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Abstract

We prove that if a surjective submersion which is a homomorphism of Lie algebroids is given, then there exists another
homomorphism between the corresponding prolonged Lie algebroids and a relation between the dynamics on these Lie algebroid
prolongations is established. We also propose a geometric reduction method for dynamics on Lie algebroids defined by a
Lagrangian and the method is applied to regular Lagrangian systems with nonholonomic constraints.
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1. Introduction

The Lie algebroids were introduced by Pradines [20] as infinitesimal objects for differential groupoids, and since
then they are receiving an increasing interest from mathematics and theoretical physicists. Recall that a Lie algebroid
is a vector bundle p : A → M over a manifold M together with a vector bundle morphism ρ : A → T M over
the identity map on M (called the anchor) and a Lie bracket [·, ·]A on the C∞(M)-module Γ (A) of sections for p
satisfying

[v, f w]A = f [v, w]A + (ρ(v) f )w

for every pair of sections v and w of A and any smooth function f on M . A Lie algebroid can be seen as a
generalization of both a Lie algebra and a tangent bundle, these being the simplest (nontrivial) examples of Lie
algebroids. Another relevant example of Lie algebroid with equal importance to mathematics and physics is the gauge
algebroid T P/G associated to a principal bundle P(M, G), wherein the classical field theory M is the space–time
manifold and G is the gauge group. For the basic properties and literature on the subject we refer to the book by
Cannas [1] and the survey paper and book by Mackenzie [12,13].
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The aim of this paper is to study the reduction of the dynamics on Lie algebroids, defined by a Lagrangian
function, which can be carried out by using the prolongation of a Lie algebroid over a map, introduced by Higgins
and Mackenzie [9]. The study of Lagrangian mechanics on Lie algebroids was first proposed by Weinstein [23] (see
also [11]), and then Martı́nez [15], adapting the definition of prolongation of a Lie algebroid over a map, developed
a formalism for Lagrangian mechanics on Lie algebroids using the generalization of the fundamental ingredients
of geometric Lagrangian mechanics (the vertical endomorphism, the Liouville vector field and the Cartan forms).
Afterwards, several papers on related subjects were developed, see e.g. [10] and references therein. It is fair to mention
that for studying Lagrangian mechanics on Lie algebroids other approaches are possible, as the one developed by
Grabowska et al. [8] that generalize the work developed by Tulczyjew [21], although in this paper we use the formalism
developed by Martı́nez.

The theory of reduction has many applications and has been shown to be extremely useful for a deep understanding
of many physical theories including, among others, systems with symmetry, Poisson structures, stability theory and
integrable systems. The reduction of the dynamics has been previously considered in many papers (see [14] and the
references therein) but is not a well known subject in Lie algebroids dynamics. This happens because the meaning of
Lie algebroid reduction has not been clearly stated; this issue was clarified in a previous paper [4] where the concept
of Lie algebroid reduction is defined by means of a surjective morphism. In [4], given a surjective morphism of vector
bundles (5, π) : (A, p, M) → ( Â, p̂, M̂) between two Lie algebroids (A, ρ, [·, ·]A) and ( Â, ρ̂, [·, ·] Â), respectively,
Â is said to be a reduced Lie algebroid of A if 5 is a homomorphism of Lie algebroids (see [9,22]). With the study of
reduction of the dynamics on Lie algebroids defined by a Lagrangian we generalize a previous work by Rodrı́guez-
Olmos [19], where the author reduced the dynamics of Lie algebroids with symmetry, that is, a Lie algebroid where a
Lie group acts and whose action is defined by a Lie algebroid representation of the Lie group.

The paper is organized as follows. In Section 2, we prove that given a surjective submersion 5 : A → Â that is a
homomorphism of Lie algebroids, there exists a surjective map between their prolonged Lie algebroids 5|T A :

T A → T Â that is a homomorphism of Lie algebroids too, i.e. we can define a Lie algebroid reduction between
the corresponding prolonged Lie algebroids. The particular case of Lie algebroids with symmetry is analyzed with
a special attention to the gauge algebroid. In Section 3 we show how the dynamics can be reduced, establishing a
relation between the dynamics in the Lie algebroid prolongation T A and the dynamics in the reduced Lie algebroid
prolongation T Â. Finally, in the last section the Chetaev formulation for nonholonomic systems on Lie algebroids is
given and a reduction procedure for Lagrangian systems on Lie algebroids with nonholonomic constraints is explained.
We show that the dynamics of a system with nonholonomic constraints can be reduced if the system has a regular and
5-invariant Lagrangian L = l ◦ 5 with l ∈ C∞( Â).

2. Prolongation of a reduced Lie algebroid

In this section, we will show that, given a Lie algebroid A and a reduced Lie algebroid Â of A, there exists a
homomorphism of Lie algebroids between the prolongation of A and the prolongation of Â, in such a way that the
prolongation of Â is a reduced Lie algebroid of the prolongation of A. This construction is a generalization of the
work developed in [19].

Recall that the prolongation of the Lie algebroid p : A → M (see [9,10,15]) is a vector bundle T A over
A, where T A is the total space of the pullback of the vector bundle T p : T A → T M by the anchor map
ρ : A → T M . The projection pT A : T A → A is defined by pT A(b, v) = pT A(v) = a ∈ A, with
pT A : T A → A the canonical projection of the tangent bundle T A over the base A. An element (b, v) of
T A will be denoted by (a, b, v), where a ∈ A is the point where v is tangent to A. With this notation, T A =

{(a, b, v) ∈ A × A × T A | p(a) = p(b), ρ(b) = Ta p(v), with v ∈ Ta A}. The vector bundle pT A : T A → A can be
endowed with a Lie algebroid structure, where the anchor is the map ρT A : T A → T A, given by ρT A(a, b, v) = v,
and the Lie bracket on the space of sections is defined by setting [15,10]:

[V1, V2]T A(a) = (a, [σ1, σ2]A(p(a)), [X1, X2](a))

for all a ∈ A and all projectable sections V1, V2 ∈ Γ (A), i.e. sections of the form Vi (a) = (a, σi (p(a)), X i (a)) where
σi ∈ Γ (A) and X i ∈ X(A) are such that T p ◦ X i = ρ(σi ) ◦ p, with i = 1, 2. For example, if A is the tangent bundle
to a manifold Q, A = T Q, endowed with its usual Lie algebroid structure, the prolongation of the Lie algebroid A is
the tangent bundle T (T Q) to T Q endowed with its usual structure of Lie algebroid over T Q (see [15]).
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Let A and Â be vector bundles endowed with the Lie algebroid structures (ρ, [·, ·]A) and (ρ̂, [·, ·] Â), respectively.
Suppose that (5, π) : (A, p, M) → ( Â, p̂, M̂) is a surjective submersion of vector bundles that is a homomorphism
of Lie algebroids, i.e. Â is a reduced Lie algebroid of A.

