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Abstract. Let N : A → B be a faithful functor between categories.

Given an object B of B, we may ask whether there is an embedding
B → NA with A ∈ A. In some cases the answer is well known. For in-

stance, an abelian semigroup may be embedded in an abelian group if

and only if it is cancellative. And every Lie algebra over a field K is em-
beddable in an associative K-algebra with identity. Many other examples

are known. This paper concentrates on the localness of the embeddability.
That is, it studies conditions under which the following property holds:

B ∈ B is embeddable in NA for some object A of A, whenever every

finitely generated subobject of B is so.

1. Introduction

The following problem has been investigated for various algebraic categories:
Let N : A → B be a faithful functor; given an object B of B, determine if there
is a monomorphism B ↪→ NA with A ∈ A. The following two results on this
subject are well known:

(a) An abelian semigroup may be embedded in an abelian group if and
only if it is cancellative.

(b) Poincaré-Birkhoff-Witt Theorem: Every Lie algebra over a field K is
embeddable in an associative K-algebra with identity.

There are many other examples on the embeddability of algebras in the
literature. J. MacDonald studied the subject from a categorical point of view
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[7, 8, 9]; in particular, he obtained a categorical generalization of the Poincaré-
Birkhoff-Witt Theorem. In [6] P. T. Johnstone gave a new approach to the
characterization of the semigroups which can be embedded in a group, unifying
previous existing results. More generally, he obtained a characterization of the
categories which can be embedded in a groupoid.

However these studies have very different aspects, and a general categorical
treatment of this problem that could encompass a larger number of known
results of the above type seems to be very difficult. This paper devotes just to
its localness facet. That is, the aim of this paper is to study conditions under
which, for a faithful functor N : A → B, and an object B of B, we have:

(E) B is embeddable in an object of the form NA, with A ∈ A,
whenever every finitely generated subobject of B is so.

This kind of result was already achieved by B. H. Neumann in [11], and the
present paper was inspired by his work. The main result, stated in Theorem
3.3 of Section 3, provides a categorical approach to the embedding theorem of
Neumann.

Let Σ and Σ′ be finitary signatures such that Σ′ ⊆ Σ, and let Q be a set
of quasi-identities with respect to Σ. (By a quasi-identity we mean a formula
of the form (ui = vi, i = 1, . . . , k) ⇒ (u = v) , where ui = vi and u = v are
identities.) Let A = Alg(Σ, Q) be the category of Σ-algebras which satisfy the
quasi-identities of Q, let B = Alg(Σ′) be the category of Σ′-algebras, and let
N : A → B be the faithful functor which forgets the operations indicated by Σ
but not by Σ′. It follows from Neumann’s result that property (E) holds for N .
This case is Leading Example of Section 2. The three definitions and the three
lemmas of that section capture properties of the example which are going to
play a role in the proof of the main result.

2. Leading Example

Leading Example. Let A be a quasi-variety of the form Alg(Σ, Q), where Σ
is a finitary signature and Q is a set of quasi-identities, and let B = Alg(Σ′)
for a signature Σ′ contained in Σ. Let N : A → B be the natural forgetful
functor. Moreover, let us consider C = Alg(Σ). Then the faithful functor N is
the composition of the inclusion functor L : A ↪→ C with a faithful functor M :

(2.1) A N //� o

L   @@@@@@@@ B
U ′

!!CCCCCCCC

C

M

??������� U // Set
F

oo
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In the diagram, U ′ and U denote the usual forgetful functors, and F denotes
the left adjoint of U . Thus, the two upper triangles commute.

In this section, we present some definitions and prove some lemmas that
guarantee that the above leading example is encompassed by the hypotheses
of the theorem of the next section, whose proof is of a categorical type.

Let I be a set of identities with respect to Σ′, and contained in Q. Note
that, whenever the functor N : Alg(Σ, Q) → Alg(Σ′) satisfies (E), the same is
true for the forgetful functor N ′ : Alg(Σ, Q) → Alg(Σ′, I). This follows from
the fact that Alg(Σ′, I) is a full subcategory of Alg(Σ′) closed under subobjects
and the inclusion functor of Alg(Σ′, I) into Alg(Σ′) preserves monomorphisms.

