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A fitness-driven cross-diffusion system from

polulation dynamics as a gradient flow

Stanislav Kondratyev, Léonard Monsaingeon and Dmitry Vorotnikov

Abstract

We consider a fitness-driven model of dispersal of N interacting populations,

which was previously studied merely in the case N = 1. Based on some optimal

transport distance recently introduced, we identify the model as a gradient

flow in the metric space of Radon measures. We prove existence of global

non-negative weak solutions to the corresponding system of parabolic PDEs,

which involves degenerate cross-diffusion. Under some additional hypotheses

and using a new multicomponent Poincaré-Beckner functional inequality, we

show that the solutions converge exponentially to an ideal free distribution in

the long time regime.
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1 Introduction

Living organisms tend to form distributional patterns but not to be arranged either
uniformly or randomly. This spatial heterogeneity plays a crucial role in ecological
theories and their practical applications. It should be taken into account when
modeling epidemics, ecological catastrophes, competition, adaptation, maintenance
of species diversity, parasitism, population growth and decline, social behaviour, and
so on [21]. In order to understand the way the species distribute themselves it is
important to pay attention to their dispersal strategies.

In this paper we study a system of PDEs for several interacting populations whose
dispersal strategy is determined by a local intrinsic characteristic of organisms called
fitness (cf. [10, 11]), essentially the signed difference between available resources
and their consumption by the individuals. The fitness manifests itself as a growth
rate, and simultaneously affects the dispersal as the species move along its gradient
towards the most favorable environment. The equilibrium when the fitnesses of all
populations vanish can be referred to as the ideal free distribution [14, 13], since no
net movement of individuals occurs in this case. We are thus going to study the
system

∂tui = − div(ui∇fi) + uifi, x ∈ Ω, t > 0, i = 1, . . . , N, (1.1)

of N interacting species located in a bounded domain Ω ⊂ R
d. For prescribed

resources m = (mi(x)) we assume a generic linear relation between the population
densities u = (ui(t, x)) and their corresponding fitnesses f = (fi(t, x)):

f = m−Au. (1.2)

We assume that both the matrix A and the vector m depend on x ∈ Ω, thus our
model is spatially heterogeneous. Formula (1.2) expresses the idea that the fitness
is determined by the difference between the available resources m and the animals’
consumption Au.

The mathematical difficulties which we will face when studying the parabolic
system (1.1)-(1.2) come from the fact that it involves both cross-diffusion (for N > 1)
and degenerate diffusion. In the case of merely one population (N = 1), the fitness-
driven dispersal model (1.1), (1.2) was suggested in [27, 10] and studied in [12, 18]
(see also [4]). Related fitness-driven two-species models were investigated in [5, 25]
where one population uses the fitness-driven dispersal strategy and the other diffuses
freely or does not move at all. In the case when A is a constant matrix, m ≡ 0, and
the second (reaction) term uifi in (1.1) is omitted, system (1.1), (1.2) is equivalent
to the degenerate cross diffusion system which was recently analyzed in [1] with
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an application to seawater intrusion. Another population dynamics model which
involves cross-diffusion is the Shigesada, Kawasaki and Teramoto model

∂tui = ∆

(

ui

(

di +
N
∑

i=1

aijuj

))

+ ui

((

ci −
N
∑

i=1

bijuj

))

, i = 1, . . . , N, (1.3)

where the coefficients are non-negative constants. It has been extensively studied
(mostly for N = 2) from the point of view of well-posedness and long-time behaviour
(see, e.g., [9, 6, 17, 16, 26, 24] and the references therein). Note that the constants
di in (1.3) are usually assumed to be strictly positive, hence this problem is not as
degenerate as our system (1.1), (1.2).

On the other hand, being inspired by the ideas of the Monge-Kantorovich optimal
transport theory [32, 33], we have recently constructed in [18] a new distance on the
space of non-negative finite Radon measures. The same distance was almost simulta-
neously introduced in the independent works [8, 22] (see also subsequent [23, 7, 15]).
This metric generates a formal (infinite dimensional) Riemannian structure on this
space, and provides first- and second-order differential calculus in the spirit of Otto
[29]. With this differential calculus at hand we were able to identify in [18] the scalar
model as a metric gradient flow, which allowed us to prove long-time convergence to
the ideal free distribution with explicit exponential rates. The goal of this paper is
to extend our previous results to the multispecies case N > 1: we will observe that
the problem (1.1), (1.2) can be interpreted as a formal gradient flow of some driv-
ing entropy functional on the Cartesian product of N spaces of non-negative Radon
measures with respect to this geometric structure (provided that the matrix A(x) is
symmetric). Roughly speaking, the entropy E(u) ≈ ‖u − u∞‖2

