ≤ g(r,−) and g(−, r) ≤ f(−, r) for all r ∈ Q. (2.5.1)

Remark 2.6. (1) The functions h ∈ IC(L) that factor through the canonical in-
sertion % : L(IR) → L(R) are just those which satisfy h(r,−) ∨ h(−, s) = 1
whenever r < s. In view of this, we will keep the notation C(L) to denote also the
class inside IC(L) of the functions h such that h(r,−) ∨ h(−, s) = 1 whenever
r < s.

(2) In case f ∈ C(L), as in (1.3.1), the second condition on f and g in (2.5.1)
is needless because it is equivalent to the first one:

g(−, r) = g

(∨
s<r

(−, s)
)

=
∨
s<r

g(−, s)

≤
∨
s<r

g(s,−)∗ ≤
∨
s<r

f(s,−)∗ ≤ f(−, r),

the last inequality because f being in C(L) then, by (r2), f(s,−) ∨ f(−, r) = 1.
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A similar argument shows that the first condition follows from the second one
whenever g ∈ C(L) and so the two conditions are equivalent if both f, g are in
C(L), as in (1.3.1).

(3) There is an order reversing isomorphism −(·) : IC(L)→ IC(L) defined by

(−h)(−, r) = h(−r,−) and (−h)(r,−) = h(−,−r) for all r ∈ Q.

When restricted to C(L) it yields an isomorphism C(L)→ C(L).

A continuous partial real function h ∈ IC(L) is said to be bounded if there exist
p, q ∈ Q such that p ≤ h ≤ q. Equivalently,

h is bounded iff ∃r ∈ Q such that h(−r, r) = 1.

We shall denote by IC∗(L) the set of bounded functions in IC(L).

Example 2.7. For each a, b ∈ L such that a ∧ b = 0 let χa,b denote the bounded
continuous partial real function given by

χa,b(r,−) =


0 if r ≥ 1,
a if 0 ≤ r < 1,
1 if r < 0,

and χa,b(−, r) =


1 if r > 1,
b if 0 < r ≤ 1,
0 if r ≤ 0,

for each r ∈ Q. Clearly, χa,b ∈ C∗(L) if and only if a ∨ b = 1, i.e., if and only if
a is complemented with complement b.

Proposition 2.8. The class IC(L) is closed under non-void bounded suprema.

Proof. Let {hi}i∈I ⊆ IC(L) and h ∈ IC(L)

hi ≤ h for all i ∈ I .

For each r, s ∈ Q we define h∨ : L(IR)→ L on generators by

h∨(r,−) =
∨
i∈I

hi(r,−) and h∨(−, s) =
∨
q<s

∧
i∈I

hi(−, q).

This is a frame homomorphism since it turns the defining relations (r1) and (r3)–
(r6) of L(IR) into identities in L:

(r1) whenever r ≥ s,

h∨(r,−) ∧ h∨(−, s) ≤
∨
i∈I

∨
q<s

hi(r,−) ∧ hi(−, q)

≤
∨
i∈I

hi(r,−) ∧ hi(−, s) = 0.
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(r3) for each r ∈ Q,∨
s>r

h∨(s,−) =
∨
i∈I

∨
s>r

hi(s,−) =
∨
i∈I

hi(r,−) = h∨(r,−).

(r4) for each r ∈ Q,∨
s<r

h∨(−, s) =
∨
s<r

∨
q<s

∧
i∈I

hi(−, q) =
∨
q<r

∧
i∈I

hi(−, q) = h∨(−, r).

(r5)
∨
r∈Q h∨(r,−) =

∨
r∈Q

∨
i∈I hi(r,−) =

∨
i∈I
∨
r∈Q hi(r,−) = 1.

(r6)
∨
s∈Q h∨(−, s) =

∨
s∈Q

∨
q<s

∧
i∈I hi(−, q) ≥

∨
q∈Q h(−, q) = 1.

Hence h∨ ∈ IC(L). In addition, for each i ∈ I and r, s ∈ Q,

hi(r,−) ≤ h∨(r,−) ≤ h(r,−)

and
h(−, s) =

∨
q<s

h(−, q) ≤ h∨(−, s) ≤
∨
q<s

hi(−, q) = hi(−, s)

and thus hi ≤ h∨ ≤ h for every i ∈ I. Finally, if g ∈ IC(L) is such that hi ≤ g for
every i ∈ I , then we have, for each r, s ∈ Q,

g(r,−) ≥
∨
i∈I

hi(r,−) = h∨(r,−)

and
g(−, s) =

∨
q<s

g(−, q) ≤
∨
q<s

∧
i∈I

hi(−, q) = h∨(−, s)

and so h∨ ≤ g. Hence h∨ is in fact the supremum of {hi}i∈I in IC(L).

Corollary 2.9. The class IC(L) is Dedekind complete.

3 The Dedekind completion of C(L)

Since IC(L) is Dedekind complete, it follows that it contains the Dedekind com-
pletion of all its subposets, in particular C(L). Our next task will be to determine
the Dedekind completion of C(L). As a by-product we shall also determine the
Dedekind completion of C(L) in the sense of [7].

We first note that, as explained in [7, Section 2], there is no essential loss of
generality if we restrict ourselves to completely regular frames. So, in the sequel,
all frames will be taken as completely regular. We start by establishing a couple of
lemmas:
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Lemma 3.1. Let L be a completely regular frame and let h ∈ IC(L) be such that

(1) {f ∈ C(L) | f ≤ h} 6= ∅,

(2) h(p,−)∗ ≤ h(−, q) whenever p < q.

Then

h =

IC(L)∨
{f ∈ C(L) | f ≤ h}.

Proof. Let
F = {f ∈ C(L) | f ≤ h}.

By (1), F 6= ∅. Since IC(L) is Dedekind complete, the supremum
IC(L)∨
F exists.