General Assumptions. From now on, we assume that A, B and C are arbi-
trary categories, with A a full subcategory of C, and N : A → B and M : C → B
are faithful functors such that N = ML for L the inclusion functor from A to
C. In addition, U : C → Set and U ′ : B → Set are functors such that U ′M = U .
Moreover, we assume that:

• C is cocomplete, finitely complete, and has intersections;
• B has intersections;
• U : C → Set and U ′ : B → Set are faithful, and preserve monomor-

phisms and intersections.

We recall that, given an object C of C and a subset X of UC, with inclusion
map m : X → UC, we obtain the subobject of C generated by X by taking
the intersection of all subobjects nA : A → C of C such that m : X → UC
factorizes through UnA. When a subobject of C is generated by a finite set we
say that it is finitely generated.

Definition 2.1. Let T be an object of C. An equivalence relation P on UT
is said to be U-separated if, for every finite subset X of UT there exists a
commutative diagram of the form

(2.2) X
� � mX //

fX

��

##HHHHHHHHH UT

UTX

UtX

;;xxxxxxxx

UhX{{wwwwwwwww

UAX

in which mX is the inclusion map, tX is a monomorphism, and ker(fX) =
P ∩ (X ×X).
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An epimorphism c : UT → C of Set is said to be U-separated if it is the
coequalizer of some U-separated equivalence relation.

Lemma 2.1. In the context of Leading Example, we have:
(a) for every object T of C, every U-separated equivalence relation on UT is

a congruence on T ;
(b) U creates U-separated epimorphisms, that is, if c : UT → C is a U-

separated epimorphism, then there is a unique morphism c̄ : T → C̄ in C with
Uc̄ = c.

Proof. (a) We use the data of diagram (2.2), in which we assume, without loss
of generality, that TX is a subalgebra of T , and that tX is the corresponding
inclusion map. We have to show that, given (x1, y1), . . . , (xn, yn) ∈ P and
θ ∈ Σn, the pair (θ(x1, . . . , xn), θ(y1, . . . , yn)) belongs to P . For, we take

X = {x1, . . . , xn, y1, . . . , yn, θ(x1, . . . , xn), θ(y1, . . . yn)},

and note that, according to our conditions on diagram (2.2), it suffices to prove
the equality fX(θ(x1, . . . , xn)) = fX(θ(y1, . . . yn)). We have:

fX(θ(x1, . . . , xn)) = hX(θ(x1, . . . , xn)) (since hX restricted to X gives fX)

= θ(hX(x1), . . . , hX(xn)) (since hX is a homomorphism of algebras)

= θ(fX(x1), . . . , fX(xn)) (again, since hX restricted to X gives fX)

= θ(fX(x′1), . . . , fX(x′n)) (since (x1, y1, . . . , (xn, yn) ∈ P )

= fX(θ(y1, . . . yn)) (using the same arguments as before).

(b) Just apply (a) to the equivalence relation P on UT determined by c, and
take c̄ : T → C̄ to be the canonical homomorphism T → T/P ; the uniqueness
is obvious. �

Remark 2.1. A more standard formulation of Lemma 2.1(b) would be to say
that U creates coequalizers of U-separated equivalence relations, which could also
be called locally effective. However, that reformulation would be unnecessarily
restrictive in the categorical context of Section 3.

Definition 2.2. We say that U locally detects C-morphisms if we have

( UB
g // UC ) = U( B

h // C ) , for some C-morphism h,

whenever g : UB → UC is a map satisfying the following “local” condition:

For every finite set X ⊆ UB, there exists a C-object D, a monomorphism
d : X → UD and a C-morphism ḡ : D → C such that:
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(i) The diagram

(2.3) X

d !!CCCCCCCC
� � // UB

g // UC

UD

Uḡ

<<yyyyyyyy

is commutative.
(ii) The family of all morphisms

UD
Uf // UA

for which there are a subobject of B, s : S → B, with the inclusion map
X ↪→ UB factorized through Us as Us · k, and a C-monomorphism
m : S → A making the diagram

(2.4) X

d !!CCCCCCCC
k // US

Um // UA

UD

Uf

<<yyyyyyyy

commute, separates every pair of points of UD separated by Uḡ, that
is, (Uf(u) = Uf(v) for all f) ⇒ Uḡ(u) = Uḡ(v).