L2(Ω) ≈ ‖f‖2
L2(Ω) will

quantify the deviation from the ideal free distribution u∞, characterized by f = 0.
In this framework and under some general structural assumptions on A and m, we
will prove existence of non-negative weak solutions to our problem (which to the best
of our knowledge was known so far only in the scalar case [12]), and show that, at
least for subcritical initial entropies, all the species persist and exponentially con-
verge to the ideal free distribution. All our arguments will have a strong optimal
transport flavor, but, due to the multicomponent nature of the problem preventing
our entropy functional from being geodesically convex, the abstract results for metric
gradient flows in [2] do not apply directly. As a consequence some technical work
will be needed to justify the formal Riemannian computations and a priori estimates
(in particular some chain rules in weighted spaces), and we will argue using several
approximations and regularizations in a more standard PDE framework.
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The paper is organized as follows: In Section 2 we impose precise structural
assumptions and state our results. In Section 3 we describe the optimal transport
distance on the product measure space M+(Ω)N , discuss the induced formal Rieman-
nian structure and calculus, and highlight the gradient-flow structure of the system.
We also present two formal but crucial computations, consisting of a priori entropy
and gradient estimates to be derived more rigorously later on. Section 4 is devoted to
the existence of weak solutions, whose proof will involve three successive regulariza-
tions. The last Section 5 contains the proof of the long-time convergence, based on a
new vectorial Poincaré-Beckner type inequality which serves as an entropy-entropy
production inequality for our gradient flow. The Appendix contains a technical func-
tional analytic lemma.

2 Conventions and main results

Throughout the whole paper we assume that Ω ⊂ R
d is an open, connected, bounded

domain with sufficiently smooth boundary. We always denote vector functions with
values in R

N by bold letters, e.g., f = (fi(t, x)). We assume that we are given a
function m = (mi(x)) : Ω → R

N and a symmetric positive-definite matrix function
A = (aij(x)) : Ω → R

N×N , and without further mention we shall always assume the
uniform ellipticity condition

0 < λA ≤ A(x) ≤ ΛA, x ∈ Ω

for some structural constants λA ≤ ΛA. We assume that A and m are sufficiently
smooth. Note that we do not assume that all the components of A and m are
non-negative.

All the integrals are always implicitly written with respect to the Lebesgue mea-
sures dx, dt, or dxdt. The symbol M+(Ω) denotes the space of (non-negative) Radon
measures on Ω. Parentheses denote the scalar product in L2(Ω), L2(Ω)N or L2(Ω)N×d.
The symbol Cw(J ;X) stands for the space of weakly continuous (resp., narrowly
continuous) curves with defined on J ⊂ R and with values in X = L2(Ω) (resp.,
X = M+(Ω)).

We study the system







∂tui = − div(ui∇fi) + uifi, x ∈ Ω, t > 0, i = 1, . . . , N,

ui
∂fi
∂ν

= 0, x ∈ ∂Ω, t > 0,
ui(0, x) = u0

i (x), x ∈ Ω.
(2.1)

4



As already mentioned in the introduction and without further mention, we always
denote the fitness by

f = m−Au,

and the ideal free distribution u∞(x) is obtained by solving f = 0, i-e

u∞ := A−1m ⇔ f = 0.

Note that at this stage u∞ can have negative components and may therefore be
biologically irrelevant (but it will be non-negative later on with extra structural
conditions on A,m), and that u∞ is trivially a steady state of (2.1) with fi ≡ 0.

We will show in Section 3 that (2.1) is the gradient flow of the entropy

E(u) =
1

2

∫

Ω

A(u− u∞) · (u− u∞)

=
1

2

∫

Ω

A−1f · f =
1

2

∫

Ω

(u∞ − u) · f , u ∈ L2(Ω)N (2.2)

with respect to some optimal transport distance.

Definition 2.1. Let u0 ∈ L2(Ω)N , u0
i ≥ 0. A vector function

u ∈ Cw([0,∞);L2(Ω)N) ∩ L2
loc([0,+∞);H1(Ω)N ),

ui ≥ 0, is called a non-negative weak solution to problem (2.1) provided

d

dt

∫

Ω

u ·w =

N
∑

i=1

∫

Ω

(ui∇fi · ∇wi + uifiwi) , ∀w ∈ (C1(Ω))N ,

in the sense of distributions D′(0,∞), and the initial condition u(0) = u0 is satisfied
weakly in the space L2(Ω)N .

Theorem 1 (existence of non-negative weak solutions). Let u0 ∈ L2(Ω)N with u0
i ≥

0. There exists a non-negative weak solution

u ∈ L∞(0,+∞;L2(Ω)N)
⋂

Cw([0,+∞);L2(Ω)N )
⋂

L2
loc([0,+∞);H1(Ω)N )

to problem (2.1), satisfying the Entropy-Dissipation-Inequality

E(u(t1)) +
∑

i

∫ t1

t0

∫

Ω

ui(|∇fi|
2 + |fi|

2) ≤ E(u(t0)) for a.e. 0 ≤ t0 ≤ t1. (2.3)
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Remark 2.1. We were not able to prove any uniqueness result due to the lack of
geodesic convexity, which usually gives contractivity in the metric sense and thus
uniqueness; we therefore believe that any hypothetical proof of uniqueness cannot
come from standard mass transport arguments and should rely on some PDE ap-
proach.