Let us consider the surjective morphism of vector bundles 5 = (5, 5, T 5) over 5. We will show that the
restriction of 5 to T A is a surjective map with values in T Â and a homomorphism of Lie algebroids too. First,
we will show that 5|T A(T A) is contained in T Â. Let (a, b, v) ∈ T A, then 5(a, b, v) = (5(a), 5(b), T 5(v)).
Since p(a) = p(b), we have that π(p(a)) = π(p(b)) and so p̂(5(a)) = p̂(5(b)). On the other hand, ρ̂(5(b)) =

T π(ρ(b)) = T π(T p(v)) = T p̂(T 5(v)); therefore, 5(a, b, v) ∈ T Â. Before proving that 5|T A : T A → T Â is a
homomorphism of Lie algebroids over 5 : A → Â, we need two auxiliary results.

T A
pT A

~~}}
}}

}}
}}

ρT A

��

5|T A // T Â
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id Â~~}}
}}

}}
}}

A
5 // Â

Lemma 2.1. Every section V of pT A : T A → A is written in the form V =
∑

i∈I fi Vi + Z, where Z ∈ Γ (Ker 5)

and, for each i ∈ I , fi ∈ C∞(A) and Vi (a) = (a, σi (p(a)), X i (a)) is a projectable section of T A, with
5 ◦ σi = σ ′

i ◦ π for σ ′

i ∈ Γ ( Â) and T 5(X i ) = X ′

i ◦ 5 for X ′

i ∈ X( Â).

Proof. The 5-projection of a section V of T A is given by

5 ◦ V =

∑
i

fi (V ′

i ◦ 5),

with fi ∈ C∞(A) and V ′

i a projectable section of T Â. Each section V ′

i is given by V ′

i (a
′) = (a′, σ ′

i ( p̂(a′)), X ′

i (a
′))

for all a′
∈ Â. Then,

5 ◦ V (a) =

∑
i

fi (a)(5(a), σ ′

i ◦ p̂ ◦ 5(a), X ′

i ◦ 5(a)) =

∑
i

fi (a)(5(a), σ ′

i ◦ π ◦ p(a), X ′

i ◦ 5(a))

because p̂◦5 = π ◦ p. Once 5 and T 5 are surjective, there exist σi ∈ Γ (A) and X i ∈ X(A), such that, 5◦σ = σ ′

i ◦π

and T 5 ◦ X = X ′

i ◦ 5. Thus,

5 ◦ V (a) =

∑
i

fi (a)(5(a), 5 ◦ σi ◦ p(a), T 5 ◦ X i (a)) =

∑
i

fi (a)(5 ◦ Vi )(a) = 5 ◦

(∑
i

fi Vi

)
(a)

with Vi (a) = (a, σi (p(a)), X i (a)), where 5 ◦ σi = σ ′

i ◦ π and T 5 ◦ X i = X ′

i ◦ 5. Therefore, V =
∑

i fi Vi + Z for
Z ∈ Ker 5. �

Lemma 2.2. Let Z be a section of Ker 5 and V a projectable section of T A fulfilling the conditions of the above
lemma. Then, the following conditions are satisfied:

(1) ρT A(Z) ∈ Ker T 5;
(2) [V, Z ]T A ∈ Ker 5;
(3) Γ (Ker 5) is a Lie subalgebra of Γ (T A).

Proof. If Z ∈ Γ (Ker 5) then Z is of the form Z(a) = (a, σ (p(a)), X (a)) for all a ∈ A, where X ∈ XV (A) is a
5-vertical vector field on A and 5 ◦ σ = 0 ◦π . Since ρT A(Z)(a) = ρT A(a, σ (p(a)), X (a)) = X (a), then (1) holds.
The bracket between the sections Z and V , with V (a) = (a, η(p(a)), Y (a)), for all a ∈ A, is given by

[V, Z ]T A(a) = (a, [η, σ ]A(p(a)), [Y, X ](a)).

Since

T 5 ◦ [Y, X ] = [Y ′, 0] ◦ 5 = 0 ◦ 5
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and

5 ◦ [η, σ ]A = [η′, 0] Â ◦ π = 0 ◦ π,

we have that 5 ◦ [V, Z ]T A = (5(a), 0π(p(a)), 05(a)), that is, condition (2) holds. Now, we suppose that Z1, Z2 ∈

Γ (Ker 5). Then, Z1(a) = (a, σ1(p(a)), X1(a)) and Z2(a) = (a, σ2(p(a)), X2(a)), with X1, X2 ∈ XV (A),
5 ◦ σ1 = 0 ◦ π and 5 ◦ σ2 = 0 ◦ π . Thus,

[Z1, Z2]T A(a) = (a, [σ1, σ2]A(p(a)), [X1, X2](a)).

Since

T 5 ◦ [X1, X2] = 0 ◦ 5 and 5 ◦ [σ1, σ2]A = 0 ◦ π,

we can conclude that 5 ◦ [Z1, Z2]T A = (5(a), 0π(p(a)), 05(a)). �

Now, we prove the main result of this section: “reduction commutes with prolongation”, i.e. the prolongation of a
reduced Lie algebroid is a reduced Lie algebroid of the Lie algebroid prolongation.

Theorem 2.3. The map 5|T A : T A → T Â is a homomorphism of Lie algebroids over 5 : A → Â. Therefore, T Â
is a reduced Lie algebroid of T A.