Lemma 2.2. (a) In the context of Leading Example, U locally detects C-
morphisms (and, analogously, U ′ locally detects B-morphisms).

(b) For every faithful functor U : C → Set, if U locally detects C-morphisms,
then it reflects isomorphisms.

Proof. (a) Let g : UB → UC be a map with B,C ∈ C and under the
conditions of Definition 2.2. Let θ ∈ Σn, and let b1, . . . , bn ∈ B. We want
to show that g(θB(b1, . . . , bn)) = θC(g(b1), . . . , g(bn)).

Let X = {b1, . . . , bn, θB(b1, . . . , bn)} ⊆ B, and consider a diagram as in
(2.3). In order to simplify the writing, we assume, without loss of generality,
that d is an inclusion map. Then u = θB(b1, . . . , bn) and v = θD(b1, . . . , bn)
belong to D. We show that ḡ(u) = ḡ(v). For that, taking into account the
condition (ii) on the map ḡ, it suffices to show that for every homomorphism
f : D → A with Uf belonging to the family described in (ii), f(u) = f(v).
Again, for the sake of simplicity, we assume that k is an inclusion. Since
θS(b1, b2, . . . , bn) = θB(b1, b2, . . . , bn) and (2.4) is commutative, we have that
f(u) = f(θB(b1, b2, . . . , bn)) = m(θS(b1, b2, . . . , bn)). As m : S → A is a ho-
momorphism, we get f(u) = θA(m(b1),m(b2), . . . ,m(bn)). Using the commu-
tativity of (2.4) again, and the fact that f : D → A is a homomorphism, we



6 LURDES SOUSA

conclude then that

f(u) = θA(f(b1), f(b2), . . . , f(bn)) = f(θD(b1, b2, · · · , bn)) = f(v).

Consequently, ḡ(u) = ḡ(v), and it follows that

g(θB(b1, . . . , bn)) = ḡ(θB(b1, . . . , bn)) = ḡ(θD(b1, . . . , bn))
= θC(ḡ(b1), . . . , ḡ(bn)) = θC(g(b1), . . . , g(bn)).

(b) Let f : C → B be a C-morphism such that Uf is an isomorphism, and
let g : UB → UC be the inverse of Uf . For every finite set X ⊆ UB, let
k : X → UB be the inclusion map. Then, we obtain a triangle as in (2.3) of
Definition 2.2, by putting D = C, d = gk and ḡ = idC . Moreover, for every pair
of elements u and v of UC, with U idC(u) 6= U idC(v), we have Uf(u) 6= Uf(v);
thus, the commutative triangle

X
� � k //

gk !!CCCCCCCC UB
U idB // UB

UC

Uf

<<yyyyyyyy

assures that (ii) of Definition 2.2 is also satisfied.
Consequently, as U locally detects C-morphisms, we have that g = Uh for

some h : B → C. Since U is faithful, we conclude that f is an isomorphism
with f−1 = h. �

Definition 2.3. Let U : C → Set be a faithful functor and let A be a full sub-
category of C. An object C of C is said to have a local A-behaviour if, for every
finite set X ⊆ UC, there is a C-morphism h : D → C and a monomorphism
d : X → UD satisfying the following conditions:

(i) The diagram

(2.5) X
� � //

d !!CCCCCCCC UC

UD

Uh

<<yyyyyyyy

is commutative (where the unnamed arrow ↪→ is the inclusion map).
(ii) For every finite set Z such that d factors through Z into two monomor-

phisms,

X // Z
s // UD

there is some C-morphism f : D → A, with A ∈ A, such that ker(Uf ·
s) = ker(Uh · s).
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Lemma 2.3. For A and C as in Leading Example, every C ∈ C with a local
A-behaviour belongs to A.

