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Abstract: In this paper we introduce the ∆-Volterra lattice which is interpreted
in terms of symmetric orthogonal polynomials. It is shown that the measure of or-
thogonality associated with these systems of orthogonal polynomials evolve in t like
(1+x2)1−tµ(x) where µ is a given positive Borel measure. Moreover, the ∆-Volterra
lattice is related to the ∆-Toda lattice from Miura or Bäcklund transformations.
The main ingredients are orthogonal polynomials which satisfy an Appell condi-
tion with respect to the forward difference operator ∆ and the characterization of
the point spectrum of a Jacobi operator that satisfies a ∆-Volterra equation (Lax
type theorem). We also provide an explicit example of solutions of ∆-Volterra and
∆-Toda lattices, and connect this example with the results presented in the paper.
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1. Introduction

Nonlinear evolution equations have been used as models to describe var-
ious physical phenomena as shallow water waves and ion-acoustic waves in
plasmas. In 1967, M. Toda [28] introduced a model, that he named as ex-
ponential lattice, for a one-dimensional crystal in solid state physics with a
nearest neighbor interaction, with potential

φ(r) =
a

b
exp(−r) + ar + const. , a, b > 0 ,
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such that the particles are subject to

dpk(t)

dt
= exp(qk−1(t) − qk(t)) − exp(qk(t) − qk+1(t)),

dqk(t)

dt
= pk(t) ,

where qk(t) and pk(t) are the displacement of the k-th particle from its equi-
librium position, and its momentum, respectively and the mass is assumed
to be equal to the unity [5]. The latter Toda lattice describe the oscillations
of an infinite system of points joined by spring masses, where the interac-
tion is exponential in the distance between two spring masses [29]. Later on,
Henón [13] and Flaschka [10] proved that the non–periodic Toda lattice is a
completely Hamiltonian integrable system, with Hamiltonian function

H(q1, . . . , qm, p1, . . . , pm) =
1

2

m
∑

n=1

p2
n +

m−1
∑

n=1

exp
(

qn − qn+1

)

.

By using the Flaschka transformation

an(t) = exp
(

qn−1(t) − qn(t)
)

, bn(t) =
dqn(t)

dt
,

the semi-infinite Toda lattice in one time variable is the system of ordinary
differential equations

a−1(t) ≡ 0 , a0(t) ≡ 1 ,















dan(t)

dt
= an(t)

(

bn−1(t) − bn(t)
)

,

dbn(t)

dt
= an(t) − an+1(t) ,

n ∈ N . (1)

The Toda lattice is integrable in the sense of Liouville and it is mainly a the-
oretical mathematical model due to the rich mathematical structure encoded
in it.

There exists a closed relation between the Toda system (1) and orthogonal
polynomials shown by Moser [22, 23] and Kac and Moerbecke [15], that we
briefly describe. Let t0 ∈ R and µ(x; t0) be a measure such that all the
moments

un =

∫

R

xn dµ(x; t0) , n ∈ N , (2)

exist and are finite, and Pn(x) be the sequence of monic orthogonal polyno-
mials with respect to µ(x; t0),

∫

R

Pn(x)Pm(x) dµ(x; t0) = h2
n δn,m ,
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where δi,j denotes the Kronecker delta. As it is very well-known [7, 14, 27], the
monic polynomials Pn(x; t0) ≡ Pn(x) satisfy a three-term recurrence relation

Pn+1(x) = (x− bn)Pn(x) − anPn−1(x) ,

with initial conditions P0(x) = 1 and P1(x) = x− b0.
The dynamic of the solutions of the Toda lattice (1) corresponds to the

evolution of the spectral measure [23, 24],

dµ(x; t) =
exp(−xt)dµ(x, t0)

∫

exp(−xt)dµ(x, t0)
,

of a operator J(t) , defined in the standard basis of ℓ2(0,∞) ,

ek = (0, . . . , 0, 1, 0, . . . )T , k ∈ N ,

by a Jacobi matrix

J(t) =
(

Ji,j(t)
)

=











b0(t) 1 0
a1(t) b1(t) 1 0

0 a2(t) b2(t) 1 . . .
. . . . . . . . . . . .











, (3)

where the monic polynomials Pn(x; t) orthogonal with respect to the modified
weight µ(x; t) satisfy

Pn+1(x; t) = (x− bn(t))Pn(x; t) − an(t)Pn−1(x; t) , n = 1, . . . , (4)

with initial conditions P0(x; t) = 1 and P1(x; t) = x− b0(t).
Let P be the column vector of monic orthogonal polynomials, i.e. P =

(P0, P1, . . .)
T, with respect to a linear functional u(t), defined in terms of its

moments (2) by (cf. [19])

u(t) : P → R , with
〈

u(t), xn
〉

= un(t) , n ∈ N ,

and J(t) the corresponding Jacobi matrix (3). Then, the recurrence relation
for the monic orthogonal polynomials can be written as

J(t)P = xP .