Proof. We first remark that T 5 ◦ ρT A = ρT Â ◦ 5. In fact, if (a, b, v) ∈ T A, then

T 5 ◦ ρT A(a, b, v) = T 5(v) = ρT Â(5(a), 5(b), T 5(v)) = ρT Â ◦ 5(a, b, v).

Now, let us prove the condition (3) stated by Higgins and Mackenzie in [9]. By the above lemmas and the Leibniz
condition of the Lie bracket [·, ·]T A, we just have to prove the condition on projectable sections of T A of the form
Vi (a) = (a, σi (p(a)), X i (a)), with 5 ◦ σi = σ ′

i ◦ π for σ ′

i ∈ Γ ( Â) and T 5(X i ) = X ′

i ◦ 5 for X ′

i ∈ X( Â), with
i = 1, 2. Thus,

[V1, V2]T A(a) = (a, [σ1, σ2]A(p(a)), [X1, X2](a)),

for all a ∈ A. Then, by the definition of T 5, we have

T 5 ◦ [V1, V2]T A(a) = (5(a), 5 ◦ [σ1, σ2]A(p(a)), T 5 ◦ [X1, X2](a)),

for all a ∈ A. Once 5 : A → Â and T 5 : T A → T Â are Lie algebroid homomorphisms, we have

T 5 ◦ [V1, V2]T A(a) = (5(a), [σ ′

1, σ
′

2] Â(π(p(a))), [X ′

1, X ′

2](5(a))),

that is,

T 5 ◦ [V1, V2]T A(a) = [V ′

1, V ′

2] ◦ 5(a),

for all a ∈ A, where V ′

i (a
′) = (a′, σ ′

i ( p̂(a′)), X ′

i (a
′)), for all a′

∈ Â, with i = 1, 2. �

This proposition is a particular case of a more general result obtained in [16]. The statement of the Theorem 2.3
means that dT A◦(5|T A)∗ = (5|T A)∗◦dT Â, where dT A and dT Â are the exterior derivatives of the Lie algebroids T A
and T Â, respectively. Moreover, one can easily prove that the Lie algebroid structure on T Â is the unique structure
for which 5|T A : T A → T Â is a homomorphism of Lie algebroids over 5 : A → Â.

By hypothesis, 5 is a homomorphism of Lie algebroids, i.e. dA ◦ 5∗
= 5∗

◦ d Â. We also have that p2 : T A → A
is a homomorphism of Lie algebroids (see [10]) so, dT A ◦ p∗

2 = p∗

2 ◦ dA. Then, dT A ◦ (5 ◦ p2)
∗

= (5 ◦ p2)
∗

◦ d Â,
that is, Â is a reduced Lie algebroid of T A.

2.1. Lie algebroids with symmetry

Let Φ be a representation of the Lie group G on the Lie algebroid (A, ρ, [·, ·]A) in the sense of [4]. Suppose
that Φ and its contragradient representation define free and proper actions of G on the fibre bundles (A, p, M) and
(A∗, τ, M), respectively. In these conditions, Φ = (Φ,Φ, TΦ) defines a Lie algebroid representation of G in the Lie
algebroid prolongation T A of A, that is:
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Proposition 2.4. The morphism Φ : G → Aut(T A) is a Lie algebroid representation of the Lie group G on the Lie
algebroid T A.

Proof. First of all we need to prove that Φg := Φ(g) preserves T A, i.e. Φg(T A) ⊂ T A. Let (a, b, v) ∈ Ta A, then
Φg(a, b, v) = (Φg(a),Φg(b), TΦg(v)), with Φg := Φ(g). Since p(a) = p(b), φg(p(a)) = φg(p(b)), where φg is
the base map of Φg; then p◦Φg(a) = p◦Φg(b). We have T p(TΦg(v)) = T (p◦Φg)(v) = T φg ◦T p(v) = T φg ◦ρ(b).
Since Φg is a Lie algebroid representation, then T p(TΦg(v)) = ρ(Φg(b)). Therefore Φg(a, b, v) ∈ TΦg(a) A.

Now, in order to show that Φg is an automorphism of Lie algebroids, we need to prove that TΦg ◦ρT A = ρT A ◦Φg

and Rg([V1, V2]T A) = [Rg(V1),Rg(V2)]T A, for all V1, V2 ∈ Γ (T A), where Rg(V ) = Φg ◦ V ◦ Φg−1 , for all
V ∈ Γ (T A). For the first condition, we have, for all (a, b, v) ∈ Ta A,

ρT A ◦ Φg(a, b, v) = ρT A(Φg(a),Φg(b), TΦg(v)) = TΦg(v) = TΦg ◦ ρT A(a, b, v).

Suppose now that V1, V2 ∈ Γ (T A) are projectable sections, that is, Vi (a) = (a, σi (p(a)), X i (a)), with i = 1, 2.
Then Rg(Vi )(a) = (a,R(σ )(p(a)), X ′

i (a)), where R(σ ) = Φg ◦ σ ◦ φg−1 and X ′

i = TΦg ◦ X i ◦ Φg−1 , with i = 1, 2.
Since

Rg([V1, V2]T A)(a) = (a,Φg([σ1, σ2]A)(φg−1(p(a))), TΦg([X1, X2])(Φg−1(a))), a ∈ A,

and Φg and TΦg are homomorphisms of Lie algebroids, we conclude

Rg([V1, V2]T A)(a) = (a, [Rg(σ1),Rg(σ2)]A(p(a)), [X ′

1, X ′

2](a)) = [Rg(V1),Rg(V2)]T A(a). �

Let 5 be the canonical projection of A onto A/G. We know (see [4]) that A/G is endowed with a vector bundle
structure in such a way that (5, π) : (A, p, M) → (A/G, p̂, M/G) is a surjective submersion of vector bundles.
Moreover, A/G is endowed with a Lie algebroid structure such that 5 is a homomorphism of Lie algebroids. Thus,
by Theorem 2.3, 5|T A is a homomorphism of Lie algebroids over 5 and T (A/G) is a reduced Lie algebroid of
T A. One can easily prove that (T A)/G is endowed with a unique structure of Lie algebroid in such a way that the
projection 5 : T A → (T A)/G defined by Φ = (Φ,Φ, TΦ), is a Lie algebroid homomorphism over 5 : A → A/G.