Proof. Let C be an object of C with local A-behaviour. Consider a quasi-
identity of Q,

(2.6) (ui(x) = vi(x), i = 1, . . . , k)⇒ (u(x) = v(x)),

where x = (x1, . . . , xn), and ui(x), vi(x), u(x) and v(x) are terms on the vari-
ables x1, . . . , xn. Given C ∈ C, let c1, . . . , cn ∈ C, and put c = (c1, . . . , cn). We
write

uC(c)

for denoting the element of C obtained from u(x) by replacing every xi by ci,
and every operation symbol θ ∈ Σ by the operation θC .

Suppose that

uCi (c) = vCi (c), i = 1, . . . , k.

We want to prove that then uC(c) = vC(c). Put

X = {c1, . . . , cn} ∪ {uCi (c), i = 1, . . . , k} ∪ {uC(c), vC(c)}.

By hypothesis we have a commutative diagram as in (2.5). Without loss of
generality, we may assume that d is an inclusion map. Then,

h(uDi (c)) = uCi (h(c1), . . . , h(cn)) = uCi (c1, . . . , cn) = uCi (c),

and, analogously, h(vDi (c)) = vCi (c). Consequently, h(uDi (c)) = h(vDi (c)). Con-
sider the subset

Z = X ∪ {uDi (c), i = 1, . . . , k} ∪ {vDi (c), i = 1, . . . , k} ∪ {uD(c), vD(c)}

of UD, and let f : D → A be as in (ii) of Definition 2.3. By hypothesis,
ker(Uf · s) = ker(Uh · s), and so the equality h(uDi (c)) = h(vDi (c)) implies

f(uDi (c)) = f(vDi (c)).

And then, since f is a homomorphism,

uAi (f(c1), . . . , f(cn)) = vAi (f(c1), . . . , f(cn)), i = 1, . . . , k.

Hence, since A satisfies the given quasi-identity (2.6),

uA(f(c1), . . . , f(cn)) = vA(f(c1), . . . , f(cn)).

This is the same as f(uD(c)) = f(vD(c)). But, again by the fact that ker(Uf ·
s) = ker(Uh · s), this implies that

h(uD(c)) = h(vD(c)).
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That is, taking into account the commutativity of (2.5), where h is a homo-
morphism and the other two maps are inclusion maps,

uC(c) = vC(c).

�

3. Main result

Before stating and proving the main result, we need some properties on
nontrivial right adjoints over Set. (By nontrivial we mean that there is some
C ∈ C such that UC has at least two elements.) In particular, we will see that,
for faithful nontrivial adjunctions (F,U, η, ε) : Set → C, if f : X → Y is a
monomorphism of Set, then the square

(3.1) X
ηX //

f

��

UFX

UFf

��
Y

ηY // UFY

is a pullback. In the terminology of [5], this means that every monomorphism
f : X → Y is split over the identity morphism idY : Y → Y .

Part (a) of the following lemma is showed in Manes [10] (Proposition 5.2
and Proposition 5.42).

Lemma 3.1. Let (F,U, η, ε) : Set → C be a nontrivial adjunction with U
faithful. Then:

(a) The unit η is pointwise injective and F preserves monomorphisms.

(b) Every monomorphism f : X → Y of Set is split over the identity mor-
phism idY .

Proof. (a) Given X ∈ Set, and two different elements x, y ∈ X, let C be an
object of C such that UC has at least two elements, a and b. Define h : X → UC
by h(x) = a and h(z) = b for all z 6= x. Now let h# be the morphism in C such
that Uh# · ηX = h. Since h(x) 6= h(y), then ηX(x) 6= ηX(y).

Let now m : X → Y be an injective map. If X 6= ∅, then m is a split
monomorphism, thus the same is true for Fm. If X = UFX = ∅, UFm is a
monomorphism since it has empty domain, and then Fm is a monomorphism
since U being faithful reflects isomorphisms. If X = ∅ and UFX 6= ∅, consider
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the diagram

∅
η∅ //

m

��

UF∅

UFm

��
Y

t
<<

ηY
// UFY

Ut#

OO

where t is any map from Y to UF∅. Then we have U(t#Fm)η∅ = Ut# ·ηY ·m =
tm = η∅. Thus t#Fm = idF∅, so Fm is a monomorphism.