Next, we define the Stieltjes function [24], S(z; t) = eT

0 Rz(t) e0 , for the

resolvent operator, Rz(t) =
[

J(t)−z I
]−1

, associated with the operator J(t)
(cf. [1]). We shall assume that linear functional, u(t), is normalized, i.e.

u0(t) = 1 . (5)
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By using (cf. [3])
〈

u(t), xn
〉

= Jn
1,1(t) , n ∈ N ,

the Stieltjes function reads as

S(z; t) = eT

0Rz(t) e0 = eT

0

[

J(t) − z I
]−1

e0 = eT

0

∞
∑

n=0

J(t)n

zn+1
e0 =

∞
∑

n=0

Jn
1,1(t)

zn+1

=
∞

∑

n=0

un(t)

zn+1
=

〈

u(t),
1

z − x

〉

.

A difference analogue of a Korteweg-de Vries equation,

a1(t) ≡ 0 ,
dan(t)

dt
= an(t)

(

an+1(t) − an−1(t)
)

, n = 2, 3, . . . ,

is called Langmuir lattice, due to its applications in modeling Langmuir oscil-
lations in plasmas [12] or finite difference KDV equation [25], whose dynamic
is given by

dµ(x; t) =
exp(−x2t)dµ(x, t0)

∫

exp(−x2t)dµ(x, t0)
. (6)

In [12] it was studied the construction of a solution of the Toda lattice














dan(t)

dt
= an(t)

(

bn−1(t) − bn(t)
)

,

dbn(t)

dt
= an(t) − an+1(t) ,

n ∈ Z, (7)

from another given solution, considering sequences {an(t)}n∈Z, {bn(t)}n∈Z, of
real functions. Both solutions of (7) were linked by Bäcklund or Miura trans-
formations

an(t) = γ2n(t)γ2n−1(t) , bn(t) = γ2n+1(t) + γ2n(t) + c , n ∈ Z,

ãn(t) = γ2n+1(t)γ2n(t) , b̃n(t) = γ2n+2(t) + γ2n+1(t) + c , n ∈ Z ,

with c an arbitrary complex constant independent of t and where {γn(t)}n∈Z

is a solution of the Volterra lattice or Langmuir lattice (cf. [25, Theorem 1])

γ̇n+1(t) = γn+1(t)
(

γn+2(t) − γn(t)
)

, n ∈ Z . (8)

This Volterra system, also known as the KM system, was solved in [15] using
a discrete version of the inverse scattering method. The Lax pair for (8)
can be found in [23]. There exists a relation, first discovered by Hénon,
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between the Volterra system and the non–periodic Toda lattice (cf. [8, 23]
for more details).

In [6], this kind of analysis has been generalized to the full hierarchy of
Toda and Volterra lattices studied in [1, 2] (cf. also [9]).

Recently in [4], the following system of nonlinear difference equations,
named ∆-Toda lattice:







∆tan(t) = αn
1(t)

(

bn−1(t) − bn(t+ 1)
)

,

∆tbn(t) = αn
1(t) − αn+1

1 (t) ,
n ∈ N , (9)

and his characterization has been presented, where

αn
1(t) =

gn(t)

b0(t+ 1) + 1
, and gn(t) =

n
∏

k=1

ak(t+ 1)

ak−1(t)
,

assuming that b0(t+ 1) + 1 6= 0 and a0(t) = 1, where the forward difference
operator ∆t is defined by

∆tg(t) = g(t+ 1) − g(t) .

The ∆-Toda lattice (9) can be written in a Lax-type representation as a
first–order linear difference system

∆tJ(t) = A(t) J(t)− J(t+ 1)A(t) ,

where

A(t) =











b0(t+ 1) 0
g1(t) b0(t+ 1) 0

0 g2(t) b0(t+ 1) . . .
. . . . . . . . .











,

and J(t) was defined in (3). Let us now introduce the ∆-Volterra lattice (or
∆-Langmuir lattice) by means of a new Lax–type pair representation

∆tΓ(t) = B(t) Γ(t) − Γ(t+ 1)B(t) , (10)

where

Γ(t) =
(

Γi,j(t)
)

=











0 1 0
γ1(t) 0 1 0

0 γ2(t) 0 1 . . .
. . . . . . . . . . . .











, (11)
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B(t) =















γ1(t+ 1) 0
0 γ1(t+ 1) 0

η1(t) 0 γ1(t+ 1) . . .

0 η2(t) 0 . . .
. . . . . . . . .















, (12)

and

η1(t) = γ1(t+1)γ2(t+1) , ηn(t) =
γ1(t+ 1) · · · γn+1(t+ 1)

γ1(t) · · · γn−1(t)
, n = 2, . . . , (13)

with 1 + γ1(t+ 1) 6= 0 and γn(t) 6= 0.
The main goal of this work is to obtain characterizations of the ∆-Volterra

lattice (10). This will be done in terms of the moments for the associated
linear functional, the Stieltjes function, and in terms of the Appell type
equation that these families of symmetric orthogonal polynomials satisfy.
Besides, it is shown that the solutions of ∆-Toda lattice (9) are connected to
∆-Volterra lattice (10) through Miura or Bäcklund transformations [12, 18].

The structure of the paper is the following: In section 2, we present the
main theorem of the ∆-Volterra lattices. We give a representation of the
symmetric orthogonality functional and a Lax-type theorem. In section 3,
we present the connection between the Bäcklund or Miura transformations
in terms of the theory of orthogonal polynomials. Finally, in section 4, an
explicit example of solutions of ∆-Volterra and ∆-Toda lattices related to
Jacobi polynomials is given, and connected with the results presented in
this paper.