We shall prove that
IC(L)∨
F = h.

We only need to show that, for any h′ ∈ IC(L) such that f ≤ h′ for all f ∈ F ,
h ≤ h′, i.e.,

(a) h(p,−) ≤ h′(p,−) for every p ∈ Q,

(b) h(−, q) ≥ h′(−, q) for every q ∈ Q.

(a) We fix p ∈ Q and consider p′ ∈ Q such that p < p′. Since L is com-
pletely regular, we obtain h(p′,−) =

∨
{a ∈ L | a≺≺ h(p′,−)}. Let a ∈ L such

that a≺≺ h(p′,−). Then there exists a family {cr : r ∈ Q ∩ [0, 1]} ⊆ L such that
a ≤ c0, c1 ≤ h(p′,−) and cr ≺ cs whenever r < s. Hence the map σa,p′ : Q→ L
given by

σa,p′(r) =


0 if r > 1,
c1−r if 0 ≤ r ≤ 1,
1 if r < 0,

is a scale and generates a ga,p′ ∈ C(L) given by

ga,p′(r,−) =


0 if r ≤ 1,∨
r′>r c1−r′ if 0 ≤ r < 1,

1 if r < 0,

and

ga,p′(−, s) =


1 if s > 1,∨
s′<s c

∗
1−s′ if 0 < s ≤ 1,

0 if s ≤ 0.
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Evidently 0 ≤ ga,p′ ≤ 1. Let

fa,p′ = f + (((p′ − f) ∨ 0) · ga,p′) ∈ C(L).

We have fa,p′ ≤ h; indeed, for each r ∈ Q,

fa,p′(r,−) =
∨
r′∈Q

f(r − r′,−) ∧
(
((p′ − f) ∨ 0) · ga,p′

)
(r′,−)

=
∨
r′<0

f(r − r′,−)

∨
∨
r′≥0

f(r − r′,−) ∧
(
((p′ − f) ∨ 0) · ga,p′

)
(r′,−)

= f(r,−) ∨
∨
r′≥0

∨
r′′>0

f(r − r′,−) ∧
(
(p′ − f) ∨ 0

)
(r′′,−)

∧ ga,p′
(
r′

r′′
,−
)

= f(r,−) ∨
∨
r′≥0

∨
r′′>0

f(r − r′, p′ − r′′) ∧ ga,p′
(
r′

r′′
,−
)

= f(r,−) ∨
∨
r′≥0

∨
r′<r′′<p′−r+r′

f(r − r′, p′ − r′′) ∧ ga,p′
(
r′

r′′
,−
)

= f(r,−) ∨
∨
r′≥0

∨
r′<r′′<p′−r+r′

∨
r′′′> r′

r′′

f(r − r′, p′ − r′′) ∧ c1−r′′′ .

Now, if r ≥ p′, then p′ − r + r′ ≤ r′ for each r′ ≥ 0 and thus

fa,p′(r,−) = f(r,−) ≤ h(r,−).

Otherwise, if r < p′, then

fa,p′(r,−) ≤ f(r,−) ∨
∨
r′≥0

∨
r′<r′′<p′−r+r′

f(r − r′, p′ − r′′) ∧ c1

= f(r,−) ∨
∨
r′≥0

f(r − r′, p′ − r′) ∧ c1

= f(r,−) ∨ (f(−, p′) ∧ c1)

= (f(r,−) ∨ f(−, p′)) ∧ (f(r,−) ∨ c1)

= f(r,−) ∨ c1

≤ h(r,−) ∨ h(p′,−)
= h(r,−).
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Hence fa,p′(r,−) ≤ h(r,−) for every r ∈ Q and since fa,p′ ∈ C(L), it follows
that fa,p′ ≤ h, by Remark 2.6 (2), and we may conclude that fa,p′ ∈ F .

Finally, since p < p′, it follows that

fa,p′(p,−) = f(p,−) ∨
∨
r′≥0

∨
r′<r′′<p′−p+r′

∨
r′′′> r′

r′′

f(p− r′, p′ − r′′) ∧ c1−r′′′

≥ f(p,−) ∨
∨
r′≥0

∨
r′<r′′<p′−p+r′

f(p− r′, p′ − r′′) ∧ c0

= f(p,−) ∨
∨
r′≥0

f(p− r′, p′ − r′) ∧ c0

= f(p,−) ∨ (f(−, p′) ∧ c0)

= (f(p,−) ∨ f(−, p′)) ∧ (f(r,−) ∨ c0)

= f(p,−) ∨ c0

≥ c0

and thus
a ≤ c0 ≤ fa,p′(p,−) ≤ h′(p,−).

Hence
h(p,−) =

∨
p′>p

h(p′,−) =
∨
p′>p

∨
a≺≺h(p′,−)

a ≤ h′(p,−).

(b) Using (2) it follows that

h(−, q) =
∨
s′<s

∨
s<q

h(−, s′) ≥
∨
s<q

h(s,−)∗

≥
∨
s<q

h′(s,−)∗ ≥
∨
s<q

h′(−, s) = h′(−, q).

Then, it follows from Lemma 3.1 and Remark 2.6 (3) that:

Lemma 3.2. Let L be a completely regular frame and let h ∈ IC(L) be such that

(1) {g ∈ C(L) | h ≤ g} 6= ∅,

(2) h(−, q)∗ ≤ h(p,−) whenever p < q.

Then

h =

IC(L)∧
{g ∈ C(L) | h ≤ g}.
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We introduce now the following classes:

C(L)∨ = {h ∈ IC(L) | ∃f, g ∈ C(L) : f ≤ h ≤ g and
h(p,−)∗ ≤ h(−, q) if p < q},

C(L)∧ = {h ∈ IC(L) | ∃f, g ∈ C(L) : f ≤ h ≤ g and
h(−, q)∗ ≤ h(p,−) if p < q},

C(L)∨∧ = C(L)∨ ∩ C(L)∧.