(b) Given a monomorphism f : X → Y in Set, we want to prove that the
above square (3.1) is a pullback.

Assume that X 6= ∅. Then, f and UFf are split monomorphisms, and ηY is
a monomorphism, by (a).

Then the result immediately follows from a more general one: In a commu-
tative diagram of the form

X
m //

f

��

A

f̄

��
Y

n //

g

��

B

ḡ

��
X m

// A

with n a monomorphism, gf = idX and ḡf̄ = idA, the upper square is a
pullback.

To prove this, let Y
y←− P

a−→ A form the pullback of Y
n−→ B

f̄←− A,
and let x : X → P be the unique morphism such that ax = m and yx = f .
The morphism x is a monomorphism since f is so. To conclude that x is an
isomorphism, and then the desired result, we show that xgy = idP . We have
that:

(3.2) axgy = mgy = ḡny = ḡf̄a = a.

Moreover,

(3.3) nyxgy = f̄axgy = f̄a = ny,

by using (3.2) in the second equality. Thus, since n is a monomorphism,

(3.4) yxgy = y.

Now, because a and y are the projections of a pullback, we conclude from (3.2)
and (3.4) that xgy = idP .
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Let now X = ∅. We want to prove that the square

(3.5) ∅
f

��

η∅ // UF∅
UFf

��
Y ηY

// UFY

is a pullback. We know that every right adjoint U over Set is representable.
More precisely, U is naturally isomorphic to the hom-functor hom(F1,−),
where 1 = {∗}. Moreover, putting U = hom(F1,−), we have that the unit
η is defined, for every set X and every x ∈ X, by ηX(x) = (Fx̄ : F1 → FX),
where x̄ : 1→ X takes ∗ to x. Now, if the pullback of ηY and UFf is not empty,
then there are some y ∈ Y and some morphism α : F1→ F∅ such that ηY (y)

coincides with hom(F1, Ff)(α). That is, (F1
F ȳ→ FY ) = (F1

α→ F∅ Ff→ FY ).
But ȳ is a monomorphism, thus so is F ȳ, by (a). Hence α : F1→ F∅ is also a
monomorphism. Since ∅ is an initial object in Set and F is a left adjoint, F∅
is initial in C. Hence, being a monomorphism, α is also an isomorphism, that
is, F1 is initial in C too. This means that UC = hom(F1, C) is a singleton for
every C ∈ C, which contradicts the fact that U is nontrivial. �

Lemma 3.2. Let (F,U, η, ε) : Set → C be a nontrivial adjunction with U
faithful and preserving directed colimits.

(a) Given sets X and Z, with X finite, and a monomorphism m : X →
UFZ, there exists a finite subset E of Z and a monomorphism n : X → UFE
such that UFd · n = m, where d is the inclusion map of E into Z.

(b) If F preserves intersections, then, given sets X and Z as in (a), there
is the smallest set E as in (a), denoted below by EX .

(c) Under the assumption of (b), let X and Y be finite sets such that X ⊆ Z
and Y ⊆ UFZ, with j : X → Z and mY : Y → UFZ the corresponding
inclusion maps. Let s : Y → UFX be a morphism such that ηX factors through
s and UFj · s = mY . Then EY = X.

Proof. (a) Let Z be a set, and let Zi, i ∈ I, be the family of all finite subsets
of Z, with di : Zi → Z the corresponding inclusion maps. Then, by hypothesis,
the maps UFdi : UFZi → UFZ form a directed colimit (in fact, a directed
union). Hence, for m : X → UFZ with X finite, there is some i ∈ I and
a map n : X → UFZi such that UFdi · n = m. The morphism n is clearly
monomorphic.
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(b) We take the intersection EX of all subsets E of Z with that property.
Since UF preserves intersections, m : X → UFZ factors through the corre-
sponding monomorphism UFdX : UFEX → UFZ.

