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1. Motivation

The study of sequences of orthogonal polynomials on the real line whose
Stieltjes function, S, satisfies a Riccati-type differential equation with poly-
nomial coefficients

AS ′ = BS2 + CS + D , (1)

the so-called Laguerre-Hahn class, is of importance for many problems from
applied mathematics and mathematical physics. For example, some of these
families of orthogonal polynomials, the so-called co-recursive and general-
ized co-recursive polynomials, play an important role in the solution (of the
Chapman-Kolmogorov equation) of birth and death processes with absorp-
tion or killing [13]. Other examples concern Hamiltonian operators: the study
of perturbations on the corresponding physical system involve the analysis
of orthogonal polynomials that satisfy a three term recurrence relation with
perturbed initial conditions, thus leading to the analysis of Laguerre-Hahn
families of orthogonal polynomials [8, 18].

In the present paper we derive discrete dynamical systems related to La-
guerre-Hahn orthogonal polynomials. Such dynamical systems are obtained
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as a result of deformations of the recurrence relation coefficients of the orthog-
onal polynomials under a t-dependence for the polynomials A − D involved
in the differential equation (1).

For the semi-classical case, that is, B ≡ 0 in (1), the connection be-
tween semi-classical orthogonal polynomials and integrable dynamical sys-
tems is well established (see [9]). There is a vast list of studies concern-
ing deformation of the recurrence relation coefficients of the semi-classical
orthogonal polynomials under evolution of the orthogonality weight, show-
ing relations to random matrix theory, Lax pairs, Toda lattices, Painlevé
equations, isomonodromic deformations, etc, and we refer the interested
reader to [3, 4, 6, 10, 11, 12, 15], as well as the references therein.

Our approach is based on the use of the equivalence between the differential
equation (1) for the Stieltjes function, S, and the matrix Riccati equation

AY ′
n = BnYn − YnC , n ≥ 0 , (′ = d/dx) (2)

for the corresponding Yn =

[
Pn+1 P

(1)
n

Pn P
(1)
n−1

]
, with {Pn} the sequence of monic

orthogonal polynomials related to S, {P (1)
n } the sequence of associated poly-

nomials of the first kind (cf. Theorem 1). Let us remark that the com-
patibility of the above differential system (2) and the matrix form of the
recurrence relation yields a matrix Lax pair representation, leading to a dis-
crete equation for the transfer matrices related to {Pn} (cf. Eq. (10)). Such
a discrete equation encloses nonlinear difference equations for the recurrence
relation coefficients of the Laguerre-Hahn orthogonal polynomials, which can
be viewed as comparable to the so-called Laguerre-Freud equations that hold
for semi-classical families [2, 14]. Furthermore, the evolution of the polyno-
mials A−D of (1), under dependence on a parameter t, leads to deformations
of the recurrence relation coefficients that are described by differential equa-
tions in t. These will be analyzed in Theorems 3, 5 and 6 (see also [6],
concerning related problems for orthogonal polynomials on the unit circle).

The paper is organized as follows. In section 2 we present the notations and
basic results in the theory of orthogonal polynomials to be used in the forth-
coming sections. In Section 3 we deduce the above mentioned discrete equa-
tions. In Section 4 we analyze the continuous differential equations in t for
the recurrence relation coefficients of the Laguerre-Hahn orthogonal polyno-
mials. In Section 5 we present an example.
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2. Preliminary results and notations

Let u be a linear form defined on the space of polynomials, P = span {xk :
k ∈ N0}, and let {Pn(x) = xn + · · · } be the sequence of monic orthogonal
polynomials (SMOP) related to u,

〈u, PnPm〉 = hn δn,m , hn 6= 0 , n, m ≥ 0 . (3)

It is a basic result that a sequence of orthogonal polynomials related to u
exists if, and only if, the moments un = 〈u, xn〉, n ≥ 0 (where we take
u0 = 1 for matters of simplicity), satisfy det ∆n 6= 0, n ≥ 0, where ∆n is the
so-called Hankel matrix, ∆n =

[
ui+j

]n
i,j=0

, n ≥ 0 (see [19]).

Furthermore, if det∆n > 0, n ≥ 0 , then u has an integral representation
in terms of a positive Borel measure, µ, supported on an infinite point set, I,
of the real line,

〈u, xn〉 =

∫

I

xn dµ(x) , n ≥ 0 , (4)

and the orthogonality condition (3) becomes
∫

I

Pn(x)Pm(x)dµ(x) = hn δn,m , hn > 0 , n, m ≥ 0 .