Next, we will prove the main theorem of this section that deals with reduction and prolongation of Lie algebroids,
in this case reduction of Lie algebroids is defined by a Lie group of symmetry.

Lemma 2.5. For each a ∈ A, the map 5a : Ta A → T[a](A/G) is an isomorphism.

Proof. Let (a, b, v), (a, b′, v′) ∈ Ta A such that 5a(a, b, v) = 5a(a, b′, v′), that is, (5(a), 5(b), T 5(v)) =

(5(a), 5(b′), T 5(v′)). So 5(b) = 5(b′) and T 5(v) = T 5(v′). Since 5 is the canonical projection defined by
the Lie algebroid representation Φ of the Lie group G on A, there exists g ∈ G such that b = Φg(b′). Then,
p(b) = p ◦ Φg(b′), that is, p(a) = φg ◦ p(b′) = φg(p(a)), where φg is the base map of Φg that defines a free and
proper action of the Lie group G on the vector bundle p : A → M . Therefore, g = e and so b = b′.

Now, we prove that v = v′. We have v − v′
∈ Ker Ta5. In these conditions, Ker Ta5 is generated by the

fundamental vector fields in a ∈ A, defined by the free and proper action associated to the representation Φ of G
on A. So, v = v′

+
∑

i λi X i
A(a), where X i represents the elements of a basis of the Lie algebra g of G. Since b = b′,

we know that Ta p(v) = Ta p(v′), then

Ta p(v′) +

∑
i

λi Ta p(X i
A(a)) = Ta p(v′),

that is,∑
i

λi Ta p(X i
A(a)) = 0.

But
∑

i λi Ta p(X i
A(a)) = 0 is equivalent to

∑
i λi X i

M (m) = 0, where p(a) = m and X i
M is the fundamental vector

field on M associated to the element X i of g. Since the fundamental vector fields associated to elements of a basis of
g are independent, then, all λi are null. Therefore, v = v′. �

Theorem 2.6. The Lie algebroids T (A/G) and (T A)/G are isomorphic.
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Proof. The canonical projection 5 : T A → T A/G is, in each point of A, an isomorphism. So, Ta A ' (T A/G)[a]

and therefore, by the above lemma, T[a](A/G) ' (T A/G)[a], for each a ∈ A. We can easily verify that
I : T (A/G) → (T A)/G, defined by I(5(a, b, v)) = 5(a, b, v), is an isomorphism of Lie algebroids over the
identity map on A/G. �

For example, consider a principal fibre bundle P(M, G) and the gauge algebroid associated (T P/G, p, M)

(see [12]). The canonical projection 5 : T P → T P/G determines a homomorphism of Lie algebroids 5|T (T P) :

T (T P) → T (T P/G) over 5. Let φ be the (right) action of the group G on P . Then, Φ(g) := T φg defines a Lie
algebroid representation of the group G in T P . Thus, Φ = (Φ,Φ, TΦ) is a Lie algebroid representation of the group
G in T (T P) ≡ T (T P). By the above proposition T (T P)/G ∼= T (T P/G), that is, T (T P)/G ∼= T (T P/G). In the
recent paper of de Léon et al. [10], the above results for gauge algebroids are proven by a different approach.

3. Reduction of a Lagrangian dynamics

In this section, given a dynamical system on a Lie algebroid A defined by a regular and “invariant” Lagrangian
function, we will show how the dynamics is reduced.

Let (A, p, M) and ( Â, p̂, M̂) be two vector bundles endowed with the Lie algebroid structures (ρ, [·, ·]A) and
(ρ̂, [·, ·] Â), respectively, and suppose that (5, π) : (A, p, M) → ( Â, p̂, M̂) is a surjective submersion of vector
bundles that is a homomorphism of Lie algebroids.

Definition 3.1. A function F ∈ C∞(A) is said to be 5-invariant if there exists a function f ∈ C∞( Â) such that
F = f ◦ 5.

The prolongation of the Lie algebroid p : A → M plays a relevant role in the definition of Lagrangian mechanics
on Lie algebroids. See, for example [15], for the definitions of vertical endomorphism S on the Lie algebroid
prolongation T A and Liouville section ∆ of T A.

Lemma 3.2. The morphism 5 intertwines the vertical endomorphism S on T A with the vertical endomorphism S′ on
T Â, and the Liouville section ∆ of T A is 5-related with the Liouville section ∆′ of T Â, i.e. 5 ◦ S = S′

◦ 5 and
5 ◦ ∆ = ∆′

◦ 5.

Proof. Let a ∈ A, then

5(bV (a)) = (5(a), 0, T 5(bV
a )).

Since

T 5(bV
a ) f =

d
dt

( f ◦ 5)(a + tb)|t=0 =
d
dt

f ( 5(a) + t5(b))|t=0

for all f ∈ C∞(A), we have

T 5(bV
a ) = (5(b))V

5(a).

Therefore,

5(bV (a)) = (5(b))V (5(a)). (3.1)

From the above equality, we show that 5 ◦ S = S′
◦ 5. In fact, for each (a, b, v) ∈ Ta A, we have that

S′
◦ 5(a, b, v) = S′(5(a), 5(b), Ta5(v)) = (5(b))V (5(a)).

By (3.1) we conclude that S′
◦ 5(a, b, v) = 5(bV (a)) = 5 ◦ S(a, b, v). Now, let us prove that 5 ◦ ∆ = ∆′

◦ 5. We
have 5 ◦ ∆(a) = 5(aV (a)), for all a ∈ A. From (3.1), we may write

5 ◦ ∆(a) = (5(a))V (5(a))

and therefore 5 ◦ ∆(a) = ∆′(5(a)) = ∆′
◦ 5(a), for all a ∈ A. �

Next, we will prove the main result of this section, that shows how the dynamics is reduced. This result generalizes
the one obtained in [19] for the reduction of dynamics on Lie algebroids with symmetry.
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Theorem 3.3. Let us suppose that the Lagrangian L ∈ C∞(A) of a dynamical system on the Lie algebroid A is
5-invariant, that is, there exists l ∈ C∞( Â) such that L = l ◦ 5. Then, the following conditions are satisfied:

(i) if EL and E ′

l are the energies of the dynamics on the Lie algebroids A and Â, respectively, then E ′

l ◦ 5 = EL ;
(ii) if θL and θ ′

l are the Cartan 1-forms defined by L and l on the Lie algebroids A and Â, respectively, then
5

∗
θ ′

l = θL . As a consequence, we have the following relation between the Cartan 2-forms 5
∗
ω′

l = ωL .
Moreover, in the case where L is regular we can state:

(iii) the induced Lagrangian l is regular;
(iv) if VL and V ′

l are the solutions of the dynamics on the Lie algebroids A and on Â, respectively, then 5 ◦ VL =

V ′

l ◦ 5.

