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1. Introduction

The present paper concerns orthogonal polynomials of a discrete variable
on non-uniform lattices (commonly denoted by snul). These lattices are
associated with divided differences operators such as the Wilson or Askey-
Wilson operator ([2, Section 5], and [3, 12, 17, 18]). Specifically, we focus
our attention on the so-called Laguerre-Hahn orthogonal polynomials. The
Laguerre-Hahn orthogonal polynomials on non-uniform lattices were intro-
duced by A. Magnus in [14], as the ones for which the formal Stieltjes function
satisfies a Riccati difference equation with polynomial coefficients, with the
difference operator taken as a general divided difference operator given by
[14, Eq. (1.1)] (see Section 2 of the present paper for the precise definitions
and main properties). In this pioneering work, Magnus establishes difference
relations as well as representations for the Laguerre-Hahn orthogonal poly-
nomials and he proves that, under certain restrictions on the degrees of the
coefficient of the Riccati difference equation, the Laguerre-Hahn orthogonal
polynomials are the associated Askey-Wilson polynomials [1, 2].
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As it is well known from the setting of continuous orthogonality, Laguerre-
Hahn orthogonal polynomials inherit many properties from the classical and
semi-classical families [5, 7, 13, 16]. Indeed, one of the research topics within
the Laguerre-Hahn theory of a discrete variable is the so-called structure
relations, that is, linear difference relations involving the orthogonal polyno-
mials (see [4, 8, 10, 11] and their lists of references). In the semi-classical
case, it was proven in [15] the characterization of semi-classical orthogonal
polynomials on non-uniform lattices in terms of structure relations. A more
recent contribution, [9], proves the characterization of classical polynomials
on non-uniform lattices in terms of two types of structure relations, using
the so-called functional approach.
In the present paper we show a characterization theorem for Laguerre-Hahn

orthogonal polynomial on arbitrary non-uniform lattices. Our main result is
given in Theorem 2, where it is shown the equivalence between:
(a) the Riccati difference equation for the formal Stieltjes function, S;
(b) linear first-order difference relations for orthogonal polynomials related

to S, as well as for the associated polynomials of the first kind;
(c) linear first-order difference relations for the functions of the second kind

related to S.
The difference relations contained in Theorem 2 for Laguerre-Hahn families

extend some of the difference relations for the classical families given in [9,
15, 22].
This paper is organized as follows. In Section 2 we give the definitions

and state the basic results which will be used in the forthcoming sections.
In Section 3 we show the main results of the paper, namely, the equivalence
between the above referred conditions (a), (b) and (c), stated in Theorem 2
Section 4 is devoted to the proof of Theorem 2.

2. Preliminary results

2.1. The operators D,Ej,M and the related non-uniform lattices. We
consider the divided difference operator D given in [14], involving the values
of a function at two points, with the fundamental property that D leaves a
polynomial of degree n − 1 when applied to a polynomial of degree n. The
operator D, defined on the space of arbitrary functions, is given by

Df(x) =
f(y2(x))− f(y1(x))

y2(x)− y1(x)
, (1)
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where, at this stage, y1 and y2 are still unknown functions. To define them,
one starts by using the property that Df is a polynomial of degree n − 1
whenever f is a polynomial of degree n. Then, applying D to f(x) = x2 and
f(x) = x3, one obtains, respectively,

y1(x) + y2(x) = polynomial of degree 1 , (2)

(y1(x))
2 + y1(x)y2(x) + (y2(x))

2 = polynomial of degree 2 , (3)

the later condition being equivalent to y1(x)y2(x) = polynomial of degree less
or equal than 2. The conditions (2) and (3) define y1 and y2 as the two roots
of a quadratic equation

ây2 + 2b̂xy + ĉx2 + 2d̂y + 2êx+ f̂ = 0 , â 6= 0 . (4)

Some identities involving y1 and y2, following from the fact that y1, y2 are
the roots of (4):

y1(x) + y2(x) = −2(b̂x+ d̂)/â ,

y1(x)y2(x) = (ĉx2 + 2êx+ f̂)/â .

