
PERFECTNESS IN LOCALES
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Abstract. This paper makes a comparison between two notions of perfectness for lo-
cales which come as direct reformulations of the two equivalent topological definitions
of perfectness. These reformulations are no longer equivalent. It will be documented
that a locale may appropriately be called perfect if each of its open sublocales is a join
of countably many closed sublocales. Certain circumstances are exhibited in which
both reformulations coincide. This paper also studies perfectness in mildly normal lo-
cales. It is shown that perfect and mildly normal locales coincide with the Oz locales
extensively studied in the last decade.

1. Introduction

In this paper we look for the extension to the pointfree setting of what in topology
is called perfectness. We recall that a topological space is called perfect if each open
set is a union of countably many closed sets, i.e. open sets are Fσ. This is equivalent
to the statement that each closed set is an intersection of countably many open sets,
i.e. closed sets are Gδ. The two equivalent formulations of perfectness for spaces have
direct reformulations for locales in terms of open sublocales and closed sublocales. The
two resulting concepts, which will be called Fσ-perfectness and Gδ-perfectness, are no
longer equivalent, for Gδ-perfectness is generally stronger than Fσ-perfectness.

The first purpose of this paper is to compare those two non-equivalent concepts. One
nice feature of Fσ-perfectness is that the locale OX of all open sets of an arbitrary
perfect space X is always Fσ-perfect, but may fail to be Gδ-perfect (Section 3); another
one is that it behaves nicely with respect to closed maps (Section 5). This shows that,
with respect to the criterion of conservativeness, Fσ-perfectness behaves much better
than Gδ-perfectness. Moreover, Fσ-perfectness will be shown to be conservative in a
quite large class of spaces (containing all T1-spaces). In the class of normal locales,
Fσ-perfectness and Gδ-perfectness coincide, and are conservative concepts for the class
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of perfect T0-spaces. Due to all those circumstances we eventually drop the prefix Fσ-
and call a locale perfect if each its open sublocale is a join of countably many closed
sublocales.

The second purpose of this paper is to study perfectness in mildly normal locales
(Section 4). One interesting observation is that perfect and mildly normal locales coin-
cide with the so-called Oz locales extensively studied in the last decade (cf. [1, 2, 5, 6]).

2. Preliminaries on locales

For general background regarding locales and frames we refer to [12] or [15]. Here,
we present a brief outline of the facts specifically needed for the paper.

A locale or a frame is a complete lattice L in which

a ∧∨ B =
∨{a ∧ b : b ∈ B}

for all a ∈ L and B ⊆ L. The topology of a topological space X is a locale and is denoted
by O(X). Being a Heyting algebra, each locale L has the implication operator

a→ b =
∨{x ∈ L | x ∧ a ≤ b}

satisfying the standard equivalence c ∧ a ≤ b iff c ≤ a → b. The pseudocomplement of
an a ∈ L is the element a∗ = a → 0. An element a is regular if a∗∗ = a (equivalently, if
a = b∗ for some b ∈ L). Note that the first De Morgan law (a ∨ b)∗ = a∗ ∧ b∗ holds in
any locale (actually, more generally, (

∨
A)∗ =

∧
a∈A a∗).

For any elements a and b in L, a ≺ b (a is well inside b) means that a ∧ x = 0 and
b ∨ x = 1 for some x ∈ L (equivalently, a∗ ∨ b = 1).

A sublocale S of a locale L is a subset S ⊆ L such that:

(S1) for every A ⊆ S ,
∧

A is in S , and
(S2) for every s ∈ S and every x ∈ L, x→s is in S .

The set S(L) of all sublocales of L forms a co-frame (i.e., the dual lattice is a frame)
under inclusion, in which arbitrary infima coincide with intersections. Regarding suprema,
there is the formula ∨

i∈I
S i = {

∧
A : A ⊆ ∪

i∈I
S i}

for every {S i ∈ S(L) : i ∈ I}.
Since S(L) is the dual of a complete Heyting algebra, it has co-pseudocomplements,

given by the formula

S # = L r S =
∩{T ∈ S(L) | S ∨ T = L}.

