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Abstract. We prove that the so-called special homogeneous surjections

are re�ective amongst surjective homomorphisms of monoids. To do so,
we use a general result in categorical Galois theory, and the recent re-
sult that the special homogeneous surjections are the normal (= central)
extensions with respect to the admissible Galois structure ΓMon deter-
mined by the Grothendieck group adjunction together with the classes of
surjective homomorphisms.

1. Introduction

In the recent paper [13] we showed that the special homogeneous surjections
of monoids (in the sense of [3, 4]) are the central extensions, for the admissi-
ble Galois structure [6, 7] obtained via the Grothendieck group construction.
Moreover, for this Galois structure, the central extensions coincide with the
normal extensions. In categorical Galois theory, the central extensions are also
called covering morphisms [9].

The aim of our present work is to answer the following question: Is the
category of special homogeneous surjections of monoids a re�ective subcategory
of the category of surjective monoid homomorphisms? The positive answer to
this question is a consequence of a general Galois-theoretical result, namely
Theorem 4.2 in [9].
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Before specialising to monoids, we �rst focus on the above mentioned re-
�ectiveness result in a general Galois-theoretic setting (Section 2). Then, in
Section 3, we recall the de�nitions and main results concerning special ho-
mogenous surjections from [3, 4] as well as the main results from [13], giving
the link between special homogeneous surjections and central extensions, which
are needed throughout the subsequent section. In Section 4 we explain how the
technique of Section 2 is applicable in order to obtain Theorem 4.1�thus an-
swering our question.

2. Reflectiveness of normal extensions

2.1. Galois structures. We start by recalling the de�nition of (admissible)
Galois structure as well as the concepts of trivial, normal and central extension
arising from it [6, 7, 8]. We consider the context of Barr-exact categories [1]
which is general enough for our purposes and allows us to avoid some technical
di�culties.

De�nition 2.1. A Galois structure Γ � pC ,X , I,H, η, ε,E ,F q consists of
an adjunction

C
I ,2
K X
H
lr

with unit η : 1C ñ HI and counit ε : IH ñ 1X between Barr-exact categories
C and X , as well as classes of morphisms E in C and F in X such that:

(G1) E and F contain all isomorphisms;
(G2) E and F are pullback-stable;
(G3) E and F are closed under composition;
(G4) HpF q � E ;
(G5) IpE q � F .

We call the morphisms in E and F �brations [7]. The following de�nitions
are given with respect to a Galois structure Γ.

De�nition 2.2. A trivial extension is a �bration f : AÑ B in C such that
the square

A
ηA ,2

f

��

HIpAq

HIpfq

��
B

ηB
,2 HIpBq

is a pullback. A central extension is a �bration f whose pullback p�pfq along
some �bration p is a trivial extension. A normal extension is a �bration such
that its kernel pair projections are trivial extensions.
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It is well known and easy to see that trivial extensions are always central
extensions and that any normal extension is automatically central.

For any object B in C , there is an induced adjunction

pE Ó Bq
IB ,2
K pF Ó IpBqq,
HB

lr

where we write pE Ó Bq for the full subcategory of the slice category pC Ó Bq
determined by morphisms in E ; similarly for pF Ó IpBqq. The functor IB is the
restriction of I, and HB sends a �bration g : X Ñ IpBq to the pullback

A ,2

HBpgq

��

HpXq

Hpgq

��
B

ηB
,2 HIpBq

of Hpgq along ηB .

De�nition 2.3. An object B P C is said to be admissible when the func-
tor HB is full and faithful. A Galois structure Γ � pC ,X , I,H, η, ε,E ,F q is
admissible when every object B in C is admissible.

The admissibility condition amounts to re�ectiveness of trivial extensions
amongst �brations. More precisely, we have that:

(1) by Proposition 2.1 below, the replete image of the functor HB is pre-
cisely the category TrivpBq of trivial extensions over B;

(2) TrivpBq is a re�ective subcategory of pE Ó Bq;
(3) HBIB : pE Ó Bq Ñ TrivpBq is its re�ector.