There are four primary classes of lattices and related divided difference
operators (1):
(i) the linear lattice, related to the forward difference operator [19, Chap-

ter 2, Section 12] ;
(ii) the q-linear lattice, related to the q-difference operator [12] ;
(iii) the quadratic lattice, related to the Wilson operator [2] ;
(iv) the q-quadratic lattice, related to the Askey-Wilson operator [2].
This classification of lattices is done according to the two parameters λ =

b̂2 − âĉ and τ =
(

(b̂2 − âĉ)(d̂2 − âf̂)− (b̂d̂− âê)2
)

/â, assuming âĉ 6= 0: λ =

τ = 0 in case (i); λ > 0, τ = 0 in case (ii); λ = 0, τ < 0 in case (iii); λ τ < 0
in case (iv).
We would like to remark [15, Section 2], where it is given a geometric

interpretation of the lattices. For the quadratic class of lattices (the so-called
snul), it is possible to have a parametric representation of the conic (4), say
{x(s), y(s)}, such that y1(x(s)) = y(s) = x(s−1/2) and y2(x(s)) = y(s+1) =
x(s+ 1/2), ading to [3, 17, 18]

{

x(s) = c4s
2 + c5s+ c6 , if λ = 0, τ < 0 ,

x(s) = c1q
s + c2q

−s + c3 , if λ τ < 0 , q + q−1 = 4b̂2/(âĉ)− 2 .
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Note that each of the operators in (i)-(iv) is an extension of the preceding
one, which is recovered as a particular case or as a limit case, up to a linear
transformation of the variable.
In the present paper we shall operate with the divided difference operator

given in its general form (1). By defining the operators E1 and E2, acting on
arbitrary functions f , as

E1f(x) = f(y1(x)) , E2f(x) = f(y2(x)) ,

(1) is given by

Df(x) =
E2f(x)− E1f(x)

y2(x)− y1(x)
.

We define the companion operator of D as

Mf(x) =
E1f(x) + E1f(x)

2
. (5)

Some useful identities involving D,M and E1,E2 are listed below:

D(gf) = DgMf +MgDf , (6)

D(g/f) =
DgMf − DfMg

E1f E2f
, (7)

D(1/f) =
−Df

E1f E2f
, (8)

M(gf) = MgMf + DgDf
(y1 − y2)

2

4
,

M(g/f) =
E1g E2f + E2g E1f

2E1f E2f
, (9)

M(1/f) =
Mf

E1f E2f
. (10)

Eq. (6) has the equivalent forms:

D(gf) = Dg E1f + Df E2g , (11)

D(gf) = Dg E2f + Df E1g .
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Also, one has two equivalent forms for (7):

D(g/f) =
Dg E1f − Df E1g

E1f E2f
, (12)

D(g/f) =
Dg E2f − Df E2g

E1f E2f
. (13)

2.2. Laguerre-Hahn orthogonal polynomials and auxiliary results.

We shall consider formal orthogonal polynomials related to a (formal) Stielt-
jes function defined by

S(x) =

+∞
∑

n=0

unx
−n−1 (14)

where (un), the sequence of moments, is such that det
[

ui+j

]n

i,j=0
6= 0, n ≥ 0,

u0 = 1. The orthogonal polynomials related to S, Pn, n ≥ 0, are the diagonal
Padé denominators of (14), thus the numerator polynomial (of degree n−1),

henceforth denoted by P
(1)
n−1 , and the denominator Pn (of degree n) are

determined through

S(x)− P
(1)
n−1(x)/Pn(x) = O(x−2n−1) , x→ ∞ . (15)

Throughout the paper we consider each Pn monic, and we will denote the
sequence of monic polynomials {Pn}n≥0 by SMOP.
Monic orthogonal polynomials satisfy a three term recurrence relation [20]

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, ... , (16)

with P−1(x) = 0, P0(x) = 1, and γn 6= 0, n ≥ 1, γ0 = u0 = 1.