Therefore, the dynamics on A induced by a regular and 5-invariant Lagrangian L = l ◦ 5 reduces to the
Lagrangian dynamics on Â given by l.

Proof. (i) We have E ′

l := ρT Â(∆′)l − l. Then,

E ′

l ◦ 5(a) = ρT Â(∆′)l ◦ 5(a) − l ◦ 5(a) = ρT Â(∆′(5(a)))l − L(a)

for all a ∈ A. By Lemma 3.2 we have

E ′

l ◦ 5(a) = ρT Â(5(∆(a)))l − L(a)

and by ρT Â ◦ 5 = T 5 ◦ ρT A we obtain

E ′

l ◦ 5(a) = T 5 ◦ ρT A(∆(a))l − L(a) = ρT A(∆(a))(l ◦ 5) − L(a)

for all a ∈ A. Therefore, E ′

l ◦ 5 = EL .
(ii) Let us prove that 5

∗
θ ′

l = θL . Recall that θ ′

l := dT Âl ◦ S′. So, if V ∈ Ta A, we have

5
∗
θ ′

l (V ) = θ ′

l (5(V )) = dT Âl ◦ S′(5(V ))

and using the results of the Lemma 3.2 we may write

5
∗
θ ′

l (V ) = dT Al ◦ 5 ◦ S(V ) = 5
∗

◦ dT Al ◦ S(V ).

But 5
∗

◦ dT A = dT Â ◦ 5
∗
, and then

5
∗
θ ′

l (V ) = dT Â ◦ 5
∗
l ◦ S(V ) = dT Â L ◦ S(V ) = θL(V ),

that is, 5
∗
θ ′

l = θL . Thus, by definition of the Cartan 2-form ω′

l , we deduce 5
∗
ω′

l = −5
∗
(dT Âθ ′

l ). The exterior
derivative commutes with the morphism 5

∗
, so

5
∗
ω′

l = −dT A(5
∗
θ ′

l ) = −dT A ◦ θL =: ωL .

(iii) If L ∈ C∞(A) is regular then ωL is symplectic. By the above condition we have 5
∗
ω′

l = ωL , then, ω′

l is also
symplectic because 5 is a surjective morphism. So the reduced Lagrangian l ∈ C∞( Â) is regular.
(iv) We have

5
∗
ω′

l(VL , X) = ω′

l(5(VL), 5(X)) = i(5(VL))ω′

l(5(X)), (3.2)

for all X ∈ Γ (T A). On the other hand,

5
∗
ω′

l(VL , X) = ωL(VL , X) = i(VL)ωL(X) = dT A EL(X). (3.3)

Since EL = E ′

l ◦ 5 = 5
∗

E ′

l , then by (3.2) and (3.3) we have

i(5(VL))ω′

l(5(X)) = (dT A ◦ 5
∗
)E ′

l(X) = (5
∗

◦ dT Â)E ′

l(X) = dT Â E ′

l(5(X)),

for all X ∈ Γ (T A). So 5(VL) is a global solution of the dynamics in T Â. Once L is regular so is l, then the
Cartan 2-form ω′

l is symplectic and so the dynamical equation has just one solution. Therefore, 5(VL) = V ′

l , that is,
5 ◦ VL = V ′

l ◦ 5. �
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In general, the regularity of l does not imply the regularity of L . However, in the case of Lie algebroids with
symmetry, since 5 is an isomorphism in each fibre, we have that a projectable Lagrangian L = l ◦ 5 on A is regular
iff the reduced Lagrangian l on A/G is regular. Moreover, if Fl : Â → Â∗ denotes the Legendre transformation
associated with the Lagrangian l ∈ C∞( Â) we have

FL(a)(b) =
d
dt

L(a + tb)|t=0 =
d
dt

l(5(a) + t5(b))|t=0 = Fl(5(a))(5(b))

for all a, b ∈ A, then FL = 5∗
◦ Fl ◦ 5.

We can weaken the conditions of the Theorem 3.3, by considering a 5-invariant (possibly degenerated) Lagrangian
L ∈ C∞(A) that admits a global dynamics, i.e. there exists a globally defined section V of T A satisfying the equation
i(V )ωL = dT A EL . With these hypotheses we have

i(5(V ))ω′

l = dT Â E ′

l ,

that is, the reduced dynamics admits a global solution given by 5(V ). If the solution of the initial dynamics V is
5-projectable and a second order differential equation (SODE), i.e. S(V ) = ∆, then the solution of the reduced
dynamics is a SODE too, because

S′(5(V )) = 5(S(V )) = 5(∆) = ∆′.

Of course, if the Cartan 2-form ω′

l is symplectic then 5(V ) is always a SODE.

3.1. Examples of dynamical reduction

1. Reduction of degenerated Lagrangian systems. In standard classical dynamics, let us consider a Lagrangian
L ∈ C∞(T Q) satisfying the following conditions (see [2]):
(A1) the Cartan 2-form ωL is presymplectic, i.e. it is a constant rank closed form;
(A2) the Lagrangian L admits a global dynamics;
(A3) the foliation defined by ωL is regular, i.e. the quotient space T Q/Ker ω̂L has a differentiable manifold

structure and the projection 5 : T Q → T Q/Ker ω̂L is a surjective submersion, where ω̂L(X) = i(X)ωL =

ωL(X, ·) for all X ∈ X(T Q).
Under these conditions, let p : T Q → Q be the canonical projection of T Q and let us suppose that:
(A4) the distribution D = T p(Ker ω̂L) defines a regular foliation of Q, i.e. the space of the leaves Q̂ = Q/D

admits a structure of differentiable manifold for which the canonical projection π : Q → Q̂ is a surjective
submersion.