The next result is an immediate consequence of Lemmas 3.1 and 3.2.

Proposition 3.3. Let L be a completely regular frame and let h ∈ C(L)∨∧. Then

h =

IC(L)∨
{f ∈ C(L) | f ≤ h} =

IC(L)∧
{g ∈ C(L) | h ≤ g}.

The following diagram depicts the inclusions between those classes (each arrow
represents a strict inclusion):

C(L)∨

))

C(L) // C(L)∨∧
55

))

IC(L).

C(L)∧
55

The only non trivial inclusion, that is, C(L) ⊆ C(L)∨∧, follows from the fact
that h(p,−) ∨ h(−, q) = 1 implies h(p,−)∗ ≤ h(−, q) and h(−, q)∗ ≤ h(p,−).
Further, the inclusions are strict. Indeed, for each a, b ∈ L such that a ∧ b = 0
recall the bounded χa,b from Example 2.7. Then:

(1) χa,b ∈ C(L)∨ if and only if a∗ = b,

(2) χa,b ∈ C(L)∧ if and only if b∗ = a,

(3) χa,b ∈ C(L)∨∧ if and only if a∗ = b and b∗ = a, i.e., if and only if a is regular
and b = a∗.

Consequently,

• if a is regular but not complemented, then χa,a∗ ∈ C(L)∨∧ \ C(L),
• if a∗ = b but b∗ 6= a, then χa,a∗ ∈ C(L)∨\C(L)∧ (for instance, take L=OR,
a = R \ {0} and b = ∅),

• if b∗ = a but a∗ 6= b, then χb∗,b ∈ C(L)∧ \ C(L)∨,
• if a∗ 6= b and b∗ 6= a, then χa,b ∈ IC(L) \ (C(L)∨ ∪ C(L)∧) (for instance, take
a = b = 0).
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Remark 3.4. The order reversing isomorphism −(·) : IC(L)→ IC(L) introduced
in Remarks 2.6 induces an isomorphism from C(L)∨ onto C(L)∧ (and hence an
isomorphism from C(L)∨∧ onto C(L)∨∧).

Proposition 3.5. The class C(L)∨ is closed under non-void bounded suprema and
C(L)∧ is closed under non-void bounded infima.

Proof. Let {hi}i∈I ⊆ C(L)∨ and h ∈ C(L)∨ such that

hi ≤ h for all i ∈ I .

On one hand, since IC(L) is Dedekind complete, the supremum
IC(L)∨
i∈Ihi exists and

it is given byIC(L)∨
i∈I

hi

 (p,−) =
∨
i∈I
hi(p,−) and

IC(L)∨
i∈I

hi

 (−, q) =
∨
s<q

∧
i∈I

hi(−, s)

for every p, q ∈ Q. On the other hand, for each i ∈ I , since hi ∈ C(L)∨, there
exists an fi ∈ C(L) such that fi ≤ hi, and since h ∈ C(L)∨, there exists g ∈ C(L)
such that h ≤ g. Consequently,

fi ≤ hi ≤
IC(L)∨
i∈I

hi ≤ g.

Further, let p < q in Q and p < r < q. ThenIC(L)∨
i∈I

hi

 (p,−)

∗ =∧
i∈I

hi(p,−)∗ ≤
∧
i∈I

hi(−, r) ≤

IC(L)∨
i∈I

hi

 (−, q),

which shows that
IC(L)∨
i∈I

hi ∈ C(L)∨.

The second assertion follows immediately by Remark 3.4.

Finally, we establish the main result of the paper.

Theorem 3.6. The class C(L)∨∧ is Dedekind complete.

Proof. (a) Let {hi}i∈I ⊆ C(L)∨∧ and h ∈ C(L)∨∧ such that

hi ≤ h for all i ∈ I .
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For each r, s ∈ Q we define h∨ : L (IR)→ L on generators by

h∨(r,−) =
∨
p>r

(∧
i∈I

hi(p,−)∗
)∗

and h∨(−, s) =
∨
q<s

∧
i∈I

hi(q,−)∗.

This is a frame homomorphism since it turns the defining relations (r1) and (r3)–
(r6) of L(IR) into identities in L:

(r1) whenever r ≥ s,

h∨(r,−) ∧ h∨(−, s) ≤
(∧
i∈I

hi(r,−)∗
)∗
∧
∧
i∈I

hi(r,−)∗ = 0.

(r3) for each r ∈ Q,∨
s>r

h∨(s,−) =
∨
s>r

∨
p>s

(∧
i∈I

hi(p,−)∗
)∗

= h∨(r,−).

(r4) for each r ∈ Q,∨
s<r

h∨(−, s) =
∨
s<r

∨
q<s

∧
i∈I

hi(q,−)∗ =
∨
q<r

∧
i∈I

hi(q,−)∗ = h∨(−, r).

(r5) we have∨
r∈Q

h∨(r,−) =
∨
r∈Q

∨
p>r

(∧
i∈I

hi(p,−)∗
)∗
≥
∨
p∈Q

∨
i∈I
hi(p,−) = 1.

(r6) we have∨
s∈Q

h∨(−, s) =
∨
s∈Q

∨
q<s

∧
i∈I

hi(q,−)∗ =
∨
q∈Q

h(q,−)∗ ≥
∨
q∈Q

h(−, q) = 1.