The sequence {P
(1)
n }n≥0, also known as the sequence of associated polyno-

mials of the first kind, satisfies the three term recurrence relation

P (1)
n (x) = (x− βn)P

(1)
n−1(x)− γnP

(1)
n−2(x) , n = 1, 2, ...

with P
(1)
−1 (x) = 0, P

(1)
0 (x) = 1.

An equivalent form of (15), often encountered in the literature of orthogonal
polynomials (see, for example, [21] and its list of references), is given by

qn = PnS − P
(1)
n−1 , n ≥ 1 , q0 = S , (17)
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where qn, n ≥ 0, are the so-called functions of the second kind corresponding
to {Pn}n≥0. The sequence {qn}n≥0 also satisfies a three term recurrence re-
lation,

qn+1(x) = (x− βn)qn(x)− γnqn−1(x) , n = 0, 1, 2, ... (18)

with initial conditions q−1 = 1, q0(x) = S(x).
We will make use of the following result (see [6]).

Lemma 1. Let {Pn}n≥0 be a SMOP and let {P
(1)
n }n≥0 be the sequence of

associated polynomials of the first kind. The following holds:

EjP
(1)
n EjPn − EjPn+1EjP

(1)
n−1 =

n
∏

k=0

γk , j = 1, 2 , n ≥ 0 . (19)

Therefore, for each j = 1, 2, EjP
(1)
n and EjPn+1 do not share zeroes.

Proof : Eq. (19) follows from the application of the operator Ej, j = 1, 2, to
the identity

P (1)
n Pn − Pn+1P

(1)
n−1 =

n
∏

k=0

γk , n ≥ 0 .

From (19) there follows the statement concerning the zeros.

Definition 1. A SMOP {Pn}n≥0 related to a Stieltjes function S (14) is said
to be Laguerre-Hahn if S satisfies a Riccati equation

A(x)DS(x) = B(x)E1S(x)E2S(x) + C(x)MS(x) +D(x) , (20)

where A,B, C,D are polynomials in x, A 6= 0.
If B ≡ 0, then {Pn}n≥0 is said to be semi-classical.

We will make use of the Theorem that follows.

Theorem 1. Let {fn} be a sequence of functions satisfying a three term
recurrence relation

fn+1(x) = (x− βn)fn(x)− γnfn−1(x) , γn 6= 0, n ≥ 0 . (21)

Let gn = fn+1/fn satisfy for all n ≥ 0

An(x)Dgn(x) = Bn(x)E1gn(x)E2gn(x) + CnMgn(x) +Dn(x) , (22)
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with D,M the operators defined in (1) and (5), and An, Bn, Cn, Dn bounded
degree polynomials. Then, for all n ≥ 0, the following relations hold:

An+1 = An −
(y1 − y2)

2

2

Dn

γn+1
, (23)

Bn+1 =
Dn

γn+1
, (24)

Cn+1 = −Cn − 2M(x− βn+1)
Dn

γn+1
, (25)

Dn+1 = An + γn+1Bn +M(x− βn+1)Cn + (y1 − βn+1)(y2 − βn+1)
Dn

γn+1
. (26)

Proof : From (21) we get gn = (x − βn) − γn/gn−1 , thus, writing the above
equation to n+ 1,

gn+1 = (x− βn+1)− γn+1/gn . (27)

Applying D to (27) and using D(1/gn) = −Dgn/(E1gnE2gn) (cf. (8)) we get

Dgn+1 = 1 + γn+1
Dgn

E1gn E2gn
.