(c) Consider the diagram

Y
nY //u�

mY ''PPPPPPPPPPPPP UFEY

UFdY

��
UFZ

where EY is the smallest subset of Z such that there is nY : Y → UFEY with
mY = UFdY · nY , and where dY is the inclusion of EY into Z.

Thus, EY is contained in X; let i : EY → X be the inclusion map. And
let a : X → Y be the morphism such that sa = ηX . Then we have that
UFj · UFi · nY · a = UFdY · nY · a = UFj · s · a = UFj · ηX . Since j is a
monomorphism, so is UFj, and, thus, UFi ·nY ·a = ηX . By (b) of Lemma 3.1,
the square part of the commutative diagram

X
nY a

))RRRRRRRRRRRRRRR

idX

��1
11111111111111

t

!!BBBBBBBB

EY ηEY

//

i

��

UFEY

UFi

��
X ηX

// UFX

is a pullback. Hence, there is a map t : X → EY with it = idX . Since i is an
inclusion, we conclude that X = EY . �

Theorem 3.3. Let

A N //� o

L   @@@@@@@@ B
U ′

!!CCCCCCCC

C
M

??�������
U

// Set

be a commutative diagram of categories and functors satisfying General As-
sumptions of Section 2. Moreover, assume that:

(H0) U is nontrivial, preserves directed colimits, and has an intersection
preserving left adjoint F ;

(H1) U creates U-separated epimorphisms;
(H2) U ′ locally detects B-morphisms;
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(H3) A contains all objects in C with local A-behaviour.

Then, in B, an object B is a subobject of some object NA with A ∈ A, whenever
every finitely generated subobject of B is so.

Proof. Let B ∈ B be such that every finitely generated subobject of B is a
subobject of some object NA with A ∈ A.

1. Involving an inverse limit of nonempty finite sets. Let

mX : X ↪→ UFU ′B, X ∈ F ,
denote all inclusions of a finite subset X into UFU ′B. For every X ∈ F , let
EX be the smallest (finite) subset of U ′B such that the diagram

(3.6) X
nX //u�

mX ((PPPPPPPPPPPPPP UFEX

UFdX

��
UFU ′B

commutes, where dX is the corresponding inclusion map. (The existence of this
set EX is assured by (b) of Lemma 3.2.)

For each EX , let rX : BEX
→ B be the subobject of B generated by EX ,

and let eX : EX → U ′BEX
be the injective map such that U ′rX · eX = dX .

By hypothesis, there is some B-monomorphism a : BEX
→ NA, with A ∈ A.

Consider the diagram

(3.7) X

nX

��

φ

}}

EX
ηEX //

eX ##GGGGGGGGG UFEX

Uā

��

U ′BEX

U ′a ((QQQQQQQQQQQQQ

U ′NA = ULA = UA

where ā : FEX → LA = A is the unique morphism of C such that Uā · ηEX
=

U ′a · eX , and φ = Uā · nX .
Let us now define a functor

Fop K // Set

from the dual of the directed category F , formed by all finite subsets of U ′B
and inclusions between them, to Set. For every X, KX is the set of all kernel
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pairs of maps of the form φ = Uā · nX , where A ∈ A, and the morphisms
nX : X ↪→ UFEX and ā : FEX → LA are as in (3.7). Moreover, given an
inclusion i : X ↪→ Y , Ki sends each kernel pair of a morphism φ′ = Uâ · nY :
Y → ULA′, obtained by a way analogous to φ in (3.7), to the kernel pair of the
morphism φ = φ′i : X → ULA′. (This last morphism is of the form Uā · nX ,
with ā = â · Fu for u : EX → EY the inclusion map.) Cearly, all KX are
finite. Moreover, since, for every X ∈ F , there is at least one object A of A
as in (3.7), all KX are nonempty. Consequently, by the well-known result that
states that the projective limit of nonempty compact spaces is nonempty, we
conclude that the limit of K is nonempty (being a finite set, KX is a compact
discrete space). Let