Moreover, for each r < s in Q and r < t < s,

h∨(r,−)∗ =
∧
p>r

(∧
i∈I

hi(p,−)∗
)∗∗

=
∧
p>r

(∨
i∈I
hi(p,−)

)∗∗∗
≤
(∨
i∈I
hi(t,−)

)∗
≤ h∨(−, s),

h∨(−, s)∗ =
∧
q<s

(∧
i∈I

hi(q,−)∗
)∗

≤
(∧
i∈I

hi(t,−)∗
)∗
≤ h∨(r,−).
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Further, for each r, s ∈ Q and i ∈ I , we have

hi(r,−) =
∨
p>r

hi(p,−) ≤
∨
p>r

hi(p,−)∗∗

≤ h∨(r,−) ≤
∨
p>r

h(p,−)∗∗ ≤ h(r,−),

h(−, s) =
∨
q<s

h(−, q) ≤
∨
q<s

h(q,−)∗

≤ h∨(−, s) ≤
∨
q<s

hi(−, q) = hi(−, s)

and thus hi ≤ h∨ ≤ h for all i ∈ I. Since hi ∈ C(L)∨, there exists an fi ∈ C(L)
such that fi ≤ hi, and since h ∈ C(L)∧, there exists a g ∈ C(L) such that h ≤ g.
Consequently h∨ ∈ C(L)∨∧. Finally, if g ∈ C(L)∨∧ is such that hi ≤ g for every
i ∈ I , then

g(r,−) ≥
∨
p>r

g(p,−)∗∗ ≥
∨
p>r

(∨
i∈I
hi(p,−)

)∗∗
= h∨(r,−),

g(−, s) =
∨
q<s

g(−, q) ≤
∨
q<s

∧
i∈I

hi(−, q) ≤
∨
q<s

∧
i∈I

hi(q,−)∗ = h∨(−, s)

for every r, s ∈ Q and therefore h∨ ≤ g. Hence h∨ is the supremum of {hi}i∈I
in C(L)∨∧.

(b) If {hi}i∈I ⊆ C(L)∨∧ and h ∈ C(L)∨∧ is such that h ≤ hi for all i ∈ I , then

{−hi}i∈I ⊆ C(L)∨∧

and −h ∈ C(L)∨∧ is such that −hi ≤ −h. By (a), the supremum
∨C(L)∨∧
i∈I (−hi)

exists. It is easy to check that

C(L)∨∧∧
i∈I

hi = −
C(L)∨∧∨
i∈I

(−hi).

As an immediate consequence of Proposition 3.3 and Theorem 3.6 we have:

Corollary 3.7. Let L be a frame. Then the Dedekind completionD(C(L)) of C(L)
coincides with C(L)∨∧, i.e.,

D(C(L)) = {h ∈ IC(L) | (a) there exist f, g ∈ C(L) such that f ≤ h ≤ g,
(b) h(p,−)∗ ≤ h(−, q) and h(−, q)∗ ≤ h(p,−)

for any p < q}.
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We conclude this section with the result that the elements of the completion
D(C(L)) can be alternatively described as some maximal elements of IC(L) with
respect to the following partial order on IC(L):

f v g iff f(r,−) ≤ g(r,−) and f(−, r) ≤ g(−, r) for all r ∈ Q.

We shall also describe the classes C(L)∨, C(L)∧ and C(L)∨∧ in terms of the partial
order v.

Proposition 3.8. The following are equivalent for any h ∈ IC(L).

(i) h(p,−)∗ ≤ h(−, q) whenever p < q in Q.

(ii) g(−, r) = h(−, r) for all r ∈ Q and all g ∈ IC(L) such that h v g.

Proof. In order to check that (i)⇒ (ii), let g ∈ IC(L) such that h v g. By (i),
g(p,−)∗ ≤ h(p,−)∗ ≤ h(−, q) ≤ g(−, q) for all p < q in Q. Consequently,

g(−, q) =
∨
p<q

g(p,−)∗ for all q ∈ Q.

Thus we get
g(−, q) =

∨
p<q

g(p,−)∗ ≤ h(−, q) ≤ g(−, q)

and so g(−, q) = h(−, q).
For the reverse implication let g ∈ IC(L) be defined as follows:

g(r,−) =
∨
s>r

h(s,−)∗∗ and g(−, r) =
∨
s<r

h(s,−)∗.

It is straightforward to check that g is indeed a partial continuous functions and that
h v g. Therefore, by hypothesis, h(−, r) = g(−, r) for all r ∈ Q. Consequently,∨

s<r

h(s,−)∗ = h(−, r),

which implies h(s,−)∗ ≤ h(−, r) for all s < r in Q.

Proposition 3.9. The following are equivalent for any h ∈ IC(L).

(i) h(−, q)∗ ≤ h(p,−) whenever p < q in Q.

(ii) g(r,−) = h(r,−) for all r ∈ Q and all g ∈ IC(L) such that h v g.
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Proof. Clearly,
h(−, q)∗ ≤ h(p,−) for all p < q

if and only if

(−h(−q,−))∗ ≤ −h(−,−p) for all −q < −p,

which is equivalent to −g(−, r) = −h(−, r) for all r ∈ Q and all g ∈ IC(L) such
that −h v −g (by Proposition 3.8).

Then we may conclude that the elements h of C(L)∨∧ are precisely the maximal
elements of (IC(L),v) for which there exist f, g ∈ C(L) satisfying f ≤ h ≤ g:

Corollary 3.10. Let L be a frame. Then

C(L)∨∧ = {h ∈ IC(L) | (a) there exist f, g ∈ C(L) such that f ≤ h ≤ g,
(b) h v h′ ∈ IC(L) =⇒ h = h′}.

Remark 3.11. One might wonder whether the operations of the algebra C(L) (de-
scribed in Subsection 1.3) can be extended to C∨∧(L) in such a way that C∨∧(L)
becomes a lattice-ordered ring. This is indeed true: using the techniques intro-
duced in [13], the operations on C(L) can be easily extended to IC(L) (since none
of C(L)∨, C(L)∧, or IC(L) is even a group, one may view this fact as a happy
accident). The lengthy details of the proof, however, go beyond the scope of this
paper and will be treated elsewhere.