Now we multiply the above equation byAn and use (22), as well asM(1/gn) =
Mgn/(E1gn E2gn) (cf. (10)), thus obtaining

AnDgn+1 = An + γn+1Bn + γn+1CnM(1/gn) +
γn+1Dn

E1gn E2gn
. (28)

Note that from (27) we have

M(1/gn) =
M(x− βn+1)

γn+1
−

Mgn+1

γn+1
. (29)

Also,

γn+1Dn

E1gnE2gn
=

Dn

γn+1
(y1 − βn+1 − E1gn+1) (y2 − βn+1 − E2gn+1) ,

and some computations yield

γn+1Dn

E1gn E2gn
=

Dn

γn+1

(

(y1 − βn+1)(y2 − βn+1) + (y1 − y2)
2/2Dgn+1

−2M(x− βn+1)Mgn+1 + E1gn+1E2gn+1) . (30)
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The substitution of (29) and (30) into (28) yields
(

An − 2
(y1 − y2)

2

4

Dn

γn+1

)

Dgn+1 =
Dn

γn+1
E1gn+1E2gn+1

+

(

−Cn − 2M(x− βn+1)
Dn

γn+1

)

Mgn+1

+

(

An + γn+1Bn +M(x− βn+1)Cn + (y1 − βn+1)(y2 − βn+1)
Dn

γn+1

)

.

The comparison between the above equation and (22) written to n+ 1 gives
us (23)-(26).

3. Characterization theorem

Theorem 2. Let S be a Stieltjes function, let {Pn}n≥0 be the corresponding

SMOP, and let {P
(1)
n }n≥0, {qn}n≥0 be the sequence of associated polynomials

of the first kind and the sequence of functions of the second kind, respectively.
The following statements are equivalent:
(a) S satisfies the Riccati equation (20),

ADS = B E1S E2S + CMS +D ,

where A,B, C,D are polynomials;

(b) Pn and P
(1)
n satisfy the difference relations for all n ≥ 1,

{

ADPn = ln−1E1Pn − C/2E2Pn −B E2P
(1)
n−1 +Θn−1E1Pn−1 ,

ADP
(1)
n−1 = ln−1E1P

(1)
n−1 + C/2E2P

(1)
n−1 +DE2Pn +Θn−1E1P

(1)
n−2 ;

(31)

(c) qn satisfies for all n ≥ 0,

ADqn = ln−1E1qn + (B E1S + C/2)E2qn +Θn−1E1qn−1 , (32)

where ln,Θn are polynomials of uniformly bounded degrees satisfying
the initial conditions l−1 = C/2, Θ−1 = D.

The proof of Theorem 2 will be given at the next section.
Remark . The characterizations stated in Theorem 1 are not uniquely repre-
sented. One can also deduce that the following statements (a), (b), (c) are
equivalent:

(a) S satisfies the Riccati equation (20),

ADS = B E1S E2S + CMS +D ;
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(b) Pn and P
(1)
n satisfy the difference relations for all n ≥ 1,

{

ADPn = ln−1E2Pn − C/2E1Pn − B E1P
(1)
n−1 +Θn−1E2Pn−1 ,

ADP
(1)
n−1 = ln−1E2P

(1)
n−1 + C/2E1P

(1)
n−1 +DE1Pn +Θn−1E2P

(1)
n−2 ;

(33)

(c) qn satisfies for all n ≥ 0,

ADqn = ln−1E2qn + (B E2S + C/2)E1qn +Θn−1E2qn−1 . (34)

Therefore, we deduce the result that follows.

Theorem 3. Let S be a Stieltjes function satisfying the Riccati equation

ADS = B E1S E2S + CMS +D ,

where A,B, C,D are polynomials. Let {Pn}n≥0 be the SMOP related to S,

and let {P
(1)
n }n≥0, {qn}n≥0 be the sequence of associated polynomials of the

first kind and the sequence of functions of the second kind, respectively. The
following relations hold, for all n ≥ 0:

ADPn+1 = (ln − C/2)MPn+1 −BMP (1)
n +ΘnMPn , (35)

ADP (1)
n = (ln + C/2)MP (1)

n +DMPn+1 +ΘnMP
(1)
n−1 , (36)

ADqn = (ln−1 + C/2)Mqn + B (MSMqn −M(Sqn)) + Θn−1Mqn−1 . (37)

Proof : Sum (31) and (33) to get (35) and (36). Following the same idea,
sum (32) and (34) to get (37).