We can prove that there exists a unique vector bundle structure in the quotient manifold T̂ Q = T Q/Ker ω̂L such
that p̂◦5 = π ◦ p, where p̂ : T̂ Q → Q̂ is given by p̂([X ]) = π(p(X)), for each X ∈ T Q, such that 5(X) = [X ].

We know that the tangent bundle T Q is a Lie algebroid over Q whose anchor is the identity map on T Q
and whose Lie algebra structure on the set of sections is given by the usual bracket of vector fields on Q. If
the surjective submersion of vector bundles (5, π) : (T Q, p, Q) → (T̂ Q, p̂, Q̂) satisfies the conditions of the
reduction theorem stated in [4], then the bundle T̂ Q is endowed with a (reduced) Lie algebroid structure, such that
(5, π) is a homomorphism of Lie algebroids. From what we have proved so far, if L is 5-invariant, the dynamics
in T (T Q) = T (T Q) reduces to the dynamics in T T̂ Q. In other words, the dynamics solution in T (T Q), given
by a vector field V on T Q, projects into a section of T T̂ Q that satisfies the dynamics equation in T T̂ Q. In these
conditions, we can conclude that there exists a unique symplectic form ω̃ on T T̂ Q such that ωL = 5

∗
ω̃ and,

therefore, ω′

l = ω̃ is a symplectic form, where L = l ◦ 5. So the solution of the reduced dynamics is a SODE, i.e.
S′(5(V )) = ∆.

2. Reduction of a principal fibre bundle. Let P(M, G) be a principal fibre bundle. We saw in [4] that the gauge
algebroid T P/G is a reduced Lie algebroid of the tangent bundle T P endowed with its usual Lie algebroid
structure, where the canonical projection (surjective submersion) 5 : T P → T P/G is a homomorphism of
Lie algebroids. Given a 5-invariant Lagrangian L = l ◦ 5 ∈ C∞(T P) with a global dynamics (solution) V on
T P , we have that 5(V ) is a global dynamics (solution) on T P/G, i.e. i(5(V ))ω′

l = dT (T P/G)E ′

l . If V ′
= 5(V )

is a SODE, then the reduced dynamics equation is equivalent to £V ′ θ ′

l = dT (T P/G)l, with θ ′

l = dT (T P/G)l ◦ S′.
Recall that, in this case we have T (T P)/G ∼= T (T P/G).
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4. Reduction of nonholonomic systems on Lie algebroids

In this section, we will prove that dynamical systems on Lie algebroids with constraints can be reduced, if we
impose on the Lagrangian similar conditions to the Theorem 3.3.

4.1. Nonholonomic systems on a Lie algebroid

The first time nonholonomic systems in the framework of Lie algebroids is dealt with, was in [5].
Let us consider a system on the Lie algebroid p : A → M with nonholonomic constraints given by a vector

subbundle B of A, where the submanifold B is defined by the vanishing of a set of independent linear functions
{φa = φaβvβ

| a = 1, . . . , k}. Parallel to the usual formalism in classical mechanics on the tangent bundle (see
e.g. [3]), the constrained system equations of motion can be written in a global form{

( i(V )ωL − dT A EL )|B ∈ Γ (S∗((T B)0))

V |B ∈ Γ (T B),
(4.1)

where T B = {(b, c, v) ∈ B × B × T B | p(b) = p(c), ρ(c) = T p(v), with v ∈ Tb B}1 is a subbundle of pT A|B :

TB A → B and (T B)0
⊂ (T A)∗ denotes the annihilator of T B. The above formulation of the nonholonomic system

in the Lie algebroid A is called Chetaev formulation.
Note that V is a SODE of T A since sections in S∗((T B)0) are semibasic, that is, vanishes on vertical sections of

T A. The semibasic sections S∗(dT Aφa) = ∂φa/∂vβ X β are called reaction forces on the Lie algebroid A.

Definition 4.1. A nonholonomic constraint φ on a Lie algebroid is called ideal if the Liouville section of TB A is a
section of T B, where B is the subbundle of A defined by φ = 0, that is, £∆ φ = dT Aφ(∆) = 0 in B.

With this definition of ideal constraint, we can show:

Proposition 4.2. When the constrains φα are ideal and V is a solution of (4.1), the energy of the system is conserved,
that is, £V EL = 0 on B.

Proof. We have, on B,

£V EL = ρT A(V )EL = λa S∗(dT Aφa)(V ) = λadT Aφa(S(V ))

and, since V is a SODE, then S(V ) = ∆ and

£V EL = λadT Aφα(∆) = λa£∆ φa .

But as the constraints were assumed to be ideal, the right hand term is zero. �

The solution of the nonholonomic system (4.1) is given by

V = VL + λa Za,

where VL is a solution of the initial dynamics (without constraints), Za is a vertical section of T A given by
i(Za)ωL = −S∗(dT Aφa) and λa is a function on A determined in such a way that V |B ∈ Γ (T B), i.e. £V φa = 0, for
all a = 1, . . . , k.

If (q1, . . . , qn, v1, . . . , vs) is a system of local coordinates of p : A → M associated with the choice of a basis of
local sections {eα | α = 1, . . . , s}, the Euler–Lagrangian equations of the constrained system (4.1) are:

q̇ i
= ρi

αvα

d
dt

(
∂L

∂vα

)
= ρi

α

∂L

∂q i + vβcβα
γ ∂L

∂vγ
+ λa ∂φa

∂vα

with λa
∈ C∞(A), for all a = 1, . . . , k, where ρi

α and cβα
γ are the structure functions of the Lie algebroid A

relative to {eα} (see [1]). We can use a new set of local coordinates adapted to the constraints, that is, let us consider

1 In order to simplify the text, we write p (resp. ρ) instead of p|B (resp. ρ|B ).
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a new set of local coordinates on the Lie algebroid A, {(q i , wα) | i = 1, . . . , n, α = 1, . . . , s}, associated with the
basis of sections { fα | α = 1, . . . , s} of A that satisfy:

wα
= Φ̂α(q, v) = Φαβ(q)vβ , vα

= Ψ̂α(q, w) = Ψαβ(q)wβ , (4.2)

for all α = 1, . . . , s, where Φ̂α and Ψ̂α are linear functions on A associated to the A-1-forms Φα and Ψα , respectively,
that satisfies ΨαβΦβγ = δαγ and are defined by

Φ =

(
Is−k 0(s−k)×k
A21 A22

)
, Ψ =

(
Is−k 0(s−k)×k
B21 B22

)
,

where the matrix A = (A21 A22) is given by Aaβ = φaβ for all a = 1, . . . , k and β = 1, . . . , s, with A22 invertible,
and the matrix B = (B21 B22) is given by B21 = −A−1

22 A21 and B22 = A−1
22 . We have the following relations between

the local sections:

fα = Ψβαeβ , eα = Φβα fβ .