(PX)X∈F

be an element of this limit. For every X ∈ F , let PX
πX
2

//
πX
1 //

X denote the

corresponding projections. In particular, every PX is the kernel pair of a mor-
phism

X
fX // UAX , with AX ∈ A,

which is obtained as φ in (3.7). Put cX = coeq(mXπ
X
1 , mXπ

X
2 )

PX
πX
1 //

πX
2

// X
� � mX //

fX

��

UFU ′B
cX // CX

UAX

and let c : UFU ′B → C be the cointersection in Set of all these cX .
We are going to show that the morphism

U ′B
ηU′B // UFU ′B

c // C

is the underlying map of a monomorphism B → NĀ in B with Ā ∈ A, which
proves the theorem.

2. Applying (H1). The fact that (PX)X∈F belongs to the limit of K assures
that for every X,Y ∈ F , with X ⊆ Y , PX = PY ∩ (X×X). Moreover, we have
an accordingly chosen family of maps

fX : X → UAX (X ∈ F)

satisfying the conditions of Definition 2.1: put T = FU ′B, TX = FEX , tX =
FdX and hX = ā.
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Thus, the epimorphism c : UFU ′B → C of Set is U-separated, and then, by
the hypothesis (H1), there is a unique epimorphism c̄ : FU ′B → C̄ in C such
that Uc̄ = c.

3. Applying (H2). We show now that the morphism

U ′B
ηU′B// UFU ′B

Uc̄ // UC̄ = U ′MC̄

may be lifted to a morphism of B. Since U ′ locally detects B-morphisms, it
suffices to show that the morphism Uc̄ · ηU ′B : U ′B → U ′MC̄ is under the
conditions of Definition 2.2. Let X be a finite subset of U ′B, with j : X ↪→ U ′B
the inclusion map. Then, we have the following commutative triangle:

X
� � j //

ηX ''NNNNNNNNNNNN U ′B
ηU′B // UFU ′B

Uc̄ // UC̄ = U ′MC̄

UFX = U ′MFX

U ′M(c̄·Fj)

33ffffffffffffffffffffff

This diagram plays, for U ′, the role of (2.3) of condition (i) of Definition 2.2.
We show that also condition (ii) is satisfied. Indeed, let u and v be two

elements of UFX = U ′MFX, and assume that U ′f(u) = U ′f(v), for every B-
morphism f : MFX → A for which there is a subobject s : S → B of B, with

(X
j−→ U ′B) = (X

k−→ U ′S
U ′s−→ U ′B), and a B-monomorphism m : S → A

making the diagram

(3.8) X

ηX $$IIIIIIIII
k // U ′S

U ′m // U ′A

U ′MFX

U ′f

99ttttttttt

commute. We want to prove that then U ′M(c̄F j)(u) = U ′M(c̄F j)(v), that is,
U(c̄F j)(u) = U(c̄F j)(v).

Let Y be the finite subset of UFU ′B that is the image of ηX [X]∪{u, v} under
UFj, i.e., Y = (UFj)[ηX [X] ∪ {u, v}]. Lemma 3.2(c) assures that EY = X.
Consequently, by replacing, in diagram (3.7), X with Y , and φ with fY , we
conclude that the outside and downside triangles of the following diagram are
commutative:
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(3.9) EY = X

ηX
++

%%LLLLLLLLLLL
eY // U ′BX

U ′a // UAY = U ′MAY

Y

fY

22fffffffffffffffffffffffffffff

nY ((PPPPPPPPPPPPPP

UFX = U ′MFX

Uā=U ′Mā

;;vvvvvvvvvvvvvvvvvvvvv

Since the outside triangle is of the type of (3.8), we are assuming the equality
(U ′Mā)(u) = (U ′Mā)(v). In particular, fY (UFj(u)) = fY (UFj(v)). By defi-
nition of cY , this implies that cY (UFj(u)) = cY (UFj(v)). Hence, c(UFj(u)) =
c(UFj(v)), and, thus, U ′M(c̄ · Fj)(u) = U ′M(c̄ · Fj)(v).