Note that (∩
i∈I

S i
)#
=
∨
i∈I

S #
i , {S i}i∈I ⊆ S(L). (#)
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For each a ∈ L, the sublocales c(a) = ↑a and o(a) = {a→ b | b ∈ L} are the closed and
open sublocales of L induced by a, respectively. We summarize here the basic properties
of sublocales used throughout the paper:

(P1) For every a ∈ L, c(a) and o(a) are complements of each other in S(L).
(P2) For every a, b ∈ L, c(b) ⊆ o(a) if and only if a∨ b = 1 and c(b) ⊇ o(a) iff a∧ b = 0.
(P3) For every A ⊆ L,

∨
a∈A o(a) = o(

∨
A) and

∩
a∈A c(a) = c(

∨
A).

3. A comparison between Fσ-perfectness and Gδ-perfectness

Definition 3.1. A locale L is said to be:

(1) Fσ-perfect whenever any open sublocale of L is an Fσ-sublocale, that is, for each
a ∈ L there exists a countable family (an)n∈N in L such that

o(a) =
∨

n∈N
c(an).

(2) Gδ-perfect if any closed sublocale is a Gδ-sublocale, that is, for each a ∈ L there
exists a countable family (an)n∈N in L such that

c(a) =
∩

n∈N
o(an).

By [15, Proposition V.1.4], each Fσ-perfect locale is subfit, and by [15, Proposi-
tion V.1.3.2], each Gδ-perfect locale is fit. We recall that a locale is subfit (resp. fit) if
every open (resp. closed) sublocale is a join of closed sublocales (resp. meet of open
sublocales).

Since S(L) is no longer a (complete) Boolean algebra, it is not surprising that these
two concepts are not equivalent, in general. More specifically, by (#) and (P1) we have:

Remark 3.2. Each Gδ-perfect locale is Fσ-perfect.

However, the converse is far from being true. The following example shows that a
Fσ-perfect locale need not even be fit.

Example 3.3. Let N be endowed with the cofinite topology

ON = {∅} ∪ {U ⊆ N | N r U finite}.

For each U,V ∈ ON we have

U → V =


N, if U = ∅;

Int (N r U) = ∅, if U , ∅ = V;

Int ((N r U) ∪ V) = (N r U) ∪ V, if U,V , ∅.

Hence

U → V = V ⇐⇒ (U = ∅ and V = N) or (U , ∅ = V) or (U , ∅ and N r U ⊆ V).
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Consequently, o(∅) = {N} and, for each ∅ , U ∈ ON,

o(U) = {∅} ∪ {V ∈ ON | N r U ⊆ V} = {∅} ∪ {V ∈ ON | U ∪ V = N}.

We shall now prove that

o(U) =
∨

n∈U
c(N r {n}),

for every U ∈ ON. For U = ∅ this is trivial since o(∅) = {N} is the bottom element of
S(ON). Further, let ∅ , U ∈ ON and n ∈ U. Then c(Nr {n}) = {N,Nr {n}} ⊆ o(U) and∨

n∈U c(N r {n}) ⊆ o(U). Conversely, we first notice that

∅ = Int (N r U) = Int
( ∩

n∈U
(N r {n})

)
=
∧

n∈U
(N r {n}) ∈ ∨

n∈U
c(N r {n}).

Finally, for each ∅ , V ∈ o(U) we have

V = Int V = Int
( ∩

n∈NrV
(N r {n})

)
=
∧

n∈NrV
(N r {n}) ∈ ∨

n∈U
c(N r {n}).

We conclude that o(U) ⊆ ∨n∈U c (N r {n}) . Hence o(U) =
∨

n∈U c(N r {n}) is an Fσ-
sublocale which shows that ON is an Fσ-perfect locale.

On the other hand, the only closed sublocales of ON which are meets of open sublo-
cales are c(N) and c(∅) and thus ON is not fit, hence neither Gδ-perfect.

Let us recall that a localic property LP is a conservative extension of a topological
property P if, given a topological space X, the locale O(X) has property LP if and only
if X has property P.

Since the space (N,ON) is perfect (as any countable T1-space does), Gδ-perfectness
is not a conservative extension of topological perfectness. Unlike Gδ-perfectness, the
following holds:

Proposition 3.4. If a space X is perfect, then OX is Fσ-perfect.