4 The bounded case

In this section we show that if we restrict the preceding statements to bounded
functions, most results remain essentially the same.

Proposition 4.1. The class IC∗(L) is Dedekind complete.

Proof. Let {hi}i∈I ⊆ IC∗(L) and h ∈ IC∗(L) such that

hi ≤ h for all i ∈ I .

Since IC(L) is Dedekind complete, there exists
∨IC(L)
i∈I hi. Let j ∈ I . Then both hj

and h are bounded and so there are p, q ∈ Q such that

p ≤ hj ≤
IC(L)∨
i∈I

hi ≤ h ≤ q.
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Consequently,
IC∗(L)∨
i∈I

hi =

IC(L)∨
i∈I

hi.

Dually, if h ≤ hi for all i ∈ I and some h ∈ IC∗(L), one has

IC∗(L)∧
i∈I
hi =

IC(L)∧
i∈I
hi.

Let

C∗(L)∨ = C(L)∨ ∩ IC∗(L),

C∗(L)∧ = C(L)∧ ∩ IC∗(L),

C∗(L)∨∧ = C(L)∨∧ ∩ IC∗(L).

Proposition 4.2. For any completely regular frame L and h ∈ C∗(L)∨,

h =

IC(L)∨
{f ∈ C∗(L) | f ≤ h}.

Proof. Since h is bounded, there exist p, q ∈ Q such that p ≤ h ≤ q. Note that
f ∨ p ∈ C∗(L) for any f ∈ C(L) such that f ≤ h, since p ≤ f ∨ p ≤ q. Then, by
Lemma 3.1, one has

h =

IC(L)∨
{f ∈ C(L) | f ≤ h}

≤
IC(L)∨
{f ∨ p | f ∈ C(L), f ≤ h}

≤
IC(L)∨
{f ∈ C∗(L) | f ≤ h} ≤ h,

and, consequently,

h =

IC(L)∨
{f ∈ C∗(L) | f ≤ h}.

Proposition 4.3. Let L be a completely regular frame and h ∈ C∗(L)∧. Then

h =

IC(L)∧
{g ∈ C∗(L) | h ≤ g}.

Proof. It follows from Lemma 3.2, in a similar way as the preceding proposition
follows from Lemma 3.1.
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Corollary 4.4. Let L be a completely regular frame and h ∈ C∗(L)∨∧. Then

h =

IC∗(L)∨
{f ∈ C∗(L) | f ≤ h} =

IC∗(L)∧
{g ∈ C∗(L) | h ≤ g}.

Proposition 4.5. The class C∗(L)∨ is closed under non-void bounded suprema
and C∗(L)∧ is closed under non-void bounded infima.

Proof. Let {hi}i∈I ⊆ C∗(L)∨ and h ∈ C∗(L)∨ such that

hi ≤ h for all i ∈ I .

Since C(L)∨ is closed under non-void bounded suprema, there exists
∨C(L)∨
i∈I hi.

As h is bounded from above and each hi is bounded from below, we get

C(L)∨∨
i∈I

hi ∈ C∗(L)∨

and thus C∗(L)∨ is closed under non-void bounded suprema.

Proposition 4.6. For any completely regular frame L, C∗(L)∨∧ is Dedekind com-
plete.

Proof. Let {hi}i∈I ⊆ C∗(L)∨∧ and h ∈ C∗(L)∨∧ such that

hi ≤ h for all i ∈ I .

Then, since C(L)∨∧ is Dedekind complete,
∨C(L)∨∧
i∈I hi exists, and as each hi is

bounded from below and h is bounded from above, it is bounded. Consequently,

C∗(L)∨∧∨
i∈I

hi =

C(L)∨∧∨
i∈I

hi.

The second assertion follows in a similar way.

Corollary 4.7. For any completely regular frame L, C∗(L)∨∧ is the Dedekind com-
pletion of C∗(L).

We close this section with a corollary that augments a characterization of Bana-
schewski–Hong [7, Proposition 1].
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Corollary 4.8. For any completely regular frame L, the following are equivalent.

(1) L is extremally disconnected.

(2) C(L) = C(L)∨∧.

(3) C(L) is Dedekind complete.

(4) C(L) is closed under non-void bounded suprema.

(5) C∗(L) = C∗(L)∨∧.

(6) C∗(L) is Dedekind complete.

(7) C∗(L) is closed under non-void bounded suprema.

Proof. (1)⇒ (2) Let L be extremally disconnected, h ∈ C(L)∨∧ and p < r < q.
Then h(r,−)∗ ≤ h(−, q) and h(r,−)∗∗ ≤ h(−, r)∗ ≤ h(p,−). Hence

h(p,−) ∨ h(−, q) ≥ h(r,−)∗∗ ∨ h(r,−)∗ = 1.

Consequently, C(L) = C(L)∨∧.
(3)⇒ (1) For each element a ∈ L, let

Fa = {f ∈ C(L) | f ≤ χa∗,a∗∗} and Ga = {g ∈ C(L) | χa∗,a∗∗ ≤ g}.

By Lemmas 3.1 and 3.2,

χa∗,a∗∗ =

IC(L)∨
Fa =

IC(L)∧
Ga.

On the other hand, since 0 ∈ Fa, 1 ∈ Ga, f ≤ 1 for all f ∈ Fa and 0 ≤ g for all
g ∈ Ga,

C(L)∨
Fa and

C(L)∧
Ga

do exist. Therefore

χa∗,a∗∗ =

IC(L)∨
Fa ≤

C(L)∨
Fa≤

C(L)∧
Ga ≤

IC(L)∧
Ga = χa∗,a∗∗

and we may conclude that χa∗,a∗∗ ∈ C(L), that is, a∗ ∨ a∗∗ = 1.
Finally, the implication (2)⇒ (3) follows from Theorem 3.6, the equivalence

(3)⇔ (4) is obvious and the equivalences (1)⇔ (5)⇔ (6)⇔ (7) can be proved in
a similar way.
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5 The integer-valued case

Recall from [4] and [7] that the ring ZL of integer-valued continuous functions on
a frame L has as its elements the maps α, β, γ, . . . : Z→ L such that

α(n) ∧ α(m) = 0 for n 6= m and
∨
{α(n) | n ∈ Z} = 1.