If µ is an absolutely continuous measure supported on I, and w denotes
its Radon-Nikodym derivative with respect to the Lebesgue measure, i.e.
dµ(x) = w(x)dx, then we will also say that {Pn} is orthogonal with re-
spect to w.

It is well known that, a sequence of monic orthogonal polynomials, {Pn},
satisfies a three term recurrence relation (cf. [19])

Pn+1(x) = (x − βn)Pn(x) − γnPn−1(x) , n = 1, 2, . . . (5)

with P0(x) = 1, P1(x) = x − β0 , and γn 6= 0, n ≥ 1, γ0 = 1.
The recurrence relation coefficients, γn and βn, are given by

γ0 = u0 , γn+1 =
∆n−1∆n+1

∆2
n

, βn =
〈u, xP 2

n〉
〈u, P 2

n〉
, n ≥ 0 , ∆−1 = 1 .

Note that from (5) we get

Pn+1(x) = xn+1 − (ξn + β0)x
n + (νn + β0ξn − γ1)x

n−1 + · · · , (6)

where

ξn =
n∑

k=1

βk , νn =
n∑

1≤i<j≤n

βiβj −
n∑

k=2

γk , n ≥ 1 .
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We now define the associated polynomials of the first kind, by

P (1)
n (x) = 〈us,

Pn+1(x) − Pn+1(s)

x − s
〉 , n ≥ 0 ,

where us denotes the action of u on the variable s.

The sequence {P (1)
n } also satisfies a three term recurrence relation,

P (1)
n (x) = (x − βn)P

(1)
n−1(x) − γnP

(1)
n−2(x) , n = 1, 2, . . .

with P
(1)
−1 (x) = 0, P

(1)
0 (x) = 1.

An important function in the theory of orthogonal polynomials is the Stielt-
jes function, also known as the generating function of the moments for u,
given by

S(x) =

+∞∑

n=0

un x−n−1 .

Note that if u is defined by (4), then S is given by

S(x) =

∫

I

dµ(s)

x − s
, x ∈ C \ I .

The sequence of functions of the second kind corresponding to {Pn} is
defined by

qn+1 = Pn+1S − P (1)
n , n ≥ 0 , q0 = S ,

and in the positive-definite case,

qn+1(x) =

∫

I

Pn+1(s)

x − s
dµ(s) , n ≥ 0 , q0 = S .

Definition 1. (see [16]) A Stieltjes function, S, is said to be Laguerre-Hahn
if there exist polynomials A, B, C, D, with A 6= 0, such that it satisfies a
Riccati differential equation

AS ′ = BS2 + CS + D.

The corresponding sequence of orthogonal polynomials is called Laguerre-
Hahn. If B = 0, then S is said to be Laguerre-Hahn affine or semi-classical.

The above polynomial D can be written in terms of A, B, C (see [16,
eq. (7.7)]).

As it is well known, if S is related to a positive-definite linear form u, in
turn defined in terms of a weight w, then the semi-classical character of S,
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AS ′ = CS + D, is equivalent to Aw′ = Cw, with w (positive) satisfying the
boundary conditions

xnA(x)w(x)
∣∣
a,b

= 0 , n ≥ 0 ,

where a, b (eventually a or b infinite) are linked with the roots of A (see [19]).
In such a case, w is the weight function on the support I = [a, b].

In the sequel we will use the following matrices:

Yn =

[
Pn+1 P

(1)
n

Pn P
(1)
n−1

]
, Ỹn =

[
Pn+1 qn+1/w
Pn qn/w

]
, Qn =

[
qn+1

qn

]
, n ≥ 0 . (7)

Lemma 1. Let {Pn} be a SMOP and let βn, γn, n ≥ 0 , be its recurrence rela-

tion coefficients. Let {Yn}, {Ỹn}, {Qn} be the sequences defined in (7). Then,

(a) Yn and Ỹn satisfy the difference equation

Xn = AnXn−1 , An =

[
x − βn −γn

1 0

]
, n ≥ 1 , (8)

with initial conditions Y0 =

[
x − β0 1

1 0

]
, Ỹ0 =

[
x − β0 q1/w

1 q0/w

]
;

(b) Qn satisfies

Qn = AnQn−1 , n ≥ 1 ,

with An given in (8) and initial conditions Q0 =

[
(x − β0)S − 1

S

]
.