By Proposition 5.8 in [5], we obtain a left adjoint, which we will call the
trivialisation functor

Triv : FibpC q Ñ TExtpC q,

to the inclusion of the category TExtpC q of trivial extensions in C into the full
subcategory FibpC q of the category of arrows in C determined by the �brations.

Proposition 2.1. [9, Proposition 2.4] If Γ is an admissible Galois structure,
then I : C Ñ X preserves pullbacks along trivial extensions. Hence a �bration
is a trivial extension if and only if it is a pullback of some �bration in HpX q.
In particular, the trivial extensions are pullback-stable, so that every trivial
extension is a normal extension. �

Although the re�ectiveness of trivial extensions amongst �brations follows
just from admissibility, for the re�ectiveness of central extensions, one needs
more speci�c conditions on the Galois structure Γ (Theorem 2.2).
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2.2. A result on re�ectiveness of central extensions. Consider an ad-
missible Galois structure Γ as in De�nition 2.3. Given an object B in C , we
let CentrpBq denote the full subcategory of pE Ó Bq determined by the cen-
tral extensions over B. When it exists, the left adjoint to the inclusion functor
CentrpBq ãÑ pE Ó Bq will be written as Centr : pE Ó Bq Ñ CentrpBq and called
the centralisation functor. Moreover, given a �bration p : E Ñ B, we denote
by SplpE, pq the full subcategory of pE Ó Bq whose objects are the �brations
whose pullback along p is a trivial extension. We recall from [9] the following
result:

Theorem 2.2. [9, Theorem 4.2] For a Galois structure Γ as in De�nition 2.3,
let C admit pullbacks, pushouts and �ltered colimits, and for each B P C let
pE Ó Bq be closed in pC Ó Bq under these colimits; the latter is certainly the
case if E is closed under these colimits in C 2. Let p : E Ñ B be a �bration,
with E admissible. Then SplpE, pq is re�ective in pE Ó Bq if, for some regular
cardinal α, each pullback functor f� : pC Ó Aq Ñ pC Ó Cq (where f : C Ñ A is
any morphism in C ) preserves α-�ltered colimits; this is a fortiori the case if
pullbacks commute with α-�ltered colimits in C . �

In Section 4 we shall explain, following the same ideas as in Subsection 8.4 of
[9], how this result may be used to prove that special homogeneous surjections
of monoids are re�ective amongst surjective monoid homomorphisms.

3. Revision of some known results for monoids

In this section we recall the main results from [13], where it is shown that
the group completion of monoids determines an admissible Galois structure
with respect to surjective homomorphisms. Moreover, the corresponding central
(= normal) extensions are precisely the special homogeneous surjections.

3.1. The Grothendieck group of a monoid. The Grothendieck group

(or group completion) of a monoid pM, �, 1q is given by a group GppMq
and a monoid homomorphism M Ñ GppMq which is universal with respect
to monoid homomorphisms from M to a group [10, 11, 12]. Explicitly, we
can de�ne GppMq � GpFpMq{NpMq, where GpFpMq denotes the free group
on M and NpMq is the normal subgroup generated by elements of the form
rm1srm2srm1 � m2s

�1. We shall simply write m1m2 instead of m1 � m2 from
now on. This gives us an equivalence relation � on GpFpMq generated by

rm1srm2s � rm1m2s with equivalence classes rm1srm2s � rm1m2s. An arbitrary
element in GppMq is an equivalence class of words, which may be represented
by a word of the form

rm1srm2s
�1rm3srm4s

�1 � � � rmns
ιpnq or rm1s

�1rm2srm3s
�1rm4s � � � rmns

ιpnq,
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where ιpnq � �1, n P N, m1, . . . , mn P M and no further cancellation is
possible.