To fix the ideas and improve readability, we assume that A does not depend on x.
The generalization to the x-dependent case would require technical work and employs
the fact that the last sum in the expansion ∇fi = ∇mi −

∑

j aij∇uj −
∑

j uj∇aij
is of lower order with respect to the penultimate one, but all the arguments below
would carry through with minor modifications.

With an additional assumption, we obtain long-time convergence u(t) → u∞ to
the ideal free distribution with survival of all the species:

Theorem 2 (long-time behavior). Let u0 be as in Theorem 1, and assume in addition
that the structural hypothesis (5.1) holds. Then u∞(x) > 0 (componentwise), and
there exists E∗ ≡ E∗(A,m) > 0 such that, for any subcritical initial datum E(u0) <
E∗, our solution u converges exponentially to u∞ as

E(u(t)) ≤ e−γtE(u0) (2.4)

for all t ≥ 0 and some γ ≡ γ(u0,m, A,Ω) > 0.

Note that our coercivity assumption A ≥ λA controls E(u) ≥ λA

2
‖u − u∞‖2L2(Ω),

thus the entropy decay (2.4) immediately implies L2 convergence. The consequences
and interpretation of the additional assumption (5.1) will be discussed later on in
Section 5. In Theorem 2 we had to restrict to subcritical entropies E(u0) < E∗ for
technical reasons, but we conjecture that (2.4) holds for any u0 ≥ 0 (unless some
component of u0 is identically zero). Indeed our proof of the long-time convergence
works provided that no extinction occurs, say ‖ui(t)‖Lp(Ω) ≥ ci > 0 for all i ∈
{1, . . . , N}, t ≥ 0, and some p ≥ 1. For both the ODE dynamics (i-e when all
densities and resources are constant in space) and for the one-animal PDE dynamics
[12, 18] this is true, but due to the cross-diffusion we were not able to prove the
non-extinction in the general case. In other words, our subcriticality assumption in
Theorem 2 is a technical workaround guaranteeing that our solution stays away from
a finite number of certain partial extinction regimes. These regimes correspond to
the situations when some (or all) populations go extinct, and the survivors compose
a (lower-dimensional) ideal free distribution. This allows us to provide an explicit
value for E∗ depending only on the structure of the problem, see Section 5 for the
details.
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3 The gradient-flow structure and a priori estimates

The celebrated Benamou-Brenier formula was originally established in [3] to charac-
terize the quadratic Monge-Kantorovich-Wasserstein distance as a dynamical evolu-
tion problem, and is restricted to conservative optimal transport of measures with
fixed mass (typically probability measures). In [18] we constructed an optimal trans-
port distance d on the space of arbitrary non-negative Radon measures M+(Ω),
based on a modified dynamical Benamou-Brenier formula allowing for mass varia-
tions. More precisely, for any u0, u1 ∈ M+(Ω) the distance reads

d
2(u0, u1) = min

(u,g)

∫ 1

0

∫

Ω

(|∇gt(x)|
2 + |gt(x)|

2)dut(x)dt,

where the infimum is taken among narrowly continuous curves

t 7→ ut ∈ Cw([0, 1];M
+(Ω))

with endpoints u0, u1 such that the non conservative continuity equation

∂tut + div(ut∇gt) = utgt

holds in the sense of distributions D′((0, 1) × Ω). Biologically, one can think of g
as fitness: in the continuity equation above the individuals u reproduce or die with
rate g equal to the local fitness, and move along the velocity field ∇g towards the
most favorable environment. Our construction was originally derived in the whole
space Ω = R

d, but immediately extends to general domains imposing natural zero-
flux boundary conditions on the velocity fields ∇gt on ∂Ω. In addition to nice
geometrical and topological properties (completeness, existence of geodesics, lower
semi-continuity with respect to weak-∗ convergence, characterization of Lipschitz
curves...) the metric d gives a formal Riemannian structure à la Otto [29] on the
space M+(Ω), endowing the tangent plane

TuM
+ = {∂tu = ζ : ζ = − div(u∇g) + ug, g ∈ H1(du)}

with the norm

‖ζ‖2TuM+ = ‖g‖2H1(du) =

∫

Ω

(|∇g|2 + |g|2)du (3.1)

and scalar product

〈ζ1, ζ2〉TuM+ := (g1, g2)H1(du) =

∫

Ω

(∇g1 · ∇g2 + g1g2)du.
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Here tangent vectors ∂tu = ζ ∈ TuM
+ are always identified with scalar potentials

g ∈ H1(du) through the elliptic equation − div(u∇g) + ug = ζ (supplemented with
zero-flux boundary conditions on ∂Ω if needed). In particular this allows to compute
metric gradients for functionals F(u) =

∫

Ω
F (x, u) on M+ as

grad
d
F(u) = − div

(

u∇
δF

δu

)

+ u
δF

δu
, (3.2)

where δF
δu

= ∂uF (x, u) stands for the first variation with respect to u and ∇ = ∇x is
the usual gradient in space. We refer to [18] for further details and explanations.