Remark . The equations (35)-(37) extend the ones given in [22] for the semi-
classical case.

Corollary 1. The polynomials ln,Θn of Theorems 2, 3 satisfy, for all n ≥ 0,

ln+1 + ln +M(x− βn+1)
Θn

γn+1
= 0 , (38)

Θn+1 = A+ (y1 − βn+1)(y2 − βn+1)
Θn

γn+1

+

(

γn+1 −
(y1 − y2)

2

4

)

Θn−1

γn
+ 2M(x− βn+1)ln , (39)

with initial conditions l−1 = C/2,Θ−1 = D.
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Proof : Multiply (32), written to n+1, by E2qn and subtract to (32) multiplied
by E2qn+1. Then, multiply the resulting equation by 1/(E1qnE2qn), thus
obtaining

AD

(

qn+1

qn

)

= lnE1

(

qn+1

qn

)

− ln−1E2

(

qn+1

qn

)

+Θn −Θn−1E1

(

qn−1

qn

)

E2

(

qn+1

qn

)

, (40)

where we used the property (13). From the recurrence relation for qn there
holds

qn−1

qn
=

(x− βn)

γn
−

1

γn

qn+1

qn
,

thus

E1

(

qn−1

qn

)

=
1

γn
E1(x− βn)−

1

γn
E1

(

qn+1

qn

)

. (41)

The substitution of (41) in (40) yields

AD

(

qn+1

qn

)

= lnE1

(

qn+1

qn

)

− ln−1E2

(

qn+1

qn

)

+Θn −
Θn−1

γn
E1(x− βn)E2

(

qn+1

qn

)

+
Θn−1

γn
E1

(

qn+1

qn

)

E2

(

qn+1

qn

)

. (42)

On the other hand, if we proceed as above, but starting with the eq. (32)
and using the property (12), we obtain

AD

(

qn+1

qn

)

= lnE2

(

qn+1

qn

)

− ln−1E1

(

qn+1

qn

)

+Θn −
Θn−1

γn
E2(x− βn)E1

(

qn+1

qn

)

+
Θn−1

γn
E1

(

qn+1

qn

)

E2

(

qn+1

qn

)

. (43)

From the sum of (42) with (43) there follows

AD

(

qn+1

qn

)

= (ln − ln−1)M

(

qn+1

qn

)

+Θn +
Θn−1

γn
E1

(

qn+1

qn

)

E2

(

qn+1

qn

)

−
Θn−1

2γn

(

E1(x− βn)E2

(

qn+1

qn

)

+ E2(x− βn)E1

(

qn+1

qn

))

. (44)
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The use of

E1(x− βn)E2

(

qn+1

qn

)

+ E2(x− βn)E1

(

qn+1

qn

)

= 2M(x− βn)M

(

qn+1

qn

)

− 2
(y1 − y2)

2

4
D

(

qn+1

qn

)

in (44) gives us the Riccati equation for gn = qn+1/qn,

AnDgn = Bn E1gn E2gn + CnMgn +Dn

with

An = A−
(y1 − y2)

2

4

Θn−1

γn
,

Bn =
Θn−1

γn
,

Cn = ln − ln−1 −M(x− βn)
Θn−1

γn
,

Dn = Θn .

Now we use Theorem 1. Taking into account the relations (23)-(26) for
An, Bn, Cn, Dn, there follows, for all n ≥ 0,

ln+1 − ln−1 −M(x− βn)
Θn−1

γn
+M(x− βn+1)

Θn

γn+1
= 0 , (45)

Θn+1 = A+ (y1 − βn+1)(y2 − βn+1)
Θn

γn+1

+

(

γn+1 −
(y1 − y2)

2

4
−M(x− βn)M(x− βn+1)

)

Θn−1

γn
+M(x− βn+1)(ln − ln−1) . (46)

To deduce (38) we write (45) in the equivalent form

Mn+1 =Mn , n ≥ 0 and Mn+1 = ln+1 + ln +M(x− βn+1)
Θn

γn+1
,

from which there followsMn+1 =M0, n ≥ 0. The use of the initial conditions
l0 + l−1 +M(x− β0)

Θ
−1

γ0
= 0 yield (38).