2. ∆-Volterra system

Let us consider the following ∆-Volterra lattice (or ∆-Langmuir lattice)
equivalent to (10):














∆tγ1(t) = −γ1(t+ 1)γ2(t+ 1)

1 + γ1(t+ 1)
,

∆tγn(t) =
γn(t+ 1) · · · γ1(t+ 1)

(

γn−1(t) − γn+1(t+ 1)
)

(1 + γ1(t+ 1))γn−1(t) · · · γ1(t)
, n = 2, . . .

(14)

assuming that 1 + γ1(t+ 1) 6= 0 and γn(t) 6= 0.
We shall also consider the backward difference operator, ∇t, defined by

∇tg(t) = g(t) − g(t− 1) .
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Theorem 1. Let us assume that the sequence {γn(t)}n∈N is uniformly bounded.
The following conditions are equivalent:

(1) The Jacobi matrix Γ(t) defined in (11) satisfies the matrix difference
equation (10).

(2) The moments un(t) associated to a symmetric functional u(t), defined
by (2), satisfy

∆tun(t) = −un+2(t+ 1) + u2(t+ 1)un(t) , when n is even , (15)

since u2n+1(t) = 0.
(3) The Stieltjes function associated with Γ(t) satisfies

∆tS(z; t) = −z2 S(z; t+ 1) + u2(t+ 1)S(z, t) + z . (16)

(4) The linear functional u(t) associated with Γ(t) satisfies

∆tu(t) = −x2 u(t+ 1) + u2(t+ 1)u(t) . (17)

(5) The sequence of monic symmetric polynomials, {Rn(x; t)}n∈N, orthog-
onal with respect to the functional u(t) associated with Γ(t) satisfy an
Appell type property

∆tRn(x; t) = αn
2 (t)Rn−2(x; t) , (18)

where

αn
2 (t) =

〈

u(t+ 1), xnRn(x; t+ 1)
〉

(1 + u2(t+ 1))
〈

u(t), xn−2Rn−2(x; t)
〉 =

ηn−1(t)

1 + γ1(t+ 1)
, (19)

for n = 2, . . ., and ηn(t) was defined in (13).

Proof : (1) ⇒ (2). By induction it can be proved that

∆tΓ
n(t) = B(t) Γn(t) − Γn(t+ 1)B(t) , (20)

where B(t) is defined in (12). By using (2)

eT

0 ∆tΓ
n(t) e0 = ∆t

(

eT

0 Γn(t) e0

)

= ∆tun(t) ,

where eT

0 = (1, 0, . . . ). Moreover, from (20) we have

eT

0 ∆tΓ
n(t) e0 = γ1(t+ 1) Γn

1,1(t) −
(

Γn
1,1(t+ 1) γ1(t+ 1) + Γn

1,3(t+ 1) η1(t)
)

= u2(t+ 1)un(t) − un+2(t+ 1) ,

because γ1(t+1) = Γ2
1,1(t+1) = u2(t+1) and as a consequence of the product

of matrices η1(t) = Γ2
3,1(t+1) = γ1(t+1)γ2(t+1), which completes the proof.
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Moreover, from (10) we obtain

ηn(t) =
γn+1(t+ 1)

γn−1(t)
ηn−1(t) , n = 2, . . . ,

and






(

1 + γ1(t+ 1)
)

∆tγ1(t) = −η1(t)
(

1 + γ1(t+ 1)
)

∆tγn(t) = ηn−1(t) − ηn(t) , n = 2, . . . ,
(21)

what leads to the ∆-Volterra lattice (14).
(2) ⇒ (3). From (15), then

∆tS(z; t) =
∞

∑

n=0

∆tun(t)

zn+1
= −z2

∞
∑

n=0

un+2(t+ 1)

zn+3
+ u2(t+ 1)

∞
∑

n=0

un(t)

zn+1

where we have used that u0(t+ 1) = 1 and u1(t+ 1) = 0. As a consequence,
we obtain (16).

(3) ⇒ (4). By using

S(z; t) =
〈

u(t),
1

z − x

〉

,

and (5), if we apply the ∆t operator, we have that the equation (16) reads as

∆tS(z; t) =
〈

∆tu(t),
1

z − x

〉

= −z2
〈

u(t+ 1),
1

z − x

〉

+ u2(t+ 1)
〈

u(t),
1

z − x

〉

+ z

=
〈

u(t+ 1),
−z2

z − x
+ z + x

〉

+ u2(t+ 1)
〈

u(t),
1

z − x

〉

=
〈

u(t+ 1),
−x2

z − x

〉

+ u2(t+ 1)
〈

u(t),
1

z − x

〉

,

which implies

〈

∆tu(t) + x2 u(t+ 1) − u2(t+ 1)u(t),
1

z − x

〉

= 0 ,

and so, all the moments for the linear functional ∆tu(t)+x2 u(t+1)−u2(t+
1) u(t) are zero, and (17) is obtained.