Since we want to deal here with multicomponent variables u = (u1, . . . , uN) we
endow (M+(Ω))N with the natural product distance

D
2(u,v) =

N
∑

i=1

d
2(ui, vi),

giving the natural Riemannian metrics

〈

ζ1, ζ2
〉

Tu(M+)N
=
(

g1, g2
)

H1(du)
=

N
∑

i=1

∫

Ω

(∇g1i · ∇g2i + g1i g
2
i )dui

in the tangent space Tu(M
+)N =

N

⊕
i=1

Tui
M+. Here we identify again the tangent

vectors ζ = (ζ1, . . . , ζN) with potentials g = (g1, . . . gN) via the elliptic equations
− div(ui∇gi) + uigi = ζi (with homogeneous Neumann boundary conditions). The
metric derivatives with respect to D can be simply computed applying (3.2) compo-
nent by component, i-e gradients of functionals F(u) =

∫

Ω
F (x, u1, . . . , uN) read

grad
D
F(u) =

(

− div

(

ui∇
δF

δui

)

+ ui

δF

δui

)

i=1...N

.

For the particular case E(u) = 1
2

∫

Ω
A(u − u∞) · (u − u∞) and with the previous

notation f = m − Au, we have δF
δui

= (A(u − u∞))i = (Au − m)i = −fi, thus our
system of PDEs can indeed be written as the gradient flow

du

dt
= − grad

D
E(u) ⇔ ∂tui = − div(ui∇fi) + uifi. (3.3)
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At this stage let us derive two formal estimates, which will be crucial for the
subsequent analysis. Here we ignore all the regularity issues, and we shall make
these estimates rigorous throughout the several regularized problems involved in the
proof of existence. The first estimate is the Entropy-Dissipation-Inequality (2.3), and
is inherent to the gradient-flow structure. Indeed from (3.3) we should have along
reasonably smooth solutions that

dE

dt
=

〈

grad
D
E(u),

du

dt

〉

Tu(M+)N
= −‖ grad

D
E(u)‖2Tu(M+)N .

Given the above definition of the tangent norms and the explicit computation of the
metric gradient in terms of the fitness, this reads in our setting

E(u(t1)) +
∑

i

∫ t1

t0

∫

Ω

ui(|∇fi|
2 + |fi|

2) = E(u(t0)) for all 0 ≤ t0 ≤ t1.

This is often referred to as the Entropy-Dissipation-Equality for the obvious reasons,
and implies of course (2.3). However the latter inequality is well known to still
completely characterize metric gradient flows [2], and will turn out to be more flexible
and easier to obtain rigorously along the various approximations.

The second fundamental estimate, which will serve as a technical tool, is the a
priori gradient estimate

‖∇u‖2L2(0,T ;L2(Ω)N×d) ≤ C(1 + T )

and can be viewed as a “flow interchange” estimate as introduced in [28]. Indeed the
estimate formally follows from computing the dissipation of the Boltzmann entropy
H(ui) =

∫

Ω
{ui log ui−ui+1} along solutions of our PDE, which is the gradient flow

of the driving functional E . More precisely, testing log ui in (2.1) (recall that our
weak solutions will be non-negative) we compute

d

dt
H(ui) =

∫

Ω

log ui ∂tui =

∫

Ω

log ui

{

− div(ui∇fi + uifi)
}

=

∫

∇ui · ∇fi +

∫

Ω

uifi log ui.

Writing fi = mi− (Au)i in the last gradient term, summing over i’s, and integrating
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in time, this can be rearranged as

∑

i

{

H(ui(T )) +

∫ T

0

∫

Ω

∇ui · ∇(Au)i

}

≤
∑

i

{

H(ui(0))

+

∫ T

0

∫

Ω

∇ui · ∇mi +
1

2

∫ T

0

∫

Ω

ui|fi|
2 +

1

2

∫ T

0

∫

Ω

ui| log ui|
2

}

.

Observe from E(u) ≥ λA

2
‖u − m‖L2(Ω)N and the previous EDI (2.3) that u(t) is

bounded in L2(Ω)N , thus the subquadratic terms H(ui(0)) and
∫

Ω
ui| logui|

2 are
controlled uniformly in time in the right-hand side. Exploiting next H(ui(T )) ≥ 0
and the coercivity A ≥ λA, a suitable use of Young’s inequality finally gives

λA

2
‖∇u‖2L2(0,T ;L2(Ω)N ) ≤ C(1+T )+

2

λA

‖∇m‖2L2(Ω)NT+
∑

i

1

2

∫ T

0

∫

Ω

ui|fi|
2 ≤ C(1+T ).

Here we used (2.3) to bound the dissipation term
∫∞

0

∫

Ω
ui|fi|

2 ≤ E(u0) ≤ C. We also
implicitly assumed that A is a constant matrix, otherwise some extra lower terms
appear but the gradient estimate is still true.