Using (38) written to n− 1 in (46) we obtain (39).
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4. Proof of Theorem 2

Proof of (a) ⇒ (b).

If we use S =
qn
Pn

+
P

(1)
n−1

Pn

, n ≥ 1 (cf. (17)), then (20) yields

Mn = −AD

(

P
(1)
n−1

Pn

)

+BE1

(

P
(1)
n−1

Pn

)

E2

(

P
(1)
n−1

Pn

)

+CM

(

P
(1)
n−1

Pn

)

+D , (47)

where

Mn = AD

(

qn
Pn

)

− B

[

E1

(

qn
Pn

)

E2

(

qn
Pn

)

+ E1

(

qn
Pn

)

E2

(

P
(1)
n−1

Pn

)

+

E1

(

P
(1)
n−1

Pn

)

E2

(

qn
Pn

)

]

− CM

(

qn
Pn

)

.

By multiplying both hand sides of (47) by E1PnE2Pn and using the prop-
erties (12) and (9), we obtain

Mn E1Pn E2Pn = −ADP
(1)
n−1E1Pn +ADPn E1P

(1)
n−1 + B E1P

(1)
n−1E2P

(1)
n−1

+
C

2

(

E1P
(1)
n−1E2Pn + E1Pn E2P

(1)
n−1

)

+DE1Pn E2Pn .

Now let us write

− ADP
(1)
n−1E1Pn +ADPn E1P

(1)
n−1 + B E1P

(1)
n−1E2P

(1)
n−1

+
C

2

(

E1P
(1)
n−1 E2Pn + E1Pn E2P

(1)
n−1

)

+DE1Pn E2Pn = Θ̂n−1 , (48)

where Θ̂n−1 is a bounded degree polynomial, as qn(x) = O(x−2n−1). One has

deg(Θ̂n−1) = max{deg(A)− 2, deg(B)− 2, deg(C)− 1}.

Taking into account E1(P
(1)
n−1)E1(Pn−1)−E1(Pn)E1(P

(1)
n−2) =

∏n−1
k=0 γk, n ≥ 1,

(cf. (19)), then (48) can be written as

− ADP
(1)
n−1E1Pn +ADPn E1P

(1)
n−1 + B E1P

(1)
n−1E2P

(1)
n−1

+
C

2

(

E1P
(1)
n−1 E2Pn + E1Pn E2P

(1)
n−1

)

+DE1Pn E2Pn

= Θn−1

(

E1P
(1)
n−1 E1Pn−1 − E1Pn E1P

(1)
n−2

)

, (49)
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where Θn−1 = Θ̂n−1/
∏n−1

k=0 γk.
Now, let us write (49) as
{

ADPn + C/2E2Pn + B E2P
(1)
n−1 −Θn−1E1Pn−1

}

E1P
(1)
n−1

=
{

ADP
(1)
n−1 − C/2E2P

(1)
n−1 −DE2Pn −Θn−1E1P

(1)
n−2

}

E1Pn . (50)

Since E1P
(1)
n−1 and E1Pn do not have common zeroes, for all n ≥ 1, then there

exists a polynomial, ln−1, such that
{

ADPn + C/2E2Pn + B E2P
(1)
n−1 −Θn−1E1Pn−1 = ln−1E1Pn ,

ADP
(1)
n−1 − C/2E2P

(1)
n−1 −DE2Pn −Θn−1E1P

(1)
n−2 = ln−1E1P

(1)
n−1 ,

that is, we get (31).
Proof of (b) ⇒ (a).