The above matrix An is known in the literature as the transfer matrix of
the SMOP.

Throughout the paper, I denotes the 2×2 identity matrix. The (i, j) entry
of a matrix X will be denoted by X(i,j). f ′ will denote the derivative of f
with respect to x and ḟ denotes the derivative of f with respect to t.

3. Differential systems for Laguerre-Hahn orthogonal

polynomials and discrete Lax equations

We begin by presenting a differential system for Laguerre-Hahn orthogonal
polynomials. The result that follows was deduced in [5, Theorem 1], thus we
omit here its proof.
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Theorem 1. Let S be a Stieltjes function, let {Yn} and {Qn} be the corre-
sponding sequences defined in (7), and let βn, γn be the corresponding recur-
rence relation coefficients. The following statements are equivalent:
(a) S satisfies

AS ′ = BS2 + CS + D , A, B, C, D ∈ P ;

(b) Yn satisfies the matrix Sylvester equation

AY ′
n = BnYn − YnC , n ≥ 0 , (9)

where

Bn =

[
ln Θn

−Θn−1/γn ln−1 + (x − βn)Θn−1/γn

]
, C =

[
C/2 −D
B −C/2

]

with ln, Θn polynomials of uniformly bounded degrees, satisfying the initial
conditions A = (x − β0)(l0 − C/2) − B + Θ0 , 0 = (x − β0)D + l0 + C/2 ,
Θ−1 = D , l−1 = C/2 ;

(c) the transfer matrices, An =

[
x − βn −γn

1 0

]
, satisfy

AA′
n = BnAn −AnBn−1 , n ≥ 1 ; (10)

(d) Qn satisfies

AQ′
n = (Bn + (BS + C/2)I)Qn , n ≥ 0 .

Remark 1. Matrix Sylvester equations are particular cases of matrix Riccati
equations (see [1, 17]).

Remark 2. The discrete Lax equations (10) are obtained through the com-
patibility between the Lax pairs

{
Yn = AnYn−1 ,

AY ′
n = BnYn − YnC , n ≥ 1 .

Note that (10) are equivalent to
{

(x − βn)(ln − ln−1) = A − Θn + γn

γn−1
Θn−2

ln − ln−2 = − (x−βn)
γn

Θn−1 + (x−βn−1)
γn−1

Θn−2 , n ≥ 1 .

As a consequence of the previous Theorem we have the result that follows
(see [5, Corollary 1]).
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Corollary 1. The following relations hold:

trBn = 0 , n ≥ 0 ; (11)

detBn = detB0 + A
n∑

k=1

Θk−1

γk
, n ≥ 1 , with detB0 = D(A + B) − (C/2)2.

Theorem 2. Let {Pn} be a SMOP with respect to a weight w, and let {qn}
be the corresponding sequence of functions of the second kind. w is semi-
classical and satisfies w′/w = C/A if, and only if,

Ỹn =

[
Pn+1 qn+1/w
Pn qn/w

]
: AỸ ′

n =

(
Bn −

C

2
I

)
Ỹn , n ≥ 1 , (12)

where Bn is the matrix associated with the equation AS ′ = CS + D for the
Stieltjes function of w.

4. Differential equations for deformed Laguerre-Hahn

orthogonal polynomials

Henceforth we consider Stieltjes functions satisfying differential equations
AS ′ = BS2 + CS + D, where A, B, C, D are co-prime polynomials now de-
pending on a parameter t (we consider a general t-dependence). Notice that
the corresponding orthogonal polynomials, as well as its recurrence relation
coefficients, will also depend on t. For simplicity matters, henceforth we do
not display the t-dependence on these quantities.

Theorem 3. Let S be a Stieltjes function satisfying AS ′ = BS2 + CS +
D, where A, B, C, D are polynomials that depend on a parameter t, let the
corresponding {Yn} satisfy the matrix Sylvester equations AY ′

n = BnYn −
YnC, n ≥ 1 , and let L be a nonsingular matrix such that AL′ = CL . Then,
the matrices Hn defined by

Hn = (Ẏn + YnL̇L−1)Y −1
n , n ≥ 1 , (13)

satisfy
∂

∂t

(Bn

A

)
= H′

n + Hn
Bn

A
− Bn

A
Hn , n ≥ 1 . (14)

Furthermore, the transfer matrices of Yn satisfy

Ȧn = HnAn −AnHn−1 , n ≥ 2 . (15)
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Proof : From (13), taking derivatives with respect to x, we obtain