4 Existence of weak solutions

Our construction of weak solutions will involve three levels of approximation, indexed
by the regularization parameters ε, δ → 0 and M → ∞. More precisely, we shall
consider the regularized problems

{

∂tui + ε(Au)i = − div(ũi∇fi) + ũifi + δ∆ui,
ui(0, x) = u0

i (x)
with f = m− Au. (4.1)

Here
ũi = max(0,min(M,ui))

is the truncation between 0 and M ≫ 1. The operator A is a suitable elliptic
operator of higher order to be precised shortly together with its associated boundary
conditions, and will essentially allow to consider the second-order cross diffusion as a
compact perturbation of εA for fixed ε > 0. Note that in the original PDEs the terms
ui∇fi only belong to L1(Ω) if u ∈ H1(Ω)N , while the truncations ũi∇ui ∈ L2(Ω)
behave much better for fixed M < ∞. Lastly, the δ∆ term will help to gain coercivity
and control the degenerate cross-diffusion.
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We shall first take ε → 0, then M → ∞, and finally δ → 0 in this order. The
most delicate limit will be M → ∞, when we loose the regularity ũi∇fi ∈ L2(Ω)
to the more delicate ui∇fi ∈ L1(Ω). This step will also require the rigorous jus-
tification of the formal computations and chain rules from Section 3, and will be
the most involved. It is worth pointing out that solutions will become non-negative
ui(t, x) ≥ 0 only after taking ε → 0, which will then carry through the next limits
M → ∞, δ → 0. For convenience we will work in finite time intervals [0, T ]. All
our estimates will give local-in time control, and we will retrieve in the end a global
solution by standard diagonal extraction. In order to keep the notation light we
omit the ε,M, δ indexes as often as possible, and throughout the manuscript we will
precise the dependence of the solution on the regularizing parameters when needed.

Our first step is to prove existence of solutions to (4.1) for small ε, δ > 0 and large
M < ∞ in any fixed time interval [0, T ]. In order to give a precise meaning to this
problem, consider the Hilbert triple (see the Appendix for the abstract definition)

(Hr(Ω)N , L2(Ω)N , (Hr)∗(Ω)N ) for fixed r > 1 +
d

2
.

Denote by A the Riesz isometry between the spaces (Hr)N and ((Hr)∗)N . We recall
the Sobolev embedding Hr(Ω) ⊂ C1(Ω), which is compact.

The weak form of (4.1) (with a certain implicit higher-order Neumann boundary
condition which is of no importance to us) is the following Cauchy problem

u′ + εAu = Q(u), u|t=0 = u0, (4.2)

where the first equality is understood as an ODE in the space ((Hr)∗)N and the initial
datum should be taken in the sense of C([0, T ]; (L2)N). The operator Q : (H1)N →
((H1)∗)N is determined by duality as

〈Q(u),w〉 =
N
∑

i=1

∫

Ω

(ũi∇fi · ∇wi + ũifiwi − δ∇ui · ∇wi) , ∀w ∈ (H1)N .

Note that, for fixed M > 0, the operator Q has sublinear growth and is continuous
from C1(Ω)N to ((Hr)∗)N . By Lemma 5.1 with X = Hr(Ω)N , V = C1(Ω)N , Y =
L2(Ω)N , there exists a solution u to (4.2) in the class

L2(0, T ; (Hr)N ) ∩H1(0, T ; ((Hr)∗)N) ∩ C([0, T ]; (L2)N) (4.3)

for any fixed T > 0.
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4.1 The limit ε → 0

In this section M < ∞ and δ > 0 are fixed and only ε varies. In order to send
ε → 0 we first rigorously derive an entropy estimate. To this end, we test (4.2) with
−f (this test function is legitimate since f(t, x) = m(x) − Au(t, x) belongs to the
intersection (4.3)), and arrive at

d

dt
E(u)+ε(u, Au−m)(Hr)N+δ(∇u,∇Au−∇m)(L2)N×d+

N
∑

i=1

∫

Ω

ũi(|fi|
2+|∇fi|

2) = 0.

(4.4)

Integrating in time from 0 to any τ ≤ T , exploiting the coercivity A ≥ λA Id, and
applying Cauchy’s inequality we find that

E(u(τ))+
1

2
ελA‖u‖

2
L2(0,τ ;(Hr)N )+

1

2
δλA‖∇u‖2L2(0,τ ;(L2)N×d)+

∑

i

∫ τ

0

∫

Ω

ũi(|∇fi|
2+|fi|

2)

≤ E(u0) + T
ε

2λA

‖m‖2(Hr)N + T
δ

2λA

‖∇m‖2(L2)N×d . (4.5)

Recalling that E(u) controls the L2 norm, this implies the a priori estimates

‖u‖2L∞(0,T ;(L2)N ) ≤ C(1 + T ), (4.6)

‖u‖2L2(0,T ;(H1)N ) ≤ Cδ−1(1 + T ), (4.7)