Let us define ψn =

[

Pn+1

P
(1)
n

]

. From the three term recurrence relation for {Pn}

and {P
(1)
n }, there follows that ψn satisfies

ψn = (x− βn)ψn−1 − γnψn−2 , n ≥ 1 , ψ−1 =

[

1
0

]

, ψ0 =

[

x− β0
1

]

. (51)

With the notation Dψn =

[

DPn+1

DP
(1)
n

]

, Ejψn =

[

EjPn+1

EjP
(1)
n

]

, j = 1, 2, (31)

reads as

ADψn−1 = ln−1E1ψn−1 + CE2ψn−1 +Θn−1E1ψn−2 , (52)

where C =

[

−C/2 −B
D C/2

]

.

In turn, (52) reads as

A

(

ψn−1(y2)− ψn−1(y1)

y2 − y1

)

= ln−1ψn−1(y1) + Cψn−1(y2) + Θn−1ψn−2(y1) ,

that is,

Anψn−1(y1) +Bψn−1(y2) = Cnψn−2(y1) (53)

with

An = (−
A

y2 − y1
− ln−1)I, B =

A

y2 − y1
I − C, Cn = Θn−1I,

and I denoting the identity matrix of order 2.
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Taking n+ 1 in (53) and using the recurrence relation (51) we get

Ãnψn−1(y1) + B̃nψn−1(y2) = C̃nψn−2(y1) + D̃nψn−2(y2) , (54)

with

Ãn = (y1 − βn)An+1 − Cn+1, B̃n = (y2 − βn)B, C̃n = γnAn+1, D̃n = γnB .

Now, we gather (53) and (54) in the system

En

[

ψn−1(y1)
ψn−1(y2)

]

= Fn

[

ψn−2(y1)
ψn−2(y2)

]

, (55)

where En and Fn are the block matrices

En =

[

An Bn

Ãn B̃n

]

, Fn =

[

Cn 02×2

C̃n D̃n

]

.

Note that En is invertible,

E−1
n =

γn−1

γnΘn−2

[

(y2 − βn)I −I

−B−1Ãn B−1An

]

. (56)

From (55) there follows
[

ψn−1(y1)
ψn−1(y2)

]

= Gn

[

ψn−2(y1)
ψn−2(y2)

]

, Gn = E−1
n Fn , (57)

being Gn an invertible matrix as is a product of invertible matrices.
Take n+ 1 in (57). On the one hand we have

[

ψn(y1)
ψn(y2)

]

= Gn+1

[

ψn−1(y1)
ψn−1(y2)

]

(58)

and, on the other hand, using the three term recurrence relation (51), we
have

[

ψn(y1)
ψn(y2)

]

=

[

(y1 − βn)I 0
0 (y2 − βn)I

] [

ψn−1(y1)
ψn−1(y2)

]

− γn

[

ψn−2(y1)
ψn−2(y2)

]

,

thus,
[

ψn(y1)
ψn(y2)

]

=

([

(y1 − βn)I 0
0 (y2 − βn)I

]

− γnG
−1
n

)[

ψn−1(y1)
ψn−1(y2)

]

. (59)

Consequently, (58) and (59) yield

Gn+1 =

[

(y1 − βn)I 0
0 (y2 − βn)I

]

− γnG
−1
n . (60)
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Let us compute G−1
n . Taking into account (56), we obtain

Gn =

[

XnI YnB
UnB

−1 VnI

]

, (61)

where Xn, Yn, Un, Vn are the functions given by

Xn = αn

(

(y2 − βn)Θn−1 + γn(
A

y2 − y1
+ ln)

)

,

Yn = −γnαn ,

Un = αn

(

(
A

y2 − y1
+ ln)

[

γn(
A

y2 − y1
+ ln−1) + (y1 − βn)Θn−1

]

+ΘnΘn−1

)

,

Vn = −γnαn(
A

y2 − y1
+ ln−1) ,

with αn =
γn−1

γnΘn−2
. Therefore, it turns out that

G−1
n =

1

δn

[

VnI −YnB
−UnB

−1 XnI

]

, (62)

where δn is the function given by δn = XnVn − YnUn .
Taking into account (61) and (62), (60) reads

Xn+1 = (y1 − βn)− γnVn/δn , (63)

Yn+1 = γnYn/δn , (64)

Un+1 = γnUn/δn (65)

Vn+1 = (y2 − βn)− γnXn/δn . (66)

From (63)-(66) there follows that δn+1 = Xn+1Vn+1 − Yn+1Un+1 is given by

δn+1 = (y1 − βn)(y2 − βn)− γn ((y1 − βn)Xn + (y2 − βn)Vn)
1

δn
+
γ2n
δn
.