Moreover, we have
(

1 + u2(t+ 1)
)

∆tu(t) =
(

− x2 + u2(t+ 1)
)

u(t+ 1) .
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(4) ⇒ (5). First of all, let us show that a symmetric regular linear func-
tional u(t) satisfying (15), is such that 1 + u2(t+ 1) = 1 + γ1(t+ 1) 6= 0. Let
us assume that u2(t + 1) = −1. Then, from (15) for n = 2, we obtain that
u4(t+ 1) = 1 which yields

det(H3(t+ 1)) =

∣

∣

∣

∣

∣

∣

u0(t+ 1) u1(t+ 1) u2(t+ 1)
u1(t+ 1) u2(t+ 1) u3(t+ 1)
u2(t+ 1) u3(t+ 1) u4(t+ 1)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 0 −1
0 −1 0
−1 0 1

∣

∣

∣

∣

∣

∣

= 0 ,

in contradiction with being u(t) a regular linear functional (cf. for in-
stance [7]).

Let {Rn(x; t)}n∈N be the sequence of monic symmetric orthogonal polyno-
mials with respect to the linear functional u(t), i.e.

Rn(−x; t) = (−1)nRn(x; t) , n ∈ N .

Since {Rn(x; t)}n∈N is a basis in the space of polynomials of degree n, we have

∇tRn(x; t+ 1) =

n
∑

k=1

αn
k(t)Rn−k(x; t) . (22)

By convention we shall assume that α0
1 = 0. For n = 1, from (22) it is easy

to check that α1
1(t) = 0 because R0(x; t) = 1. Now, if we suppose that we

already have tested that

∆tRn(x; t) = αn
1 (t)Rn−1(x; t) + αn

2 (t)Rn−2(x; t) ,

by comparison of the coefficients in x we have that αn
1 (t) = 0, using that

Rn(x; t) is symmetric.
We shall prove for n = 1, . . . that αn

k = 0 for k = 3, . . . , n and αn
2 6= 0.

From (22) we can write

Rn(x; t+ 1) = Rn(x; t) +

n
∑

k=1

αn
k(t)Rn−k(x; t) , (23)

and by using the orthogonality of Rn(x; t) it holds
〈

u(t), Rn(x; t+ 1)
〉

= αn
n(t)

〈

u(t), 1
〉

.

Moreover, since
〈

u(t+ 1), x2Rn(x; t+ 1)
〉

= 0, for n = 3, . . ., we have

αn
n(t)

〈

u(t), 1
〉

= αn
n(t)

〈

u(t), R0(x; t)
〉

=

n
∑

k=1

αn
k(t)

〈

u(t), Rn−k(x; t)
〉
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=
〈

u(t+ 1),∇tRn(x; t+ 1)
〉

= −
〈

∆t(u(t)), Rn(x; t+ 1)
〉

=
〈

u(t+ 1), x2Rn(x; t+ 1)
〉

− u2(t+ 1)
〈

u(t), Rn(x; t+ 1)
〉

= −u2(t+ 1)
〈

u(t), Rn(x; t+ 1)
〉

.

We now obtain (1+u2(t+1))αn
n(t)

〈

u(t), 1
〉

= 0. Assuming that 1+u2(t+1) 6=
0 and since

〈

u(t), 1
〉

6= 0, we have αn
n(t) = 0.

In the next step we shall prove that αn
n−1(t) = 0. From

n−1
∑

k=1

αn
k(t)

〈

u(t), xRn−k(x; t)
〉

= αn
n−1(t)

〈

u(t), xR1(x; t)
〉

=
〈

u(t), x∇tRn(x; t+ 1)
〉

= −
〈

∆t(u(t)), xRn(x; t+ 1)
〉

=
〈

u(t+ 1), x3Rn(x; t+ 1)
〉

− u2(t+ 1)
〈

u(t), xRn(x; t+ 1)
〉

= −u2(t+ 1)
〈

u(t), Rn(x; t+ 1)
〉

= −u2(t+ 1)αn
n−1(t)

〈

u(t), xR1(x; t)
〉

,

using that
〈

u(t+ 1), x3Rn(x; t+ 1)
〉

= 0, for n = 4, . . . and (23), we obtain
(

1 + u2(t+ 1)
)

αn
n−1(t)

〈

u(t), xR1(x; t)
〉

= 0 .

Since 1+u2(t+1) 6= 0 and
〈

u(t), xR1(x; t)
〉

6= 0 by orthogonality, we conclude
that αn

n−1(t) = 0.
Repeating this process we obtain that αn

k(t) = 0 for k = 4, . . . , n. Let us
prove in the last step that αn

3 (t) = 0. From

3
∑

k=1

αn
k(t)

〈

u(t), xn−3Rn−k(x; t)
〉

= αn
3(t)

〈

u(t), xn−3Rn−3(x; t)
〉

=
〈

u(t), xn−3∇tRn(x; t+ 1)
〉

= −
〈

∆t(u(t)), x
n−3Rn(x; t+ 1)

〉

=
〈

u(t+ 1), xn−1Rn(x; t+ 1)
〉

− u2(t+ 1)
〈

u(t), xRn(x; t+ 1)
〉

= −u2(t+ 1)
〈

u(t), xn−3Rn(x; t+ 1)
〉

= −u2(t+ 1)αn
3(t)

〈

u(t), xn−3Rn−3(x; t)
〉

,

using that
〈

u(t+ 1), xn−1Rn(x; t+ 1)
〉

= 0 and (23), we obtain

(1 + u2(t+ 1))αn
3(t)

〈

u(t), xn−3Rn−3(x; t)
〉

= 0 .