∂ Ẏn

∂x
= H′

nYn + Hn

(Bn

A
Yn − Yn

C
A

)
−
(Bn

A
Yn − Yn

C
A

)
L̇L−1

− Yn
∂

∂t

( C
A

)
− Yn

C
A
L̇L−1 + YnL̇L−1 C

A
. (16)

On the other hand, taking derivatives with respect to t in AY ′
n = BnYn−YnC,

∂ Y ′
n

∂t
=

∂

∂t

(Bn

A

)
Yn +

Bn

A
(HnYn − YnL̇L−1)

− (HnYn − YnL̇L−1)
C
A

− Yn
∂

∂t

( C
A

)
. (17)

The compatibility of (16) and (17) yields

H′
nYn + Hn

Bn

A
Yn =

∂

∂t

(Bn

A

)
Yn +

Bn

A
HnYn .

Since Yn is nonsingular, we obtain (14).
To deduce (15) we take derivatives in Yn = AnYn−1 (cf. (8)), and use (13)

to n − 1, Ẏn−1 = Hn−1Yn−1 − Yn−1L̇L−1, thus obtaining

ȦnYn−1 = HnAnYn−1 −AnHn−1Yn−1 .

Since Yn is nonsingular, we obtain (15).

Further properties of Hn follow.

Corollary 2. Let Hn be given by (13). Let γn, βn be the recurrence relation
coefficients corresponding to {Yn}. Then, for all n ∈ N, trHn does not
depend on x.
Furthermore, the following equations hold:

trHn =

n∑

k=1

γ̇k

γk
+ tr L̇L−1 , n ≥ 1 ; (18)

detHn = detHn−1 −
β̇n

γn
H(1,2)

n−1 +
γ̇n

γn
H(1,1)

n−1 , n ≥ 1 . (19)

Proof : From (14) we have

∂

∂t

(
B(1,1)

n

A

)
= (H(1,1)

n )′ +
1

A

(
B(2,1)

n H(1,2)
n − B(1,2)

n H(2,1)
n

)
, (20)
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∂

∂t

(
B(2,2)

n

A

)
= (H(2,2)

n )′ +
1

A

(
B(1,2)

n H(2,1)
n − B(2,1)

n H(1,2)
n

)
. (21)

Summing (20) with (21) and using (11) we obtain

(trHn)
′ = 0

and we conclude that trHn does not depend on x.
The computation of the entries (1, 1) and (2, 2) of Hn, from (13), yields

trHn =
∂
∂t(detYn)

det Yn
+ tr L̇L−1 .

Since det Yn = −
∏n

k=1 γk, we obtain (18).
Eq. (19) follows from (15).

Remark 3. From (18) there follows that tr L̇L−1 does not depend on x.

Note that it is of a great advantage to know information on the asymp-
totic expansion of the matrices Hn defined in (13), since the equations (14)
and (15) enclose differential equations in t for the recurrence relation coeffi-
cients of the corresponding Laguerre-Hahn orthogonal polynomials. It should
be remarked that the matrix Hn depends on L, which in turn is the solution
of the differential system AL′ = CL, C having polynomial entries.

Connection with semi-classical orthogonal polynomials: the use of

Radon’s Lemma. In what follows we establish a relation between Hn and
a matrix (to be specified through the text) related to semi-classical families
of orthogonal polynomials. We shall make use of a result known in the theory
of matrix Riccati equations as Radon’s Lemma [17]. In fact, for our purposes
it is sufficient to show the following particular case of the Radon’s Lemma
(see [1] and [7, Theorem 5]).

Theorem 4. Let A be a polynomial, let Bn/A, n ≥ 1, and C/A be matrices
whose entries are integrable functions in a domain G of the complex plane,
and let x0 ∈ G. If the matrices Pn and L, L nonsingular, satisfy

{
AL′ = CL ,

L(x0) = I ,
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and {
AP ′

n = BnPn , n ≥ 1 ,

Pn(x0) = Xn(x0) ,

then the solution of AX ′
n = BnXn − XnC, in G, is given by:

Xn = PnL−1 , n ≥ 1 .

Recall that one has the Sylvester equation AY ′
n = BnYn − YnC, related to

AS ′ = BS2 + CS + D (cf. Theorem 1). We start with some remarks on the
solution of the corresponding differential system

AP ′
n = BnPn . (22)

Hereafter we will consider x0 ∈ C and C̃ a polynomial such that
∫ x

x0

C̃(s)
2A(s)

ds

is defined in suitable domains.