Proof. Let U ∈ OX. By hypothesis, there exists a countable family (Un)n∈N in OX
such that U =

∪
n∈N(X r Un). It follows that Un ∪ U = X for each n ∈ N and thus∨

n∈N c(Un) ⊆ o(U) by (P2). On the other hand, let V ∈ o(U) and Vn = Un ∪ V ∈ c(Un)
for each n ∈ N, then

V = U → V = Int ((X r U) ∪ V) = Int
(( ∩

n∈N
Un
) ∪ V

)
= Int

( ∩
n∈N

(Un ∪ V)
)

= Int
( ∩

n∈N
Vn
)
=
∧

n∈N
Vn ∈

∨
n∈N
c(Un).

Hence o(U) ⊆ ∨n∈N c(Un) and we conclude that OX is an Fσ-perfect locale. �

The converse implication is not true in general, as shown by the following example:
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Example 3.5. Let X be a T1 topological space,∞ < X, Y = X ∪ {∞} and

OY = {∅} ∪ {U ∪ {∞} | ∅ , U ∈ OX}.

OY is a topology in Y if and only if ∅ is meet-irreducible in OX. In this case OY and OX
are clearly isomorphic locales and consequently OY is an Fσ-perfect locale if and only
if so is OX. Moreover, the space Y is perfect if and only if X is indiscrete. Consequently,
if X is a non-indiscrete and perfect topological space such that ∅ is meet-irreducible in
OX (e.g. N endowed with the cofinite topology), it follows from Proposition 3.4 that
OX is an Fσ-perfect locale and hence so is OY . However, Y fails to be perfect.

This construction of space Y is related with space Σ in [7, Problem 4M, page 64].
Note that Σ is completely normal and extremally disconnected. See also [7, Problem
6R, page 98] and [15, Example 3.1].

The point of this example is that Y fails to be TD. Recall that a space X is TD if
(X \ {x})∪ {x} is open for each x ∈ X. The space Y in the previous example is clearly T0,
but fails to be TD since

(
Y \ {∞}) ∪ {∞} = {∞} is not open in Y . However, if we restrict

ourselves to TD-spaces we have the following result:

Proposition 3.6. Let X be a TD-space. Then X is perfect if and only if OX is Fσ-perfect.

Proof. Let U ∈ OX. By hypothesis, there exists a countable family (Un)n∈N in OX such
that o(U) =

∨
n∈N c(Un). Then c(Un) ⊆ o(U) for each n ∈ N and so it follows from

property (P2) that U ∪ Un = X for each n ∈ N. Consequently,
∪

n∈N(X r Un) ⊆ U.
On the other hand, let x ∈ U. Since X is TD it follows that there exists an open V ∋ x
such that W = V r {x} is open as well. We have that U → W ∈ o(U) =

∨
n∈N c(Un) and

so there exists a countable family (Vn)n∈N in OX such that Un ⊆ Vn for each n ∈ N and

U → W =
∧

n∈N
Vn = Int

( ∩
n∈N

Vn
)
.

Since x ∈ U ∩V it follows that U ∩V * W and thus V * U → W, from which it follows
that x < U → W. Hence

x ∈ X r Int
( ∩
n∈N

Vn
)
=
∪

n∈N
(X r Vn).

Since V is an open neighborhood of x it follows that V ∩ (∪n∈N(X r Vn)
)
, ∅. But

U → W ⊆ ∩n∈N Vn. Hence

x ∈ ∪
n∈N

(X r Vn) ⊆ ∪
n∈N

(X r Un). �

In conclusion, Fσ-perfect locales model perfect spaces with the same proviso as in
[15, III.7.2.1 (2) and III.7.3.1 (1)], that is, inside the class of TD-spaces.

Recall that a locale L is normal if a ∨ b = 1 implies that a ∨ u = 1 = b ∨ v for some
u, v ∈ L satisfying u ∧ v = 0. It follows from [9, Proposition 3.5] that the classes of
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Fσ-perfect locales and Gδ-perfect locales coincide under normality. We include a direct
proof here for the sake of completeness.

Proposition 3.7. A normal locale is Fσ-perfect if and only if it is Gδ-perfect.

Proof. We only need to prove necessity. Let L be a normal Fσ-perfect locale and a ∈ L.
By hypothesis there exists a countable family (an)n∈N in L such that o(a) =

∨
n∈N c(an).

By (P2), a ∨ an = 1 for each n ∈ N. Now, the normality of L provides un, vn ∈ L such
that

a ∨ un = 1 = an ∨ vn and un ∧ vn = 0, n ∈ N.