The elements of ZL can be easily identified with those elements of f ∈ C(L)
such that

f(p,−) = f(bpc,−) and f(−, q) = f(−, dqe) for all p, q ∈ Q (Z-valued)

(where bpc denotes the biggest integer ≤ p and dqe the smallest integer ≥ q). De-
noting the subclass of C(L) of all Z-valued functions by C(L,Z), the correspon-
dence ZL ' C(L,Z) is given by

α ∈ ZL 7→ fα(p,−) =
∨
{α(n) | p < n}, fα(−, q) =

∨
{α(n) | n < q},

f ∈ C(L,Z) 7→ αf (n) = f(n− 1,−) ∧ f(−, n+ 1).

From this it follows that the Dedekind completion of ZL is isomorphic to the
Dedekind completion of C(L,Z), which is included in C(L)∨∧.

In the same vein, we shall also denote by IC(L,Z), C(L,Z)∨, C(L,Z)∧ and
C(L,Z)∨∧ the Z-valued subsets of IC(L), C(L)∨, C(L)∧ and C(L)∨∧, respectively.

Example 5.1. The bounded continuous partial real function χa,b (where a, b ∈ L,
a ∧ b = 0) from Example 2.7 is clearly Z-valued. Moreover:

(1) χa,b ∈ IC(L,Z).

(2) χa,b ∈ C(L,Z)∨ if and only if a∗ = b.

(3) χa,b ∈ C(L,Z)∧ if and only if b∗ = a.

(4) χa,b ∈ C(L,Z)∨∧ if and only if a∗ = b and b∗ = a, i.e., if and only if a is reg-
ular and b = a∗.

(5) χa,b ∈ C(L,Z) if and only if a is complemented with complement b.

Proposition 5.2. The class IC(L,Z) is Dedekind complete.

Proof. Let {hi}i∈I ⊆ IC(L,Z), h ∈ IC(L,Z), such that

hi ≤ h for all i ∈ I .
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Since IC(L) is Dedekind complete, there exists
IC(L)∨

i∈Ihi in IC(L). In addition, for
each r, s ∈ Q,

IC(L)∨
i∈I

hi(r,−) =
∨
i∈I
hi(r,−) =

∨
i∈I
hi(brc,−) = h∨(brc,−),

IC(L)∨
i∈I

hi(−, s) =
∨
q<s

∧
i∈I

hi(−, q) =
∨
q<s

∧
i∈I

hi(−, dqe)

=
∨
q<dse

∧
i∈I

hi(−, dqe) = h∨(−, dse)

which ensures that
IC(L)∨

i∈Ihi is Z-valued.
Dually, if h ≤ hi for all i ∈ I , one gets that

IC(L)∧
i∈Ihi is Z-valued.

Proposition 5.3. Let L be a zero-dimensional frame and let h ∈ C(L,Z)∨. Then

h =

IC(L,Z)∨
{f ∈ C(L,Z) | f ≤ h}.

Proof. Let
F = {f ∈ C(L,Z) | f ≤ h}.

Since IC(L,Z) is Dedekind complete,
IC(L,Z)∨

F exists. We shall prove that

IC(L,Z)∨
F = h.

For that we only need to check that h ≤ h′ for any h′ ∈ IC(L,Z) such that f ≤ h′
for all f ∈ F , i.e.,

(a) h(p,−) ≤ h′(p,−) for every p ∈ Q,

(b) h(−, q) ≥ h′(−, q) for every q ∈ Q.

(a) Fix p ∈ Q, let n = bpc and f ∈ C(L,Z) such that f ≤ h. Since L is zero-
dimensional, we get

h(p,−) = h(n,−) =
∨
{a ∈ L | a is complemented and a ≤ h(n,−)}.

For each such complemented a, define σa,n : Q→ L by

σa,n(r) =

{
f(r,−) if r ≥ n+ 1,
f(r,−) ∨ a if r < n+ 1.
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This is a scale in L. Indeed,∨
r∈Q

σa,n(r) ≥
∨
r∈Q

f(r,−) = 1,

∨
r∈Q

σa,n(r)
∗ ≥

∨
r≥n+1

f(r,−)∗ = 1

and if r, s ∈ Q are such that r < s, then

σa,n(r)∨σa,n(s)∗ =


f(r,−)∨ f(s,−)∗ = 1 if r, s ≥ n+1,
f(r,−)∨ a∨ f(s,−)∗ = 1 if s ≥ n+1 > r,

f(r,−)∨ a∨ (f(s,−)∗ ∧ a∗)
≥ (f(r,−)∨ f(s,−)∗)∧ (a∨ a∗) = 1 if r, s < n+1.

Consequently, it defines an fa,n ∈ C(L) by

fa,n(r,−) =

{
f(r,−) if r ≥ n+ 1,
f(r,−) ∨ a if r < n+ 1,

and

fa,n(−, s) =

{
f(−, s) if s > n+ 1,
f(−, s) ∧ a∗ if s ≤ n+ 1.

It is easy to check that fa,n is Z-valued. Moreover, fa,n ≤ h:

• If r ≥ n+ 1, then fa,n(r,−) = f(r,−) ≤ h(r,−).
• If r < n+ 1, then brc ≤ n and so

fa,n(r,−) = f(r,−) ∨ a ≤ h(r,−) ∨ h(n,−) = h(brc,−) ∨ h(n,−)
= h(brc,−) = h(r,−).