Lemma 2. Let Bn be matrices, and let C̃ be a polynomial. A matrix Ỹn

satisfies

AỸ ′
n = (Bn − C̃/2 I)Ỹn (23)

if, and only if, Pn = e
∫ x

x0

C̃(s)
2A(s)ds

Ỹn satisfies (22).

Taking into account the previous lemma, we will solve (22) by considering

Pn = e
∫ x

x0

C̃(s)
2A(s)ds

Ỹn ,

where Ỹn satisfies (23). Furthermore, taking into account the Theorem 2, we

will search for Ỹn given by

Ỹn =

[
P̃n+1 q̃n+1/w̃

P̃n q̃n/w̃

]
,

with {P̃n} a SMOP with respect to a weight function w̃ and {q̃n} the corre-
sponding sequence of functions of the second kind. Note that (23) implies

(det Ỹn)
′ =

tr(Bn − C̃/2 I)

A
det Ỹn ,

which combined with det Ỹn = (
∏n

k=1 γ̃k)/w yields

w̃′/w̃ = C̃/A ,

thus
w̃ = e

∫
C̃/A .
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Theorem 5. Let S be a Stieltjes function satisfying AS ′ = BS2 + CS + D,
where A − D are co-prime polynomials that depend on a parameter t. Let
AY ′

n = BnYn−YnC be the corresponding matrix Sylvester equations, and con-
sider the systems AP ′

n = BnPn, AL′ = CL. Let G be a domain in the complex
plane such that the entries of the matrices Bn/A and C/A are integrable in G,
and let x0 ∈ G. Let the following assumption hold:

∃ C̃ ∈ P, ∃n0 ≥ 1 : Pn = e
∫ x

x0

C̃(s)
2A(s)ds

Ỹn−n0 , n ≥ n0 + 1 , (24)

with Ỹn =

[
P̃n+1 q̃n+1/w̃

P̃n q̃n/w̃

]
, where {P̃n} is the SMOP with respect to w̃ =

e
∫ x

x0

C̃(s)
A(s)ds

. Then, for x ∈ G,

Yn = e
∫ x

x0

C̃(s)
A(s)ds

[
P̃n−n0+1 q̃n−n0+1/w̃

P̃n−n0
q̃n−n0

/w̃

]
L−1 , n ≥ n0 + 1 . (25)

Furthermore, the matrices Hn defined in (13) are given by

Hn =
1

2
(
∂ w̃

∂t
)/w̃ I + H̃n−n0

, (26)

with the H̃n’s defined by

H̃n =
∂ Ỹn

∂t
Ỹ −1

n .

Proof : The representation (25) follows from

Yn = PnL−1 , n ≥ 1 , (27)

stated in Theorem 4, combined with the assumption (24). Taking derivatives
with respect to t in (27) we get

Ẏn = FnYn − YnL̇L−1 , Fn = ṖnP−1
n , (28)

and the comparison between (28) and (13) yields

Hn = ṖnP−1
n . (29)

Using the assumption (24) written as Pn =
√

w̃ Ỹn−n0
, (29) yields (26).
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Lemma 3. Let {P̃n} be the SMOP related to the semi-classical weight w̃

satisfying w̃′/w̃ = C̃/A, with the conditions:

(i) A(x) =
m∏

k=1

(x − xk), xi 6= xj, i 6= j,

(ii) the residues ǫk = C̃(xk)/A
′(xk) are not integers, k = 1, . . . , m .

Let the following differential system hold:

AỸ ′
n =

(
B̃n − C̃/2

)
Ỹn , Ỹn =

[
P̃n+1 q̃n+1/w̃

P̃n q̃n/w̃

]
, n ≥ 1 .

The matrices H̃n =
∂ Ỹn

∂t
Ỹ −1

n are given by

H̃n(x) = H̃∞,n −
m∑

k=1

ℜes
(
(B̃n − C̃/2)/A ; x = xk

)

x − xk
ẋk , n ≥ 1 , (30)

with H̃∞,n =

[
0 0

0 dh̃n

dt

]
and ℜes

(
(B̃n − C̃/2)/A ; x = xk

)
denoting the residue

matrix of (B̃n − C̃/2)/A at xk.