It follows by (P2) that c(an) ⊆ o(vn). Moreover, vn ≺ a and therefore, by (P3),

o(a) =
∨

n∈N
c(an) ⊆ ∨

n∈N
o(vn) = o(

∨
n∈N
vn) ⊆ o(a).

Hence a =
∨

n∈N vn with vn ≺ a for each n ∈ N. Finally, by (P2) and (P3),

c(a) ⊆ ∩
n∈N
o(un) ⊆ ∩

n∈N
c(vn) = c(

∨
n∈N
vn) = c(a). �

After all these considerations we drop the prefix Fσ and introduce the following:

Definition 3.8. We call a locale perfect if each open sublocale is a join of countable
many closed sublocales.

Then, we have the following (cf. [9, Propositions 3.5 and 4.2]):

Proposition 3.9. The following are equivalent for any locale L:

(1) L is perfectly normal.
(2) L is a normal and perfect locale.
(3) For each a ∈ L there is a countable family (bn)n∈N in L such that a =

∨
n∈N bn and

bn ≺ a for all n ∈ N.

Remarks 3.10. (1) Perfect normality in pointfree topology was first considered by Char-
alambous [3] in the context of σ-frames. In [8], Gilmour observed that in the class of
σ-frames perfect normality and regularity are equivalent concepts.

(2) Condition (3) was taken as the definition of a perfectly normal locale in [9]. In
the terminology of [10], it says that every element in the locale is regular-Fσ (i.e., a
countable join of elements well inside it). Note that, for any topological space X, the
regular-Fσ elements of the locale OX consist exactly of the regular-Fσ subsets of X (the
complements of the usual regular-Gδ subsets of X [14]). It should be also noted that in
the definition of a regular-Fσ one may assume that each bn is regular. Indeed, bn ≺ a
implies bn

∗∗ ≺ a and hence a =
∨

n∈N bn ≤
∨

n∈N bn
∗∗ ≤ a.
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(3) For each regular-Fσ element a, the closed sublocale c(a) is a Gδ-sublocale (and
therefore the open sublocale o(a) is an Fσ-sublocale). Indeed, if a =

∨
n∈N bn with

bn
∗ ∨ a = 1 for each n ∈ N then by (P2) and (P3) we get

c(a) ⊆ ∩
n∈N
o(bn

∗) ⊆ ∩
n∈N
c(bn) = c

( ∨
n∈N

bn
)
= c(a).

It is also easy to check that if we add normality to Proposition 3.6, then we can
conclude (under T0) that pointfree perfect normality, as normality, is a conservative
extension of the classical notion, that is, a T0 topological space X is perfectly normal if
and only if OX is perfectly normal:

Proposition 3.11. Let X be a topological space.

(1) If X is perfectly normal, then OX is perfectly normal.
(2) If X is T0, then OX is perfectly normal if and only if X is perfectly normal.

Proof. (1) follows from Proposition 3.4. Regarding (2), we first note that ifOX is perfect
and normal, then it is subfit and thus, by [11, Lemma 2.4], it is a T1 space (hence TD).
Finally, it follows from Proposition 3.6 that X is perfectly normal. �

4. Variants of normality and Oz locales

Now recall that a locale L is almost normal (resp. mildly normal) if for any a, b ∈ L
satisfying a ∨ b = 1, with a regular (resp. a and b regular), there exist u, v ∈ L such that
u ∧ v = 0 and a ∨ u = b ∨ v = 1 (note that it is redundant to impose here u and v to be
regular since u ∧ v = 0 iff u∗∗ ∧ v∗∗ = 0).

We can now prove the following result which is directly related to Proposition 3.7:

Proposition 4.1. Let L be a locale and let a be a regular element in L.

(1) If L is almost normal, then c(a) is a Gδ-sublocale if and only if it is an Fσ-sublocale.
(2) If L is mildly normal, then c(a) =

∩
n∈N o(an), with all an regular, if and only if

o(a) =
∨

n∈N c(an).