Hence fa,n(r,−) ≤ h(r,−) for each r ∈ Q and since fa,n ∈ C(L), it follows that
fa,n ≤ h. We conclude that fa,n ∈ F .

Finally, we have also that

a ≤ f(n,−) ∨ a = fa,n(n,−) ≤ h′(n,−) = h′(p,−).

Hence

h(p,−) = h(n,−)

=
∨
{a ∈ L | a is complemented and a ≤ h(n,−)}

≤ h′(p,−).
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(b) Since h ∈ C(L,Z)∨, we have

h(−, q) =
∨
s′<s

∨
s<q

h(−, s′) ≥
∨
s<q

h(s,−)∗ ≥
∨
s<q

h′(s,−)∗

≥
∨
s<q

h′(−, s) = h′(−, q).

Then
IC(L,Z)∨

F = h.

Similarly, we have:

Proposition 5.4. Let L be a zero-dimensional frame and let h ∈ C(L,Z)∧. Then

h =

IC(L,Z)∧
{g ∈ C(L,Z) | h ≤ g}.

Corollary 5.5. Let L be a zero-dimensional frame and let h ∈ C(L,Z)(L)∨∧. Then

h =

IC(L,Z)∨
{f ∈ IC(L,Z) | f ≤ h} =

IC(L,Z)∧
{g ∈ IC(L,Z) | h ≤ g}.

Now we have the following analogues of Propositions 4.5 and 4.6 in the integer-
valued case, which can be proved in a similar way.

Proposition 5.6. The class C(L,Z)∨ is closed under non-void bounded suprema
and C(L,Z)∧ is closed under non-void bounded infima.

Proposition 5.7. For any zero-dimensional frame L, C(L,Z)∨∧ is Dedekind com-
plete.

Corollary 5.8. For any zero-dimensional frame L, C(L,Z)∨∧ is the Dedekind com-
pletion of C(L,Z).

Finally, we have a corollary that augments [7, Proposition 3] (the proof goes
very similar to that of Corollary 4.8 so we omit it).

Corollary 5.9. For any zero-dimensional frame L, the following are equivalent.

(1) L is extremally disconnected.

(2) C(L,Z) = C(L,Z)∨∧.

(3) C(L,Z) is Dedekind complete.

(4) C(L,Z) is closed under non-void bounded suprema.
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It is quite evident now that we could also consider the case of bounded integer-
valued continuous function. We omit the details.

6 The classical case

In this final section we show that the pointfree approach pursued in this paper
sheds new light on the classical case of C(X) (for a space X) and provides a new
construction that we believe is more natural than that given by Anguelov in [1].
The construction in [1] works with Hausdorff continuous functions, whereas our
construction hinges only on a direct lattice-theoretical approach to the problem.

To begin with, recall from Corollary 2.5 the natural isomorphism

Φ : IC(OX)→ C(X, IR)

given, for each h ∈ IC(OX), by

Φ(h)(x) =
[∨
{r ∈ Q | x ∈ h(r,−)},

∧
{r ∈ Q | x ∈ h(−, r)}

]
for all x ∈ X .

Composing Φ(h) with projections π1 and π2, we get a couple of real-valued
functions π1 ◦Φ(h), π2 ◦Φ(h) : X → R such that

(i) π1 ◦Φ(h) ≤ π2 ◦Φ(h),

(ii) π1 ◦Φ(h) ∈ LSC(X,R),

(iii) π2 ◦Φ(h) ∈ USC(X,R) (recall Remark 2.1 (1)).

Lemma 6.1. Let f, g ∈ IC(OX). Then:

(1) π1 ◦Φ(f) ≤ π1 ◦Φ(g) if and only if f(r,−) ≤ g(r,−) for all r ∈ Q.

(2) π2 ◦Φ(f) ≥ π2 ◦Φ(g) if and only if f(−, r) ≤ g(−, r) for all r ∈ Q.

Proof. To check (1), first consider f, g ∈ IC(OX) such that

π1 ◦Φ(f) ≤ π1 ◦Φ(g)

and let r ∈ Q. Then, for any s > r in Q and x ∈ f(s,−) one has

r < s ≤
∨
{p ∈ Q | x ∈ f(p,−)} ≤

∨
{p ∈ Q | x ∈ g(p,−)}

and thus there exists a p > r in Q such that x ∈ g(p,−) ≤ g(r,−). Consequently,
f(r,−) =

∨
s>r f(s,−) ≤ g(r,−). The reverse implication is straightforward.
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In order to check (2) note first that Φ(−f) = −Φ(f), π1(−f) = −π2(f)
and π2(−f) = −π1(f). Thus f(−, r) ≤ g(−, r) for any r ∈ Q if and only if
−f(r,−) ≤ −g(r,−) for any r ∈ Q. Then, by statement (1), this is equivalent to
π1 ◦Φ(−f) ≤ π1 ◦Φ(−g), that is, −(π2 ◦Φ(f)) ≤ −(π2 ◦Φ(g)).

In particular, this implies that Φ is an order isomorphism for both ≤ and v.
Furthermore, its restriction to C(OX) and C(X) is also an order isomorphism.
Then, using Lemma 6.1, the following facts follow immediately.