Proof : The detailed proof of (30) proceeds in similarity with [15, Section 3].
Note that we use q̃n(x) = h̃nx

−n−1 + O(x−n−2), with h̃n given in the corre-

sponding orthogonality relation (3), and also note that the P̃n’s are monic.

5. Examples

Lemma 4. Let {Pn} be the SMOP related to AS ′ = BS2 + CS + D, A(x) =
a3x

3 + a2x
2 + a1x + a0, B(x) = b3x

3 + b2x
2 + b1x + b0, C(x) = c2x

2 + c1x +
c0, D(x) = d1x+ d0 . Let βn, γn, n ≥ 0, be the recurrence relation coefficients
of {Pn}. Then,

d1 = −a3 − b3 − c2 , d0 = −a2 − b2 − c1 + β0(−2a3 − 2b3 − c2) ,

and the matrices Bn =

[
ln Θn

−Θn−1/γn −ln

]
involved in the corresponding

Sylvester equations (9) are such that ln(x) = ℓn,2x
2 + ℓn,1x + ℓn,0, Θn(x) =
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θn,1x + θn,0, where, for all n ≥ 1,

ℓn,2 = c2/2 + (n + 1)a3 + b3 , (31)

ℓn,1 = c1/2 + ξna3 + (n + 1)a2 + β0(a3 + b3) + b2 , (32)

ℓn,0 = c0/2 − 2νna3 + (n + 1)a1 + γ1b3 + ξna2 + ξ2
na3 + β2

0(a3 + b3)

+β0b2 + b1 + γn+1[c2 + (2n + 3)a3 + 2b3] , (33)

θn,1 = −γn+1[c2 + (2n + 3)a3 + 2b3] , (34)

θn,0 = −γn+1 [c1 + (2n + 3)a2 + a3(ξn + ξn+1) + 2β0(a3 + b3) + 2b2]

+βn+1θn,1 , (35)

where

ξn =
n∑

k=1

βk , νn =
n∑

1≤i<j≤n

βiβj −
n∑

k=2

γk , n ≥ 1 .

Furthermore, the following holds:

γ1 =
−a1 − b1 − c0 − β0 [2b2 + c1 + a2 + β0(3a3 + 3b3 + c2)]

a3 + 2b3 + c2
.

Proof : Use the representation (6) as well as

P (1)
n (x) = xn − ξnx

n−1 + νnx
n−2 + · · ·

and compare the coefficients of the corresponding monomials.

For later purposes we show some results concerning the modified Laguerre
polynomials, orthogonal with respect to the semi-classical weight

w̃(x) = (1 − ζH(x − t))|x − t|αxµe−x (36)

supported on R+, ζ < 1, where H denotes the Heaviside function, H(y) = 1
for y > 0, H(y) = 0 otherwise.

Lemma 5. Let {P̃n} be the SMOP related to the semi-classical weight (36).

Let β̃n, γ̃n, n ≥ 0, denote the recurrence relation coefficients of {P̃n}, let {q̃n}
be the corresponding sequence of functions of the second kind. The following
statements hold:
(a) the Stieltjes function, S̃, related to {P̃n} satisfies

AS̃ ′ = C̃S̃ + D̃ , (37)
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A(x) = x2−tx , C̃(x) = −x2+(α+µ+t)x−µt , D̃(x) = x+(β̃0−1−α−µ−t) ;

(b) Ỹn =

[
P̃n+1 q̃n+1/w̃

P̃n q̃n/w̃

]
satisfies AỸ ′

n =
(
B̃n − C̃

2 I
)

Ỹn , n ≥ 1 , where the

entries of B̃n are defined by

l̃n(x) = −x2

2
+

(
α + µ + t

2
+ n + 1

)
x − µt

2
− (n + 1)t + ξ̃n − γ̃n+1 ,

Θ̃n(x) = γ̃n+1x − γ̃n+1(α + µ + t + 2n + 3 − β̃n+1) ,

where ξ̃n =
∑n

k=1 β̃k .

Proof : Note that the logarithmic derivative of w̃ given by (36) coincides with
the logarithmic derivative of (x − t)αxµe−x almost everywhere, and so it is
independent of ζ, that is,

w̃′/w̃ =
(
−x2 + (α + µ + t)x − µt

)
/(x2 − tx) .

Therefore, the equation (37) for the corresponding Stieltjes function follows.

The differential system for Ỹn follows from the Theorem 2 (cf. (12)), where

the entries of B̃n are obtained using (31)-(35).