Therefore, since U ′ locally detects B-morphisms, we conclude that the mor-
phism U ′Mc̄ · ηU ′B : U ′B → U ′MC̄ is of the form

Uc̄ · ηU ′B = U ′ĉ for some ĉ : B →MC̄.

4. We prove that U ′ĉ is a monomorphism. Since U ′ is faithful, it follows that
ĉ is also a monomorphism. Let u, v ∈ U ′B, put X = {u, v}. The set X is
isomorphic to Y = ηU ′B [X], which is a subset of UFU ′B. By (c) of Lemma
3.2, we have that EY = X. We know that c · ηU ′B(u) = c · ηU ′B(v) if and only
if fY · ηU ′B(u) = fY · ηU ′B(v). But, since X = EY , we have that the morphism
fY , obtained as φ in (3.7), is isomorphic to Uā · ηX = U ′a · eY , with U ′a
and eY monomorphisms. Thus, fY is indeed a monomorphism. Consequently,
c · ηU ′B(u) = c · ηU ′B(v) if and only if u = v.

5. Applying (H3). Finally, we prove that C̄ belongs to A, which completes the
proof of the theorem. For that, taking into account hypothesis (H3), it suffices
to show that C̄ has a local A-behaviour.

Given a finite subset X of C = UC̄, form the pullback of the inclusion map
k : X ↪→ C and c : UFU ′B → C = UC̄:

X̄
k̄ //

r

��

UFU ′B

c

��
X

� � k // C

Since we are in Set, c is a split epimorphism, and so is r. Hence, there is some
s : X → X̄ such that rs = idX . Then the map

(mX : X → UFU ′B) = ( X
s // X̄

k̄ // UFU ′B )
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is a monomorphism in Set, and, without loss of generality, we assume that it is
an inclusion map of X into UFU ′B. Moreover, k = krs = ck̄s = cmX . Hence,
for EX defined as in (3.6), we have that, putting h = c̄FdX , the diagram

X � r

mX

##HHHHHHHHH
k //

nX

��5555555555555555 C = UC̄

UFU ′B

Uc̄

88qqqqqqqqqq

UFEX

UFdX

OO Uh

AA�����������������

is commutative. The outside triangle plays the role of triangle (2.5) of (i) of
Definition 2.3. In order to show that condition (ii) also holds, let us take a
finite set Z such that nX can be presented as a composition of monomorphisms

through Z, say X
� � // Z

s // UFEX . Without loss of generality, we may

assume the first monomorphism to be an inclusion of X into Z, and assume Z to
be a subset of UFU ′B via UFdX ·s. Then, clearly, we have EZ = EX and nZ =
s. Let fZ = Uā ·nZ be as in (3.7), with φ = fZ , and ā : FEX = FEZ → AZ . It
follows that Ker(Uā ·nZ) = Ker(Uh ·nZ). Indeed, given u, v ∈ Z, Uā ·nZ(u) =
Uā · nZ(v) if and only if fZ(u) = fZ(v), which is equivalent to the equality
cZ(u) = cZ(v), and, then, equivalent to Uc̄·UFd·nZ(u) = Uc̄·UFd·nZ(v), that
is, to Uc̄(u) = Uc̄(v). And, finally, since mZ = UFdX ·nZ is the inclusion map
of Z into UFU ′B, the last equality is equivalent to (Uh ·nZ)(u) = (Uh ·nZ)(v).
This proves that Ker(Uā · nZ) = Ker(Uh · nZ).

Therefore, C̄ has a local A-behaviour, and so, by hypothesis (H3), C̄ ∈ A.
Then MC̄ = MLC̄ = NC̄, and ĉ : B → NC̄ is a monomorphism from B to
NC̄ with C̄ ∈ A. �

Remark 3.1. Let N ′ : A → B′ be a faithful functor. Let B′ be a full subcategory
of B, closed under subobjects, and whose inclusion functor I : B′ ↪→ B preserves
monomorphisms. It is clear that, if the functor N = IN ′ is under the hypotheses
of Theorem 3.3, then the functor N ′ also has property (E).
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