Now we proceed analogously with Magnus [14, 15]. Write δn = µn/µn−1 .
Then, we obtain

µnXn+1 = (y1 − βn)µn − γnµn−1Vn ,

µnVn+1 = (y2 − βn)µn − γnµn−1Xn ,

µn+1 = (y1 − βn)(y2 − βn)µn − γnµn−1((y1 − βn)Xn + (y2 − βn)Vn) + γ2nµn−1.
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The change of variables

X̂n+1 = µnXn+1, V̂n+1 = µnVn+1

yields the relations

X̂n+1 = (y1 − βn)µn − γnV̂n ,

V̂n+1 = (y2 − βn)µn − γnX̂n ,

µn+1 = (y1 − βn)(y2 − βn)µn − γn

(

(y1 − βn)X̂n + (y2 − βn)V̂n

)

+ γ2nµn−1 .

Remark that the above recurrence relations for X̂n, V̂n and µn are precisely
the recurrence relations satisfied by the products of solutions of the three
term recurrence relation (16) at y1 and y2. Indeed, if

ξn+1 = (y1 − βn)ξn − γnξn−1 , ηn+1 = (y2 − βn)ηn − γnηn−1 ,

then the above recurrence relation for X̂n, V̂n, µn is precisely the relation for
ξnηn−1, ξn−1ηn, ξnηn, respectively. Taking into account that a basis of the
three term recurrence relation τn+1 = (x − βn)τn − γnτn−1 is constituted by
{Pn} and {qn}, (cf. (16) and (18)), the following must hold: ξn must be a
combination of Pn(y1) and qn(y1), and ηn must be a combination of Pn(y2)
and qn(y2). Thus, there are four choices to be considered:

(i) ξn = Pn(y1), ηn = Pn(y2),

(ii) ξn = Pn(y1), ηn = qn(y2) ,

(iii) ξn = qn(y1), ηn = Pn(y2) ,

(iv) ξn = qn(y1), ηn = qn(y2).

Therefore, we obtain

µn = αPn(y1)Pn(y2) + βPn(y1)qn(y2) + γqn(y1)Pn(y2) + δqn(y1)qn(y2) . (67)

Taking n = 0 in (67) we obtain

µ0 = α + βq0(y2) + γq0(y1) + δq0(y1)q0(y1) ,

and such a relation is ADS = BE1S E2S + CMS +D, with

A =
(γ − β)

2
(y2 − y1), B = δ, C = γ + β, D = α− µ0 .

Proof of (a) ⇒ (c).
Note that ADS = B E1S E2S + CMS +D is

ADqn = ln−1E1qn + (B E1S + C/2)E2qn +Θn−1E1qn−1
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with n = 0, since q−1 = 1, q0 = S, l−1 = C/2,Θ−1 = D.
Let us now deduce the above difference equation for n ≥ 1.

Applying AD to qn = PnS − P
(1)
n−1, n ≥ 1 (cf. (17)), and using the prop-

erty (11) we obtain

ADqn = ADPn E1S + ADS E2Pn − ADP
(1)
n−1 .

Using the equations (31) as well as (20) in the above equation, we obtain

ADqn = ln−1E1(PnS − P
(1)
n−1) + (B E1S + C/2 )E2(PnS − P

(1)
n−1)

+ Θn−1E1(Pn−1S − P
(1)
n−2) ,

thus (32) follows.
Proof of (c) ⇒ (a).
Take n = 0 in (32).
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