Since 1 + u2(t + 1) 6= 0 and
〈

u(t), xn−3Rn−3(x; t)
〉

6= 0 by orthogonality, we
conclude that αn

3 (t) = 0.
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Therefore, we have obtained that

∇tRn(x; t+ 1) = αn
2(t)Rn−2(x; t) .

Finally, we will determine αn
2 explicitly:

αn
2(t)

〈

u(t), xn−2Rn−2(x; t)
〉

=
〈

u(t), xn−2∇t(Rn(x; t+ 1))
〉

= −
〈

∆t(u(t)), x
n−2Rn(x; t+ 1)

〉

=
〈

u(t+ 1), xnRn(x; t+ 1)
〉

− u2(t+ 1)
〈

u(t), xn−2Rn(x; t+ 1)
〉

=
〈

u(t+ 1), xnRn(x; t+ 1)
〉

− u2(t+ 1)
〈

u(t), xn−2
(

Rn(x; t) + αn
2(t)Rn−2(x; t)

)〉

,

using (17). Hence
(

1 + u2(t+ 1)
)

αn
2 (t)

〈

u(t), xn−2Rn−2(x; t)
〉

=
〈

u(t+ 1), xnRn(x; t+ 1)
〉

,

which gives the value of αn
2 (t) given in (19). Moreover, when n = 2, we can

obtain easily that

α2
2(t) = −∆tγ1(t) ,

taking into account that R2(x; t) = x2 − γ1(t) and α2
2(t) = α2

2(t)R0(x; t) =
∆tR2(x; t).

(5) ⇒ (1) If we apply ∆t to the recurrence relation

xRn(x; t) = Rn+1(x; t) + γn(t)Rn−1(x; t) , n = 1, . . . , (24)

with R−1(x; t) = 0 and R0(x; t) = 1, we get

αn
2xRn−2(x; t) = ∆tRn+1(x; t) + ∆tγn(t)Rn−1(x; t)

+ γn(t+ 1) ∆tRn−1(x; t) . (25)

If we use again the recurrence relation to expand

xRn−2(x; t) = Rn−1(x; t) + γn−2(t)Rn−3(x; t) ,

and ∆tRn+1(x; t) = αn+1
2 Rn−1(x; t), by equating in (25) the coefficients in

Rn−1(x, t) and Rn−3(x; t), we get the equations

αn+1
2 (t) γn−1(t) = αn

2(t) γn+1(t+ 1) , αn
2(t) = αn+1

2 (t) + ∆tγn(t) , n = 2, . . . .

As a consequence, using (19) we obtain (21) and

αn
2(t) =

1

1 + γ1(t+ 1)

γn(t+ 1)γn−1(t+ 1) · · · γ2(t+ 1)γ1(t+ 1)

γn−2(t)γn−3(t) · · · γ1(t)
.
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Thus, we have

(

1 + γ1(t+ 1)
)

∆tγn(t) = αn
2 (t) − αn+1

2 (t)

=
γn(t+ 1)γn−1(t+ 1) · · · γ2(t+ 1)γ1(t+ 1)

γn−1(t)γn−2(t) · · · γ1(t)

(

γn−1(t) − γn+1(t+ 1)
)

,

and we get the desired result.

Theorem 2. Assume that the normalized symmetric functional u(t) verifies

u(t) = κ
(

1 + x2
)1−t

v ,

where κ is the normalizing constant and v is a positive definite linear func-
tional. Then, the coefficients {γn(t)}n∈N of the Jacobi matrix Γ(t) associated
to the functional u(t) are solution of the ∆-Volterra lattice (14).

Proof : Let

f(x, t) =
(

1 + x2
)1−t

, (26)

and the moments

〈

v, xn
〉

=

∫

xn d̺(x) , n = 0, 1, . . . .

Let un(t) the moments of the linear functional u(t),

un(t) =

∫

f(x, t)xn d̺(x)
∫

f(x, t) d̺(x)
.

Since

∆t(f(t)/g(t)) =
∆tf(t) g(t) − f(t) ∆tg(t)

g(t)g(t+ 1)
,

then

∆tun(t) =

∫

∆tf(x, t) xn d̺(x)
∫

f(x, t+ 1) d̺(x)
−

( ∫

f(x, t) xn d̺(x)
)( ∫

∆tf(x, t) d̺(x)
)

( ∫

f(x, t) d̺(x)
)( ∫

f(x, t+ 1) d̺(x)
) .

By using ∆tf(x, t) = −x2 f(x, t+ 1), we obtain

∆tun(t) = −un+2(t+ 1) + u2(t+ 1) un(t) ,

which completes the proof.
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Remark 1. Let us consider the difference operator

∆t,hf(x, t) =
f(x, t+ h) − f(x, t)

h
, lim

h→0
∆t,hf(x, t) =

∂

∂t
f(x, t) .

In this case, the function fh(x, t) to be considered analogue of (26) is

fh(x, t) =
(

1 + hx2
)1−t/h

.

It yields,
lim
h→0

fh(x, t) = exp(−x2t) ,

which is the evolution (6) associated to the continuous case [25].

Next, we prove a Lax-type theorem [17, Theorem 3, p. 270].

Theorem 3. Let λ(t) be a spectral point of the Jacobi matrix Γ(t), i.e.