In these new coordinates, the Euler–Lagrangian equations of the nonholonomic system on the Lie algebroid A are
given by:

q̇ i
= ρi

βΨβāwā

d
dt

(
∂L

∂wā

)
= ρi

βΨβā
∂L

∂q i + wb̄γ
β

b̄ā

∂L

∂wβ

for all ā = 1, . . . , s − k, where [ fb̄, fā]A = γ
β

b̄ā
fβ . These are, precisely, the equations (5) obtained by Mestdag

et al. in [17], because:

wb̄γ
β

b̄ā

∂L

∂wβ
= wb̄γ

β

b̄ā
Ψηβ

∂L

∂vη

= wb̄ 〈eη, [ fb̄, fā]A
〉 ∂L

∂vη

= wb̄
(
Ψβb̄Ψαā cβα

η
+ ρi

β Ψβb̄
∂Ψηā

∂q i − ρi
αΨαā

∂Ψηb̄

∂q i

)
∂L

∂vη
.

Now, suppose that the subbundle B of A is a Lie subalgebroid of A, that is, there exists an injective morphism
ι : B → A such that ι is a homomorphism of Lie algebroids. In these conditions we have that ι = (ι, ι, T ι)|T B :

T B → T A is a homomorphism of Lie algebroids. Note that, ι ◦ V |B = V ◦ ι, for all V ∈ Γ (T A) such that
V |B ∈ Γ (T B). Then, we can prove the following result:

Lemma 4.3. ι∗(S∗(dT Aφa)) = 0.

Proof. Indeed

ι∗(S∗(dT Aφa)) = S∗

B(ι∗dT Aφa),

where SB is the vertical endomorphism on T B. Then, because ι is a homomorphism of Lie algebroids, we have

ι∗(S∗(dT Aφa)) = S∗

B(dT B(ι∗φa))

and, since ι∗φa = 0, we get ι∗(S∗(dT Aφa)) = 0. �

Consider the set T A B = {(b, a, v) ∈ B × A × T B | p(b) = p(a), ρ(a) = T p(v), with v ∈ Tb B}. The vector
bundle τ : T A B → B, with τ(b, a, v) = b, is endowed with a Lie algebroid structure (see [10,17]), and is called the
prolongation of the bundle B with respect to A (or prolongation of A over the map p : B → M in the terminology
of [10]). Note that

ι = I A
◦ I (4.3)
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where I : T B → T A B is defined by I (b, c, v) = (b, ι(c), v) and I A
: T A B → T A is defined by I A(b, c, v) =

(ι(b), c, T ι(v)); both I A and I are Lie algebroids homomorphisms. In these conditions, we can give a geometric proof
of the relation (14) obtained by Mestdag et al. [17].

Proposition 4.4. The condition i(V |B)δθ̃L = −δ ẼL holds, where θ̃L = (I A)∗θL , ẼL = (I A)∗EL , δ = I ∗
◦ dT A B

and V is the SODE solution to the constrained system (4.1).

Proof. From (4.1) and Lemma 4.3, we have

ι∗( i(V )ωL − dT A EL ) = 0,

that is,

ι∗(i(V )ωL) = ι∗(dT A EL) = δ ẼL ,

which is equivalent to

i(V |B)(ι∗ωL) = δ ẼL .

Since ι∗ωL = −ι∗(dT AθL)
(4.3)
= −I ∗

◦ dT A B((I A)∗θL) = −δθ̃L , we obtain i(V |B)δθ̃L = −δ ẼL . �

Since δ = I ∗
◦ dT A B = dT B ◦ I ∗, from Proposition 4.4 we can write

i(V |B)dT B(ι∗θL) = −dT B(ι∗EL),

which is equivalent to

i(V |B)dT BθL = −dT B EL ,

with θL = ι∗θL and EL = ι∗EL , where L = L ◦ ι : B → R is a differentiable function on B. Therefore,

i(V |B)ωL = dT B EL , (4.4)

with ωL = −dT BθL ; in general this 2-form is degenerate.

4.2. Reduction of nonholonomic systems

Suppose that the surjective submersion of vector bundles (5, π) : (A, p, M) → ( Â, p̂, M̂) is a homomorphism
of the Lie algebroids (A, ρ, [·, ·]A) and ( Â, ρ̂, [·, ·] Â). Let B̂ be a subbundle of Â given by Im 5|B , 5|B(B) = B̂.
Next, we will prove that the constrained dynamics on A reduces into a dynamics on Â whose solution is a section of
T B̂.

First of all, we will show, for all b ∈ B, that 5(V (b)) belongs to the subbundle T B̂ of TB̂ Â, with total space

T B̂ =
{
(b′, c′, v′) ∈ B̂ × B̂ × T B̂ | p̂(b′) = p̂(c′), ρ̂(c′) = T p̂(v′), with v ∈ Tb′ B̂

}
,

where V is the solution of the constrained dynamics on A that satisfies the system (4.1). Let V (b) = (b, c, v) ∈ Tb B,
then 5(V (b)) = (5(b), 5(c), T 5(v)). Thus, p̂(5(b)) = π(p(b)) = π(p(c)) = p̂(5(c)). On the other hand, we
have

T p̂(T 5(v)) = T ( p̂ ◦ 5)(v) = T (π ◦ p)(v)

= T π(T p(v)) = T π(ρ(b))

= (ρ̂ ◦ 5)(b) = ρ̂(5(b)).