‖u‖2L2(0,T ;(Hr)N ) ≤ Cε−1(1 + T ) (4.8)

for small ε, δ, where the various constants C are independent of M, ε, δ, T . Testing
(4.2) by arbitrary w ∈ (Hr)N and employing (4.7) and (4.8), we deduce

‖u′‖L2(0,T ;((Hr)∗)N ) ≤ C1,

where C1 ≡ C1(δ,M, T ) is independent of ε. By the Banach-Alaoglu theorem and
Aubin-Lions-Simon lemma, we can find a sequence uεk of solutions to (4.2) with
ε = εk → 0 (for fixed M, δ) such that

uεk ⇀ u weakly in L2(0, T ; (H1)N ) and weakly-* in L∞(0, T ; (L2)N),

uεk → u strongly in L2(0, T ; (L2)N) and in C([0, T ]; ((H1)∗)N),

(uεk)′ ⇀ u′ weakly in L2(0, T ; ((Hr)∗)N).
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By the classical continuity property [20] of Nemytskii truncations,

ũεk → ũ strongly in L2(0, T ; (L2)N),

and because f εk = m−Auεk → m−Au = f strongly in L2(0, T ; (L2)N) and weakly
in L2(0, T ;H1) the products

ũεk
i ∇f εk

i ⇀ ũi∇fi and ũεk
i f εk

i ⇀ ũifi weakly in L1(0, T ;L1)

converge as strong-weak limits. Passing to the limit εk → 0 in (4.2), we see that u

solves the problem
u′ = Q(u), u|t=0 = u0, (4.9)

which is nothing but the weak form of the problem






∂tui = − div(ũi∇fi) + ũifi + δ∆ui, x ∈ Ω,

ũi
∂fi
∂ν

− δ ∂ui

∂ν
= 0, x ∈ ∂Ω,

ui(0, x) = u0i(x).
(4.10)

By density it is easy to check that u′ ∈ L2(0, T ; ((H1)∗)N), and the first equality in
(4.9) holds in the space (H1)∗)N for a.e. t. By standard Lions-Magenes interpolation
results [35, Lemma 2.2.7] we have moreover u ∈ C([0, T ]; (L2)N).

We now show non-negativity of our weak solution u = limuεk to (4.10) and
derive a priori L2(0, T ; (H1)N) estimates uniformly in M, δ, which will allow to take
the limit M → ∞, δ → 0 in the next sections. After the previous limit ε → 0
the solution u belongs at this stage to C([0, T ]; (L2)N) ∩ L2(0, T ; (H1)N) for fixed
M, δ > 0. Therefore we can take again −f as a test function and repeat the previous
computations (4.4)(4.5) with now ε = 0, and we get similarly

E(u(t1)) +
∑

i

∫ t1

t0

∫

Ω

ũi(|∇fi|
2 + |fi|

2) ≤ E(u(t0)) + T
δ

2λA

‖∇m‖2(L2)N×d (4.11)

for all 0 ≤ t0 ≤ t1 ≤ T . This is of course an approximation of the Entropy Dissipation
Inequality (2.3), which will pass to the successive limits M → ∞ and δ → 0 later
on.

In order show that ui ≥ 0 we take the admissible test function vi := min{ui, 0} ∈
L2(0, T ;H1) in (4.10). By the classical Serrin’s chain rule ∇vi = χ[ui<0]∇ui we get
for all components i = 1 . . .N

d

dt

(

1

2

∫

Ω

|vi|
2

)

=

∫

Ω

ũi∇fi · ∇vi +

∫

Ω

ũifivi − δ

∫

Ω

|∇vi|
2 ≤ 0,

13



where we used that by definition the truncation ũi = max{0,min{ui,M}} = 0
wherever vi = min{ui, 0} 6= 0 and ∇vi = ∇uiχ[ui<0] 6= 0 so that the first two
integrands in the middle term are identically zero. Since we consider non-negative
initial data u0

i ≥ 0 we have vi(0, .) = 0, thus vi(t, .) = 0 for all later times and

vi = min{0, ui} ≡ 0 ⇒ ui(t, x) ≥ 0 a.e. in (0, T )× Ω.

From now on we slightly abuse the notation and still write ũi = min{ui,M} ≥ 0 for
the upper truncation only, which is justified since we just proved that ui ≥ 0.

In order to mimic the formal gradient estimate from Section 3, we would like
to test log ui in (4.10). However this is not rigorous because log ui may not be an
admissible test function. We use instead the truncated logarithm and Boltzmann
entropy, defined as

logMζ (z) :=







log ζ if 0 < z ≤ ζ
log z if ζ ≤ z < M
logM else

and HM
ζ (z) :=

∫ z

1

logMζ (s)ds

for small ζ > 0 (M > 0 is the same truncation level as before). Note that

0 ≤ HM
ζ (z) ≤ H(z) := z log z − z + 1

with monotone pointwise convergence HM
ζ (.) ր H(.) as ζ ց 0 and M ր ∞ (the

convergence is actually locally uniform). We stress at this point that all the next
estimates will be uniform in δ,M , and all the constants CT below will depend on the
data and T > 0 only (if δ, ζ > 0 are small and M > 0 is large).