Γ(t)P(λ(t)) = λ(t)P(λ(t)); (27)

then, Γ(t) satisfies (10) if, and only if, ∆tλ(t) = 0.

Proof : If we apply the ∆t operator to (27) we obtain

∆tΓ(t)P(λ(t)) + Γ(t+ 1)∆tP(λ(t)) = ∆tλ(t)P(λ) + λ(t+ 1)∆tP(λ(t)).

Then,

B(t)λ(t)P(λ(t))− Γ(t+ 1)B(t)P(λ(t))

+ (Γ(t+ 1) − λ(t+ 1) I)∆tP(λ(t)) = (∆tλ(t))P(λ(t)),

and so,
(

Γ(t+ 1) − λ(t+ 1)
)(

∆tP(λ(t)) − B(t)P(λ(t))
)

=
(

∆tλ(t) I − (λ(t+ 1) − λ(t))B(t)
)

P(λ(t)),

with B(t) defined by (12), or equivalently,
(

Γ(t+1)−λ(t+1)
)(

∆tP(λ(t))−B(t)P(λ(t))
)

= ∆tλ(t)(I−B(t))P(λ(t)).

From this we get, as 1 + γ1(t+ 1) 6= 0, that ∆tλ(t) = 0 if and only if
(

Γ(t+ 1) − λ(t+ 1)
)(

∆tP(λ(t)) −B(t)P(λ(t))
)

= 0,

or, what is equivalent, there exists s ∈ R such that

∆tP(λ(t)) = B(t)P(λ(t)) + sP(λ(t+ 1)),

which is equation (18) in vector notation, as s = γ1(t+ 1).
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3. Bäcklund or Miura transformations and sequences of

polynomials

Bäcklund or Miura transformations are equations that relate different solu-
tions of the same nonlinear evolution equation [11, 18, 21]. In this section we
give a simple connection between ∆-Volterra and ∆-Toda lattices by using
background knowledge of the theory of orthogonal polynomials [7].

Lemma 1. Let {γn(t)}n∈N be a solution of the ∆-Volterra lattice (14). Then
{an(t)}n∈N and {bn(t)}n∈N defined by a0(t) = 1 and

an(t) = γ2n(t)γ2n−1(t) , bn(t) = γ2n+1(t) + γ2n(t) + c , n = 1, . . . , (28)

are solution of the ∆-Toda lattice (9). Moreover, the sequences {ãn(t)}n∈N

and {b̃n(t)}n∈N defined by ã0(t) = 1 and

ãn(t) = γ2n+1(t)γ2n(t) , b̃n(t) = γ2n+2(t) + γ2n+1(t) + c , n = 1, . . . , (29)

are also solution of the ∆-Toda lattice (9), assuming that γ0(t) = 1.

Proof : If we apply the ∆t operator to the first equation of (28) we obtain

∆tan(t) = ∆tγ2n(t) γ2n−1(t) + γ2n(t+ 1) ∆tγ2n−1(t) .

From (14) it yields

∆tan(t) =
γ2n(t+ 1) · · · γ1(t+ 1)

(

1 + γ1(t+ 1)
)

γ2n−1(t) · · · γ1(t)

(

γ2n−1(t) − γ2n+1(t+ 1)
)

γ2n−1(t)

+ γ2n(t+ 1)
γ2n−1(t+ 1) · · · γ1(t+ 1)

(

1 + γ1(t+ 1)
)

γ2n−2(t) · · · γ1(t)

(

γ2n−2(t) − γ2n(t+ 1)
)

=
γ2n(t+ 1) · · · γ1(t+ 1)

(

γ2n−1(t) + γ2n−2(t) − γ2n+1(t+ 1) − γ2n(t+ 1)
)

(

1 + γ1(t+ 1)
)

γ2n−2(t) · · · γ1(t)

where by using (28) we finally obtain

∆tan(t) =
an(t+ 1) · · · a1(t+ 1)

(

1 + γ1(t+ 1)
)

an−1(t) · · · a1(t)

(

bn−1(t) − bn(t+ 1)
)

.

Moreover, if we apply the ∆t operator to the second equation of (28) we
obtain

∆tbn(t) = ∆tγ2n+1(t) + ∆tγ2n(t) ,

where by using (28) the result follows.
The results for {ãn(t)}n∈N and {b̃n(t)}n∈N follow in a similar way.
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Given a family of tridiagonal matrices {J(t), t ∈ R}, as in (3), we consider
the sequence of polynomials {Pn(x; t)}n∈N defined in (4). It is well-known [7]
that, if an(t) 6= 0 for n = 1, 2, . . . , then the sequence {Pn(x; t)}n∈N is orthog-
onal with respect to some quasi-definite moment functional.

Lemma 2. Let {an(t)}n∈N and {bn(t)}n∈N be solution of the ∆-Toda lat-
tice (9), and {Pn(x; t)}n∈N be the sequence of orthogonal polynomials with
Jacobi matrix (3). Let c ∈ C such that Pn(c; t) 6= 0, for each n ∈ N and for
all t ∈ R. Then the sequence {γn(t)}n∈N defined in (28) is solution of the
∆-Volterra lattice (14), assuming that γ0(t) = 1.