We write Mon for the category of monoids and Gp for the category of groups.
The Grothendieck group construction determines an adjunction

(3.1) Mon
Gp ,2
K Gp,

Mon
lr

where Mon is the forgetful functor. To simplify notation, we write GppMq
instead of MonGppMq when referring to the monoid structure of GppMq. The
counit is ε � 1Gp and the unit is de�ned, for any monoid M , by

ηM : M Ñ GppMq : m ÞÑ rms.

By choosing the classes of morphisms E and F to be the surjections in Mon
and Gp, respectively, we obtain a Galois structure

ΓMon � pMon,Gp,Gp,Mon, η, ε,E ,F q.

This Galois structure was studied in the article [13], with as main result its
Theorem 2.2:

Theorem 3.1. The Galois structure ΓMon is admissible. �

3.2. Special homogeneous surjections. We recall the de�nition and some
results concerning special homogenous surjections from [3, 4] which are needed
in the sequel.

De�nition 3.1. Let f be a split epimorphism of monoids, with a chosen split-
ting s, and N its (canonical) kernel

(3.2) N � ,2
k
,2 X

f ,2,2 Y.
s

lr

The split epimorphism pf, sq is said to be right homogeneous when, for every
element y P Y , the function µy : N Ñ f�1pyq de�ned through multiplication on
the right by spyq, so µypnq � n spyq, is bijective. Similarly, we can de�ne a left

homogeneous split epimorphism: the function N Ñ f�1pyq : n ÞÑ spyqn is a
bijection for all y P Y . A split epimorphism is said to be homogeneous when
it is both right and left homogeneous.

De�nition 3.2. Given a surjective homomorphism g of monoids and its kernel
pair

Eqpgq
π1 ,2

π2

,2X∆lr
g ,2,2 Y,

the morphism g is called a special homogeneous surjection when pπ1,∆q
(or, equivalently, pπ2,∆q) is a homogeneous split epimorphism.
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The next two results illustrate the connection between special homogeneous
surjections and the notions of trivial, central and normal extensions arising
from the Galois structure ΓMon. The admissibility of ΓMon is essential to the
coincidence of central and normal extensions in this context.

Proposition 3.2. [13, Proposition 4.2] For a split epimorphism f of monoids,
the following statements are equivalent:

(i) f is a trivial extension;
(ii) f is a special homogeneous surjection. �

Theorem 3.3. [13, Theorem 4.4] For a surjective homomorphism g of monoids,
the following statements are equivalent:

(i) g is a central extension;
(ii) g is a normal extension;
(iii) g is a special homogeneous surjection. �

4. Reflectiveness of special homogeneous surjections

We �nish by showing that special homogeneous surjections are re�ective
amongst surjective homomorphisms of monoids. In order to do this, we can
apply Theorem 2.2, thanks to the following considerations (which are analogous
to the ones of Subsection 8.4 of [9]):

- the category Mon of monoids is complete and cocomplete;
- pE Ó Bq is closed in pC Ó Bq under colimits because the class E of
surjections is closed under colimits in C 2;

- the Galois structure ΓMon is admissible;
- the functor H preserves �ltered colimits since these are formed both in
Mon and in Gp as they are in the category of sets;

- for each morphism f : C Ñ A in Mon, the pullback functor

f� : pC Ó Aq Ñ pC Ó Cq

preserves �ltered colimits because pullbacks commute with �ltered col-
imits in Mon since they do in the category of sets.

Hence all the hypotheses of Theorem 2.2 are satis�ed. As an immediate conse-
quence, we get that, for any monoid B, the full subcategory CentrpBq of central
extensions over B, with respect to the Galois structure ΓMon, is re�ective in
the category pE Ó Bq of surjective monoid homomorphisms over B. Thanks to
Theorem 3.3, we get our main result.

Theorem 4.1. Special homogeneous surjections are re�ective amongst surjec-
tive monoid homomorphisms. �
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