Therefore, 5(V (b)) ∈ T B̂, for all b ∈ B. Moreover, if we suppose that V is 5-projectable, then V ′
= 5(V ) is a

SODE since

S′(V ′) = S′(5(V )) = 5(S(V )) = 5(∆) = ∆′.

In the next lemma we prove that i(V ′)ω′

l − dT Â E ′

l is equal to a external force of the reduced system on Â.

Lemma 4.5. With the same notation as before, we have i(V ′)ω′

l − dT Â E ′

l = S′∗(Φ) on B̂, where 5
∗
(Φ) ⊂

(T B)0
+ Ker S∗.



988 J.F. Cariñena et al. / Journal of Geometry and Physics 57 (2007) 977–990

Proof. On B, we know that

i(V )ωL − dT A EL ∈ S∗((T B)0).

So,

i(V )(5
∗
ω′

l) − dT A(5
∗

E ′

l) ∈ S∗((T B)0),

that is,

5
∗
[i(V ′)ω′

l − dT Â E ′

l ] ∈ S∗((T B)0).

But V ′ is a SODE, then i(V ′)ω′

l − dT Â E ′

l is a semibasic 1-form. Therefore, there exists Φ ∈ (T Â)∗ such that

i(V ′)ω′

l − dT Â E ′

l = S′∗(Φ).

Since 5
∗
(S′∗(Φ)) ∈ S∗((T B)0) and 5 ◦ S = S′

◦ 5, then, S∗(5
∗
(Φ)) ∈ S∗((T B)0). Therefore, 5

∗
(Φ) ∈

(T B)0
+ Ker S∗. �

Thus, we have proved:

Theorem 4.6. The constrained dynamics on A reduces into a dynamics on Â whose solution satisfies{
( i(V ′)ω′

l − dT Â E ′

l )|B̂ ∈ Γ (S′∗(C))

V ′
|B̂ ∈ Γ (T B̂),

where 5
∗
(C) ⊂ (T B̂)0

+ Ker S∗.

Since the solution of the nonholonomic system (4.1) is given by V = VL + λα Zα , then V ′
= 5(V ) =

5(VL) + 5(λα Zα), where V ′

l = 5(VL) is the SODE solution of the reduced dynamics without constraints and
5(λα Zα) is a vertical section of T Â such that i(5(λα Zα))ω′

l = S′∗(Φ) is a semibasic section.

Proposition 4.7. We have the following relation, £V EL = £V ′ E ′

l ◦ 5.

Proof. From the relation 5
∗

E ′

l = EL , we have

£V EL = dT A EL(V ) = dT A(5
∗

E ′

l)(V ).

The map 5 is a homomorphism of Lie algebroids, then

£V EL = 5
∗
(dT Â E ′

l)(V ) = dT Â E ′

l(V ′) ◦ 5,

that is, £V EL = £V ′ E ′

l ◦ 5. �

As an immediate consequence we have that:

Corollary 4.8. The energy of the constrained system on A is conserved iff the energy of the reduced system on Â is
conserved.

4.3. Example: Non-Abelian Čaplygin systems

A non-Abelian Čaplygin system is a constrained system whose configuration space is a principal fibre bundle
π : P → M = P/G endowed with a connection given by the constraint distribution H such that T P = H ⊕ V ,
where V is the vertical bundle; therefore, the constraints φα are linear in the velocities and the energy of the system
is conserved (see [3] and references therein). The Lagrangian L ∈ C∞(T P) of the system is supposed to be regular
and invariant for the lifted action of the Lie group G on P , i.e. L = l ◦ 5 where 5 : T P → T P/G is the canonical
projection defined by the lifted action. The constrained system on T P can be formulated as follows:{

( i(V )ωL − dT (T P)EL )|H ∈ Γ (S∗((T H)0))

V |H ∈ Γ (T H).
(4.5)
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The solution of the system is of the form V = VL + λa Za , where VL is the solution of the system without constraints,
Za is a vertical section of T (T P) such that i(Za)ωL = −S∗(dT (T P)φa) and £V φa = 0.

The canonical projection 5 : T P → T P/G maps the subbundle H of A = T P onto the subbundle
H ′

= H/G ∼= T M of Â = T P/G, and it is a homomorphism of Lie algebroids, [4]. The inclusion ι′ : T M → T P/G
of T M in T P/G is given by the horizontal lift of a vector field on M into a vector field on P . Thus, by Theorem 4.6,
the reduced constrained system on T P/G has a solution that satisfies

i(V ′
|T M )δθ̃ ′

l = −δ Ẽ ′

l + ι′
∗
(Φ′),

where Φ′
= i(5(λa Za))ω′

l is a semibasic section, ι′ = I T P/G
◦ I ′

: T H ′
= T (T M) → T (T P/G), with

I ′
: T (T M) → T T P/G(T M) defined by I ′(a, b, v) = (a, ι′(b), v) and I T P/G

: T T P/G(T M) → T (T P/G)

defined by I T P/G(a, b, v) = (ι′(a), b, T ι′(v)), and δ = I ′∗
◦ dT T P/G (T M). Let dT (T M) be a differential operator given

by dT (T M) ◦ I ′∗
= δ = I ′∗

◦ dT T P/G (T M). So,

i(V ′
|T M )dT (T M)(ι′

∗
θ ′

l ) = −dT (T M)(ι′
∗

E ′

l) + ι′
∗
(Φ′).

Note that, ι′
∗
θ ′

l = θl and ι′
∗

E ′

l = El , with l : T M → M defined by l(Yq) = L(Y H
q ) for all q = π(q), Yq ∈ Tq M ,

where Y H denotes the horizontal lift to P of a vector field Y on M . Therefore,

i(V ′
|T M )ωl = dT (T M)(ι′

∗
E ′

l) − ι′
∗
(Φ′),

with ωl = −dT (T M)(ι′
∗
θ ′

l ). As in [3] we have i(V ′
|T M )ι′

∗
(Φ′) = 0, because

i(V ′
|T M )ι′

∗
(Φ′) = Φ′(ι′ ◦ V ′

|T M ) = Φ′(V ′) = ω′

l(5(λa Za), 5(V )) = ωL(λa Za, V ) = 0.

Once this work had been finished we have realized that some similar results had been announced in [6], and are
given in [7] and [18].
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