Proof. In both cases the proof of sufficiency follows the lines of that of Proposition 3.7
replacing normality by almost and mild normality, respectively. �

By Proposition 3.9, a frame L is perfectly normal if and only if any element in L
is regular-Fσ. We say now that a locale L is perfectly mildly normal (or pm-normal
for short) if any regular element in L is regular-Fσ. Hence, pm-normal locales are to
perfectly normal locales the same as mildly normal locales are to normal locales. Note
that all the variants of normality we have considered are conservative extensions of their
topological counterparts.
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Lemma 4.2. Suppose that a, b ∈ L satisfy a ∨ b = 1 and that there exist two countable
families (an)n∈N and (bn)n∈N of regular elements such that∨

n∈N
an ∨ b = 1 = a ∨ ∨

n∈N
bn,

with an ≺ a and bn ≺ b for every n ∈ N. Then there exist u, v ∈ L such that u∧ v = 0 and
a ∨ u = 1 = b ∨ v.

Proof. Let

u =
∨

n∈N

(
bn ∧

n∧
i=1

ai
∗) and v =

∨
n∈N

(
an ∧

n∧
i=1

bi
∗).

Then

a ∨ u =
∨

n∈N

(
a ∨
(
bn ∧

n∧
i=1

ai
∗)) = ∨

n∈N

(
(a ∨ bn) ∧

( n∧
i=1

(a ∨ ai
∗)
))
=
∨

n∈N
(a ∨ bn) = 1.

Similarly b ∨ v = 1. On the other hand,

u ∧ v = ∨
n∈N

∨
m∈N

(
bn ∧

n∧
i=1

ai
∗ ∧ am ∧

m∧
i=1

bi
∗) = 0

since, for each pair of naturals n,m,

bn ∧
n∧

i=1
ai
∗ ∧ am ∧

m∧
i=1

bi
∗ ≤ bn ∧

m∧
i=1

bi
∗ ≤ bn ∧ bn

∗ = 0

in case n ≤ m and

bn ∧
n∧

i=1
ai
∗ ∧ am ∧

m∧
i=1

bi
∗ ≤

n∧
i=1

ai
∗ ∧ am ≤ am

∗ ∧ am = 0

otherwise. �

Lane proved in [13] that any pm-normal topological space is mildly normal. In our
pointfree (and conservative!) setting we prove more with a much simpler proof.

Proposition 4.3. The following are equivalent for any locale L:

(1) L is pm-normal.
(2) L is mildly normal and for each regular element a in L there exists a countable

family (an)n∈N of regular elements in L such that c(a) =
∩

n∈N o(an).
(3) L is mildly normal and for each regular element a in L there exists a countable

family (an)n∈N of regular elements in L such that o(a) =
∨

n∈N c(an).

Proof. (1) =⇒ (2): Let a and b be regular elements in L such that a ∨ b = 1. By pm-
normality, a =

∨
n∈N xn and b =

∨
n∈N yn with xn ≺ a and yn ≺ b for every n ∈ N.

Obviously the elements an = xn
∗ and bn = yn

∗ satisfy the conditions of the Lemma 4.2
and thus there exist u, v ∈ L such that u ∧ v = 0 and a ∨ u = 1 = b ∨ v. Hence L is
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mildly normal. On the other hand, for each regular element a ∈ L, by pm-normality,
a =
∨

n∈N xn with xn ≺ a for every n ∈ N. Hence, by (P2) and (P3),

c(a) ⊆ ∩
n∈N
o(xn

∗) ⊆ ∩
n∈N
c(xn) = c

( ∨
n∈N

xn
)
= c(a).

(2)⇐⇒ (3): This follows from Proposition 4.1 (2).

(3) =⇒ (1): Let a be a regular element in L. By hypothesis there exists a countable
family (an)n∈N of regular elements in L such that o(a) =

∨
n∈N c(an). Hence a ∨ an = 1

for each n ∈ N. Since L is mildly normal, it follows that there exist un, vn ∈ L such that
un ∧ vn = 0 and a ∨ un = 1 = an ∨ vn for each n ∈ N. Consequently (by (P2) and (P3)
again),

o(a) =
∨

n∈N
c(an) ⊆ ∨

n∈N
o(vn) ⊆ ∨

n∈N
c(un) ⊆ o(a). �

Locales where each regular element is a cozero element are called Oz locales and are
the natural pointfree counterpart of Oz spaces. They were introduced in [2] and further
studied in [1]. Recall that, by Proposition 2.3 of [1], a locale is Oz if and only if every
element of the form

∨
n∈N(an ∧ bn) with all an and bn being regular is a countable union

of elements well inside it.
The next result, which seems to have escaped to the authors of [1], shows that the

class of Oz locales contains that of perfectly normal locales.

Proposition 4.4. A locale is Oz if and only if it is pm-normal.