For fixed 0 < ζ < M < ∞ the functions logMζ , HM
ζ are globally Lipschitz, thus

logMζ (ui) ∈ L2(0, T ;H1) is an admissible test function in (4.10) and, using the chain

rule ∇ logMζ (ui) =
∇ui

ui
χ[ζ<ui<M ],

d

dt

(
∫

Ω

HM
ζ (ui)

)

=
〈

∂tui, log
M
ζ (ui)

〉

(H1)∗,H1

=

∫

[ζ<ui<M ]

∇fi · ∇ui +

∫

Ω

ũifi log
M
ζ (ui)− δ

∫

[ζ<ui<M ]

|∇ui|
2

|ui|
.

Integrating from t = 0 to t = T , exploiting the monotonicity 0 ≤ HM
ζ ≤ H , applying

Young’s inequality to (fi, log
M
ζ ui)L2(dũi), and discarding the last non-positive term,
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we get

0 ≤

∫

Ω

HM
ζ (ui(T )) ≤

∫

Ω

HM
ζ (ui(0)) +

∫∫

QT∩[ζ<ui<M ]

∇fi · ∇ui +

∫∫

QT

ũifi log
M
ζ (ui)

≤

∫

Ω

H(ui(0)) +

∫∫

QT∩[ζ<ui<M ]

∇fi · ∇ui +
1

2





∫∫

QT

ũi|fi|
2 +

∫∫

QT

ũi

∣

∣logMζ (ui)
∣

∣

2





≤ H(ui(0)) +

∫∫

QT∩[ζ<ui<M ]

∇fi · ∇ui +
1

2

∫∫

QT

ũi|fi|
2 +

1

2

∫∫

QT

ui |log(ui)|
2 .

In the last line we also used | logMζ (z)| ≤ | log z| for small ζ and large M . Controlling
the subquadratic terms H(ui(0)),

∫∫

ui| logui|
2 by ui(0) ∈ L2(Ω) and ‖ui‖L∞(0,T ;L2) ≤

CT , and exploiting the dissipation estimate (4.11) we get

0 ≤ CT +

∫∫

QT∩[ζ<ui<M ]

∇fi · ∇ui

for all i = 1 . . . N . This immediately passes to the limit ζ ց 0, and recalling that by
definition fi = mi − (Au)i we rewrite this limit as

∫∫

QT

∇(Au)i · ∇ui ≤ CT +

∫∫

QT

∇mi · ∇ui −

∫∫

[ui≥M ]

∇fi · ∇ui.

Summing over i’s, taking advantage of the coercivity A ≥ λA, and suitably applying
Young’s inequality to the last two terms, this easily gives

∫∫

QT

|∇u|2 ≤ CT + CA

∑

i

∫∫

[ui≥M ]

|∇fi|
2

and it is enough to show that the last term can be bounded uniformly in M, δ. To
this end, observe by definition of ũi = min{ui,M} that the dissipation estimate
(4.11) immediately yields

∫∫

[ui≥M ]

|∇fi|
2 =

∫∫

[ui≥M ]

ũi

M
|∇fi|

2 ≤
1

M

∫∫

QT

ũi|∇fi|
2 ≤ M−1CT ≤ CT
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if M ≥ 1. This finally gives the desired gradient estimate

∫∫

QT

|∇u|2 ≤ CT

uniformly in M, δ > 0.

In order to estimate the time derivative, let us recall that the weak formulation
of (4.10) holds in duality with all C1(Ω) (actually, even H1) test functions. Since
‖u‖L∞(0,T ;(L2)N ) ≤ CT and we just proved that ‖∇u‖L2(0,T ;(L2)N×d) ≤ CT we see that
the products ũi∇fi and ũifi are bounded respectively in L2(0, T ;L1) and L∞(0, T ;L1)
uniformly in δ,M . We conclude by duality in (4.10) that ∂tui = − div(ũi∇fi)+ũifi+
δ∆ui is bounded in L2(0, T ; (C1(Ω)∗)N). To summarize, the solution u = limuεk of
(4.10) has the regularity

‖u′‖L2(0,T ;(C1(Ω)∗)N ) + ‖u‖L∞(0,T ;(L2)N ) + ‖u‖L2(0,T ;(H1)N ) ≤ CT (4.12)

uniformly in M, δ.

4.2 The limit M → ∞

Here we want to pass to the limit M → +∞ in (4.9) and (4.10) for fixed δ > 0.
Define the limit operator Q∞ : (H1)N → ((C1(Ω))∗)N by

〈Q∞(u),w〉 =
N
∑

i=1

∫

Ω

(ui∇fi · ∇wi + uifiwi − δ∇ui · ∇wi) , ∀w ∈ C1(Ω)N .