Lemma 6. Let {Pn} be the SMOP related to the Stieltjes function S satis-
fying AS ′ = BS2 + CS + D , where

A(x) = x2 − tx , (38)

B(x) = −x3 + (α + µ + t + β0 − 1)x2 + β0µt

+(−µt − β0(α + µ + t) + γ1 + t)x + γ1(β0 − 1 − α − µ − t) , (39)

C(x) = x2 − (α + µ + t)x + µt . (40)

D(x) = 0 , (41)

Let βn, γn, n ≥ 0, denote the recurrence relation coefficients of {Pn}, with

β0 = 0, γ1 = (t− β1)/(t− 1) . Then, Yn =

[
Pn+1 P

(1)
n

Pn P
(1)
n−1

]
satisfies the matrix

Sylvester equation Y ′
n = BnYn − CYn , n ≥ 1, where the entries of Bn are

defined by

ln(x) = −x2

2
+

(
α + µ + t

2
+ n

)
x − µt

2
− nt + ξn − γn+1 − β1 ,

Θn(x) = γn+1x − γn+1(α + µ + t + 2n + 1 − βn+1) .
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Proof : Use equations (31)-(35).

Lemma 7. Let S be a Stieltjes function satisfying AS ′ = BS2 +CS +D with
D ≡ 0, where A−D are co-prime polynomials that depend on a parameter t.
Let x0 belong to {x ∈ C : A(x) 6= 0}. Let the matrix L satisfy





AL′ = CL , C =

[
C/2 0

B −C/2

]
,

L(x0, ·) = I .

(42)

There holds

L̇L−1 =
E
A

, E =

[
E/2 0

A
W

∫ x

x0

∂
∂t

(
B
A
W
)
ds −E/2

]
, (43)

where W = e
∫ x

x0

C(s)
A(s)ds

, and E = A Ẇ
W .

Proof : The solution of (42) is

L =

[
W 1/2 0(∫ x

x0

B(s)
A(s)

W (s) ds
)

W−1/2 W−1/2

]
.

Therefore, (43) follows.

Theorem 6. Let {Pn} be the SMOP related to the Stieltjes function S sat-
isfying AS ′ = BS2 + CS + D , with A − D given by (38)-(41). The transfer

matrix of Pn, An =

[
x − βn −γn

1 0

]
, satisfies the equation

Ȧn = HnAn −AnHn−1 , n ≥ 2 , (44)

with

Hn =

[
0 0

0 dh̃n−1

dt

]

− 1

x − t

[
α/2 + (ξ̃n−1 − γ̃n)/t −γ̃n(α + µ + 2n + 1 − β̃n)/t

(α + µ + 2n − 1 − β̃n−1)/t −α/2 − (ξ̃n−1 − γ̃n)/t

]
, (45)

where β̃n, γ̃n are the recurrence relation coefficients of the SMOP {P̃n} related
to the weight w̃ defined by w̃′/w̃ = −C/A .
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Thus, the recurrence relation coefficients of {Pn} satisfy, for all n ≥ 2 ,

γ̇n

γn
=

2 + β̃n−2 − β̃n−1

t
, (46)

β̇n =
γ̃n−1 − γ̃n + β̃n−1

t
. (47)

Proof : Note that the assumption (24) of Theorem 5 holds, with C̃ = −C and
n0 = 1, thus w̃ given by (36). Therefore, the formula (26) for Hn, combined
with the asymptotic expansion (30), is

Hn =
1

2
(
∂ w̃

∂t
)/w̃ I +

[
0 0

0 dh̃n−1

dt

]
−

ℜes
(
(B̃n − C̃/2)/A ; x = t

)

x − t
,

since there is only one zero of A depending on t. Thus, (45) follows.
Let us use (45) in (44) and compute the limit at x = ∞. The position

(2, 2) gives us γn = γ̃n−1. The use of the preceding equality in the resulting
equations of positions (1, 2) and (2, 1) yield (46), and the resulting equations
from position (1, 1) yield (47).
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[19] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc.

Providence Rhode Island, 1975 (fourth edition).

A. Branquinho

CMUC and Department of Mathematics, University of Coimbra, Apartado 3008, EC Santa

Cruz, 3001-501 COIMBRA, Portugal.

E-mail address : ajplb@mat.uc.pt

M.N. Rebocho

CMUC and Department of Mathematics, University of Beira Interior, 6201-001 Covilhã,
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