Proof : From [7, Exercise 9.6, page 49] we have that the coefficients γn(t) have
the following representation

γ2n+1(t) = −Pn+1(c; t)

Pn(c; t)
, γ2n+2(t) = −an+1(t)

Pn(c; t)

Pn+1(c; t)
, n = 0, 1, . . . ,

for the odd and even cases.
If we apply the ∆t operator to the first equation, we obtain

∆tγ2n+1(t) = −∆tPn+1(c; t)

Pn(c; t)
+
Pn+1(c; t+ 1) ∆tPn(c; t)

Pn(c; t)Pn(c; t+ 1)
.

In [4] we have proved that a necessary and sufficient condition for {an(t)}n∈N

and {bn(t)}n∈N be a solution of a ∆-Toda lattice (9) is that {Pn(x; t)}n∈N

satisfy an Appell property

∆tPn(x; t) = αn
1(t)Pn−1(x; t) , αn

1 (t) =
1

1 + γ1(t+ 1)

n
∏

k=1

ak(t+ 1)

ak−1(t)
,

assuming that 1 + γ1(t+ 1) 6= 0 and a0(t) = 1. Therefore,

∆tγ2n+1(t) = −αn+1
1 (t) − γ2n+1(t+ 1)αn

1(t)Pn−1(c; t)

Pn(c; t)

= −αn+1
1 (t) +

γ2n+1(t+ 1)γ2n(t)α
n
1(t)

an(t)
= αn+1

1 (t)
(

− 1 +
γ2n+1(t+ 1)γ2n(t)

an+1(t+ 1)

)

=
αn+1

1 (t)

γ2n+2(t+ 1)

(

− γ2n+2(t+ 1) + γ2n(t)
)

,

which yields the odd part of (14). The even part can be proved in a simi-
lar way.
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As a consequence, if {an(t)}n∈N and {bn(t)}n∈N are solution of the ∆-Toda
lattice defined in (9), then from Lemma 2 we construct a solution of the
∆-Volterra lattice (14) denoted by {γn(t)}n∈N. Now, from Lemma 1 and
these coefficients {γn(t)}n∈N we construct another solution {ãn(t)}n∈N and
{b̃n(t)}n∈N of the ∆-Toda lattice defined in (9).

Let us denote by Γn(t) the finite submatrix formed by the first n rows
and columns of Γ(t). We may summarize these results as follows, which is a
∆t-analogue of [6, Theorem 1.3], where the full Toda and Volterra hierarchy
has been considered.

Theorem 4. Let us consider the family {Γ(t), t ∈ R}, of tridiagonal infinite
matrices defined in (11) and let c ∈ C be such that det(Γn(t) − c In) 6= 0,
for each n ∈ N and for all t ∈ R. Then there exists a sequence {γn(t)}n∈N,
t ∈ R, solution of (14) and there exists a pair of two sequences {an(t)}n∈N,
{bn(t)}n∈N, and {ãn(t)}n∈N, {b̃n(t)}n∈N, t ∈ R, solutions of (9) such that (28)
and (29) hold.
Moreover, for each c ∈ C in the above conditions, the sequences {γn(t)}n∈N,
{an(t)}n∈N, {bn(t)}n∈N, and {ãn(t)}n∈N, {b̃n(t)}n∈N are the unique sequences
verifying (28) and (29).

Notice that the condition det(Γn(t)−c In) 6= 0, is equivalent to Pn(c; t) 6= 0
for the monic polynomials Pn(x; t) defined by (4) [7, 24, 27].

4. Example: Modified Legendre functional

Let us consider
〈

v, p(x)
〉

=
1

2i

∫ i

−i

p(x) dx ,

the Legendre linear functional on [−i, i] normalized to have first moment
equal to one, and let us consider the functional

u(t) =
2 Γ

(

5
2
− t

)

√
π Γ(2 − t)

(1 + x2)1−t v .

Then, the even moments are explicitly given by

u2n(t) =
(−1)n Γ

(

n+ 1
2

)

Γ
(

5
2 − t

)

√
π Γ

(

n− t+ 5
2

)

and u2n+1(t) = 0, n ∈ N due to the symmetry of u(t).
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Let us consider the sequence {γn(t)}n∈N defined by

γn(t) = − n(n− 2t+ 2)

(2n− 2t+ 1)(2n− 2t+ 3)
, n = 1, . . . , γ0(t) = 1 , t 6= 1 ,

which is solution of the ∆-Volterra equations (14).
The sequence of monic symmetric polynomials {Rn(x; t)}n∈N which satisfy

the three term recurrence relation (24) are explicitly given, for n ∈ N, by

Rn(x; t) =

(

− i
2

)n
n!C

(

3

2
−t

)

n (ix)
(

3
2
− t

)

n

= xn
2F1

(1

2

(

(−1)n − 2
[n

2

])

,−
[n

2

]

; t+
(−1)n

2
− 2

[n

2

]

− 1;− 1

x2

)

, t <
3

2
,

where C
(λ)
n (x) are the Gegenbauer (or ultraspherical) polynomials defined

in [16, (9.8.19)] and
[

x
]

gives the integer part of x.
These polynomials are orthogonal with respect to the normalized linear

functional

u(t) = −i
(

x2 + 1
)1−t

Γ
(

5
2 − t

)

√
π Γ(2 − t)

= κ̃
(

1 + x2
)1−t

,

i.e., for all n,m ∈ N,

∫ i

−i

κ̃
(

1 + x2
)1−t

Rn(x; t)Rm(x; t) dx =

(

− 1
4

)n
Γ(n+ 1)

(

3 − 2t
)

n
(

3
2
− t

)

n

(

5
2
− t

)

n

δnm, t <
3

2
.