Fact 6.2. Let h ∈ IC(OX) and let f, g ∈ C(OX) such that f ≤ h ≤ g. Then:

(1) h ∈ C(OX)∨ if and only if

Φ(h) v h′ =⇒ π2 ◦Φ(h) = π2(h
′) in C(X, IR). (P∨)

(2) h ∈ C(OX)∧ if and only if

Φ(h) v h′ =⇒ π1 ◦Φ(h) = π1(h
′) in C(X, IR). (P∧)

(3) h ∈ C(OX)∨∧ if and only if

Φ(h) v h′ =⇒ Φ(h) = h′ in C(X, IR). (P∨∧)

This ensures that Φ yields order isomorphisms between C(OX)∨, C(OX)∧

and C(OX)∨∧ (ordered by ≤), respectively, and classes

C(X)∨ = {h ∈ C(X, IR) | (a) there exist f, g ∈ C(X) such that f ≤ h ≤ g,
(b) h v h′ =⇒ π2(h) = π2(h

′)},
C(X)∧ = {h ∈ C(X, IR) | (a) there exist f, g ∈ C(X) such that f ≤ h ≤ g,

(b) h v h′ =⇒ π1(h) = π1(h
′)},

C(X)∨∧ = {h ∈ C(X, IR) | (a) there exist f, g ∈ C(X) such that f ≤ h ≤ g,
(b) h v h′ =⇒ h = h′}.

Additionally, notice that h ∈ IC(OX) is constant if and only if Φ(h) is constant
in C(X, IR) and that h ∈ IC(OX) is Z-valued if and only if both π1 ◦Φ(h) and
π2 ◦Φ(h) take values in Z.
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For the sake of completeness, let us also introduce the following classes:

C∗(X)∨ = {h ∈ C(X)∨ | ∃p, q ∈ Q such that h(x) ⊆ [p, q] for all x ∈ X},

C∗(X)∧ = {h ∈ C(X)∨ | ∃p, q ∈ Q such that h(x) ⊆ [p, q] for all x ∈ X},

C∗(X)∨∧ = {h ∈ C(X)∨∧ | ∃p, q ∈ Q such that h(x) ⊆ [p, q] for all x ∈ X},

C(X,Z)∨ = {h ∈ C(X)∨ | π1(h(x)), π2(h(x)) ∈ Z for all x ∈ X},

C(X,Z)∧ = {h ∈ C(X)∨ | π1(h(x)), π2(h(x)) ∈ Z for all x ∈ X},

C(X,Z)∨∧ = {h ∈ C(X)∨∧ | π1(h(x)), π2(h(x)) ∈ Z for all x ∈ XZ}.

Analogously, they are order isomorphic to C∗(OX)∨, C∗(OX)∧, C∗(OX)∨∧,
C(OX,Z)∨, C(OX,Z)∧ and C(OX,Z)∨∧ (ordered by ≤), respectively.

Finally, recall that OX is completely regular (resp. extremally disconnected,
zero-dimensional) as a frame if and only if the spaceX is completely regular (resp.
extremally disconnected, zero-dimensional). Then, from Corollaries 3.7, 4.7, 4.8,
5.8 and 5.9 it follows immediately that:

Proposition 6.3. For any completely regular topological space (X,OX),

(1) C(X)∨∧ is the Dedekind completion of C(X).

(2) C∗(X)∨∧ is the Dedekind completion of C∗(X).

Corollary 6.4. For any completely regular topological space (X,OX), the fol-
lowing are equivalent.

(1) X is extremally disconnected.

(2) C(X) = C(X)∨∧.

(3) C(X) is Dedekind complete.

(4) C(X) is closed under non-void bounded suprema.

(5) C∗(X) = C∗(X)∨∧.

(6) C∗(X) is Dedekind complete.

(7) C∗(X) is closed under non-void bounded suprema.

Proposition 6.5. For any zero-dimensional topological space (X,OX), C(X,Z)∨∧
is the Dedekind completion of C(X,Z).
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Corollary 6.6. For any zero-dimensional topological space (X,OX), the follow-
ing are equivalent.

(1) X is extremally disconnected.

(2) C(X,Z) = C(X,Z)∨∧.

(3) C(X,Z) is Dedekind complete.

(4) C(X,Z) is closed under non-void bounded suprema.

We close with a comment regarding the relation of our results above to the
construction of Anguelov [1]. For that we need to recall the well-known fact that
each real-valued function f : X → R on a space X admits an upper regularization
f− ∈ USC(X,R), where R = R ∪ {−∞,+∞}, defined by

f−(x) =
∧{∨

f(U) | x ∈ U ∈ OX
}

for all x ∈ X.

This is the smallest upper semicontinuous majorant of f , i.e.,

f− =
∧
{g ∈ USC(X,R) | f ≤ g}.

Dually, f admits a lower regularization f◦ ∈ LSC(X,R) defined by

f◦(x) =
∨{∧

f(U) | x ∈ U ∈ OX
}

for all x ∈ X,

and f◦ is the biggest lower semicontinuous minorant of f , i.e.,

f◦ =
∨
{g ∈ LSC(X,R) | g ≤ f}.

It is then not hard to check that

C(X)∨ = {h ∈ C(X, IR) | ∃f, g ∈ C(X) : f ≤ h ≤ g and π1(h)
− = π2(h)},

C(X)∧ = {h ∈ C(X, IR) | ∃f, g ∈ C(X) : f ≤ h ≤ g and π2(h) = π1(h)
◦},

C(X)∨∧ = {h ∈ C(X, IR) | ∃f, g ∈ C(X) : f ≤ h ≤ g, π1(h) = π1(h)
◦

and π1(h) = π1(h)
◦}.

For instance, for the first, given h ∈ IC(X) and f, g ∈ C(X) such that f ≤ h ≤ g
and π2(h) = π2(j) whenever h v j, since h v [π1(h), π1(h)

−], it follows that
π2(h) = π1(h)

−. Conversely, let h ∈ IC(X) be such that π2(h) = π1(h)
− and

h v j, i.e., π1(h) ≤ π1(j) ≤ π2(j) ≤ π2(h). Then

π2(h) = π1(h)
− ≤ π1(j)

− ≤ π2(j) ≤ π2(h)

and so π2(h) = π2(j). The other identities follow similarly.
This description of the Dedekind completion of C(X) is precisely the one given

by the construction of Anguelov in terms of Hausdorff continuous functions pre-
sented in [1].
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