Proof. Necessity is obvious. For sufficiency, let a =
∨

n∈N(an ∧ bn) with all an and
bn being regular. By pm-normality, each regular element L is regular-Fσ and therefore
an =

∨{x ∈ L∗ | x ≺ an} and bn =
∨{y ∈ L∗ | y ≺ bn} for each n ∈ N. Then

a =
∨

n∈N

∨{x ∧ y | x, y ∈ L∗, x ≺ an, y ≺ bn}.

For each such x and y, we have that x ∧ y ≤ (x ∧ y)∗∗ ∈ L∗ and (x ∧ y)∗∗ ≺ (an ∧ bn) ≤ a
(since (x∧ y)∗ ∨ (an ∧ bn) ≥ (x∗ ∨ an)∧ (y∗ ∨ bn) = 1). Hence a =

∨{z ∈ L∗ | z ≺ a}. �

Remarks 4.5. (1) Cozero elements are regular-Fσ, since a ∈ Coz L if and only if a =∨
n∈N an for some an ≺≺ a (where ≺≺ denotes the really inside relation [12]). The

converse is obviously true in Oz locales.

(2) If ≺ is interpolative (e.g., if L is a normal locale), then regular-Fσ elements are
cozero elements also. More generally, in any almost normal locale, each regular-Fσ
element belongs to Coz L. In fact, for a =

∨
n∈N an with an ≺ a and an regular, by

almost normality there exist un and vn such that un ∧ vn = 0 and a∗n ∨ un = 1 = v∗n ∨ a,
hence an ≺ un ≺ a (since u∗n ∨ a ≥ vn ∨ a = 1). Then an ≺≺ a.
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5. Images of perfect locales

In this final section, we show that, as happens with normality, perfectness is an in-
variant property under closed maps, providing more evidence for our choice in Defini-
tion 3.8.

We start by recalling from [15] that a localic map is a map f : L→ M satisfying

(1) f (
∧

S ) =
∧

f (S ) for any S ⊆ L,
(2) f (a) = 1 implies that a = 1, and
(3) f ( f ∗(b)→ a) = b→ f (a) for every a ∈ L and b ∈ M,

where f ∗ denotes the left adjoint of f , that exists by condition (1). This left adjoint is a
frame homomorphism (i.e., it preserves arbitrary joins and finite meets). A localic map
f is closed whenever the image of each closed sublocale of the domain is closed. In that
case, f [c(a)] = c( f (a)).

Each localic map f : L→ M induces the image map f [−] : S(L)→ S(M), left adjoint
to the preimage map f −1[−] : S(M)→ S(L).

Open sublocales are preserved by preimages. More specifically:

f −1[o(b)] = o( f ∗(b)) for every b ∈ M.

Furthermore, if f is surjective then the composite f f −1 satisfies

f f −1[o(b)] = o(b) for every b ∈ M.

Indeed: the inclusion “⊆” follows from the adjunction f [−] ⊣ f −1[−]; moreover, for
each b → y in o(b), we have b → y = b → f (a) = f ( f ∗(b) → a) for some a ∈ L (by
ontoness of f ) where f ∗(b)→ a ∈ o( f ∗(b)) = f −1[o(b)].

We can now prove that perfectnes is invariant under closed localic maps.

Proposition 5.1. Let f : L → M be a surjective localic map. If f is closed and L is
perfect, then M is also perfect.

Proof. Let b ∈ M. Since L is perfect it follows that f ∗(b) =
∨

n∈N c(an) for some
countable family (an)n∈N in L. Then, since f [−] preserves arbitrary joins, we have

o(b) = f f −1[o(b)] = f [o( f ∗(b))] = f [
∨

n∈N
c(an)] =

∨
n∈N

f [c(an)] =
∨

n∈N
c( f (an)). �

Remark 5.2. Note that in general f [−] does not preserve countable meets, so that the
previous argument does not work if we replace perfectness by Gδ-perfectness. This
gives us one more argument for choosing Fσ-perfectness as the right way to extend the
topological notion of perfectness to the pointfree setting.

Corollary 5.3. Let f : L → M be a surjective localic map. If f is closed and L is
perfectly normal, then M is also perfectly normal.
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Proof. Just combine the proposition above with the fact, proved in [10, Corollary 9.4],
that normality is also invariant under closed localic maps. �
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