The sequence of orthogonal polynomials {Rn(x; t)}n∈N coincides with the
monic orthogonal polynomials sequence defined in [20, (17)] for r = 4 − 2t,
s = 0, p = 1 and q = 1 or with the polynomials defined in [20, (86)] with
a = 0 and b = t − 1. It is shown that they are also finitely orthogonal
with respect to the second kind of beta weight function x−2a(1 + x2)−b on
(−∞,∞).

Observe that the difference equation (18) can be written as

∆tRn(x; t) =
(n− 1)n

(−2n+ 2t− 1)(−2n+ 2t+ 1)
Rn−2(x; t) , n = 2, . . . .
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Using the Miura transformations (28) we obtain explicitly the sequences

an(t) =
4n(2n− 1)(2n− 2t+ 1)(n− t+ 1)

(4n− 2t− 1)(4n− 2t+ 1)2(4n− 2t+ 3)
, n = 1, . . . ,

bn(t) =
−4n(2n− 2t+ 3) + 2t− 1

(4n− 2t+ 1)(4n− 2t+ 5)
, n ∈ N , t 6= 1 ,

which are solutions of the ∆-Toda lattice defined in (9).
The sequence of monic polynomials {Pn(x; t)}n∈N defined by the three term

recurrence relation (4) can be identified in terms of monic shifted Jacobi
polynomials

G(α,β)
n (x) =

(−1)n(β + 1)n

(α + β + n+ 1)n
2F1(−n, α+β+n+1; β+1; x), α, β > −1, (30)

as

Pn(x; t) = (−1)nG(1−t,−1/2)
n (−x) , n ∈ N ,

and moreover y(x) = Pn(x; t) obey the following second order differential
equation

x(1 + x)y′′(x) +
1

2
((5 − 2t)x+ 1)y′(x) − 1

2
n(2n− 2t+ 3)y(x) = 0 .

Thus, the following orthogonality relation holds,

∫ 0

−1

(1 + x)1−t

√
−x Pn(x; t)Pm(x; t) dx

=

√
π 4−2n+t−1Γ(2n+ 1)Γ

(

5
2 − t

)

Γ(2n− 2t+ 3)

Γ(2 − t)Γ
(

2n− t+ 3
2

)

Γ
(

2n− t+ 5
2

) δn,m ,

n,m ∈ N, for t < 3
2. It is easy to verify that in this case

R2n(x; t) = Pn(x
2; t), R2n+1(x; t) = xQn(x

2; t) , n ∈ N ,

where the polynomials Qn(x; t) are obtained from the polynomials Pn(x; t)
by the Christoffel transformation, [7]:

Qn(x; t) =
Pn+1(x; t) − ψn(t)Pn(x; t)

x
, (31)

where

ψn(t) =
Pn+1(0; t)

Pn(0; t)
= − (2n+ 1)(2t− 2n− 3)

(2t− 4n− 3)(2t− 4n− 5)
, n ∈ N .
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In a similar way, using the transformations (29) we obtain the new recurrence
coefficients

ãn(t) =
4n(2n+ 1)(2n− 2t+ 3)(n− t+ 1)

(4n− 2t+ 1)(4n− 2t+ 3)2(4n− 2t+ 5)
, n = 1, . . . ,

b̃n(t) =
−4n(2n− 2t+ 5) + 6t− 9

(4n− 2t+ 3)(4n− 2t+ 7)
, n ∈ N , t 6= 1 ,

which also satisfy the chain of difference equations (9) for the ∆-Toda lattice.
The monic polynomials {P̃n(x; t)}n∈N generated by P̃−1(x; t) = 0, P̃0(x; t) = 1,

P̃n(x; t) = (x− b̃n−1(t))P̃n−1(x; t) − ãn−1(t)P̃n−2(x; t), n = 1, . . . ,

can be identified in terms of monic shifted Jacobi polynomials (30) as

P̃n(x; t) = (−1)nG(1−t,1/2)
n (−x) , n ∈ N .

Thus, y(x) = P̃n(x; t) is solution of the equation of hypergeometric type

x(1 + x) y′′(x) +
1

2
((7 − 2t)x+ 3) y′(x) − 1

2
n(2n− 2t+ 5) y(x) = 0 ,

and their polynomial solutions have the orthogonality property

∫ 0

−1

(1 + x)1−t
√
−x P̃n(x; t) P̃m(x; t) dx

=

√
π 2−4n+2t−3Γ(2n+ 2)Γ

(

7
2 − t

)

Γ(2n− 2t+ 4)

Γ(2 − t)Γ
(

2n− t+ 5
2

)

Γ
(

2n− t+ 7
2

) δn,m ,

n,m ∈ N, for t < 3
2 . It is easy to verify that in this case the new solu-

tion P̃n(x; t) coincides with the monic kernel polynomials corresponding to
{Pn(x; t)}n∈N defined in (31), i.e.

P̃n(x; t) = Qn(x; t), n ∈ N .
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