By (4.12), the Banach-Alaoglu theorem and Aubin-Lions-Simon lemma, there exists
a sequence Mk → +∞ (δ > 0 is fixed) such that, for the corresponding solutions
uMk , we have

uMk ⇀ u weakly in L2(0, T ; (H1)N) and weakly-* in L∞(0, T ; (L2)N ),

uMk → u strongly in L2(0, T ; (L2)N) and in C([0, T ]; ((H1)∗)N),

(uMk)′ ⇀ u′ weakly-* in L2(0, T ; (C1(Ω)∗)N )

with

‖u′‖L2(0,T ;(C1(Ω)∗)N ) + ‖u‖L∞(0,T ;(L2)N ) + ‖u‖L2(0,T ;(H1)N ) ≤ CT (4.13)
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(uniformly in δ). Because the truncation operator z 7→ z̃ = min{z,M} is 1-Lipschitz
uniformly in M and uMk

i → ui strongly in L2, one readily checks that

ũMk

i = min
{

uMk

i ,Mk

}

→ ui in L2(0, T ;L2).

Therefore the products pass to the strong-weak limit as before, ũMk

i ∇fMk

i ⇀ ui∇fi
and ũMk

i fMk

i ⇀ uifi in L1(0, T ;L1), and u solves the weak formulation

u′ = Q∞(u), u|t=0 = u0

of






∂tui = − div(ui∇fi) + uifi + δ∆ui, x ∈ Ω,

ui
∂fi
∂ν

− δ ∂ui

∂ν
= 0, x ∈ ∂Ω,

ui(0, x) = u0i(x).
(4.14)

In other words, u solves

d

dt

∫

Ω

u ·w =
N
∑

i=1

∫

Ω

(ui∇fi · ∇wi + uifiwi − δ∇ui · ∇wi) , ∀w ∈ (C1(Ω))N ,

in the sense of scalar distributions. Moreover, by the Lions-Magenes lemma [35,
Lemma 2.2.6] we see that u ∈ Cw([0, T ]; (L

2)N ), hence the initial condition is taken
in Cw([0, T ]; (L

2)N).
Before moving to the next limit δ → 0, we need to show that the dissipation esti-

mate (4.11) also passes to the limit Mk → ∞ . This is not straightforward because of
the cubic products ũi(|∇fi|

2+ |fi|
2), as ũMk

i does not a priori converge uniformly and
fMk

i should not converge strongly in L2(0, T ;H1). In order to circumvent this tech-
nical difficulty we use a variant of the Banach-Alaoglu theorem in varying L2(dµk)
spaces:

Lemma 4.1 (compactness of vector-fields). Let O ⊂ R
p be an open set, {µk}k≥0 a

sequence of finite non-negative Radon measures narrowly converging to µ, and vk a
sequence of vector fields on O. If

‖vk‖L2(O,dµk) ≤ C

then there exists v ∈ L2(O, dµ) such that, up to extraction of some subsequence,

∀ ζ ∈ C∞
c (O) : lim

k→∞

∫

O

vk · ζ dµk =

∫

O

v · ζ dµ

and
‖v‖L2(O,dµ) ≤ lim inf

k→∞
‖vk‖L2(O,dµk).
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The proof of this fact by optimal transport techniques can be found in [2]; this
lemma also follows from a variant of the Banach-Alaoglu theorem [18, Proposition
5.3]. We will apply this lemma component by component with O = (t0, t1)×Ω ⊂ R

d+1

for fixed 0 ≤ t0 ≤ t1 ≤ T and the sequence of measures dµk(t, x) := ũMk

i (t, x)dxdt,
which converges narrowly to dµ(t, x) = ui(t, x)dxdt due to the strong L2(QT ) con-
vergence ũMk

i → ui. The vector-fields of interest are of course the R
d-valued ∇fMk

i

and the scalar fMk

i . Indeed, for fixed 0 ≤ t0 ≤ t1 ≤ T we have by (4.11) that

‖∇fMk

i ‖2L2(O,dµk) =

∫ t1

t0

∫

Ω

|∇fMk

i |2ũMk

i ≤ E(u(0)) + CδT ≤ CT .

Extracting a subsequence if needed, we see that there is a vector-field vi ∈ L2(O, dµ)
such that

‖vi‖
2
L2(O,dµ) ≤ lim inf

k→∞
‖∇fMk

i ‖2L2(O,dµk),

and we claim that vi = ∇fi in L2(O, dµ). To see this, observe that from the weak
convergence in Lemma 4.1 there holds

lim
k→∞

∫ t1

t0

∫

Ω

∇fMk

i · ζũMk

i =

∫ t1

t0

∫

Ω

v · ζui

for all ζ ∈ C∞
c ((t0, t1)×Ω;Rd). On the other hand we already proved that ũMk

i → ui

strongly in L2(0, T ;L2) and ∇fMk

i ⇀ ∇fi weakly in L2(0, T ;L2), thus the product
ũMk

i ∇fMk

i ⇀ ui∇fi weakly in L1(0, T ;L1). Therefore
∫ t1

t0

∫

Ω

∇fi · ζui =

∫ t1

t0

∫

Ω

vi · ζui

for all ζ ∈ C∞
c ((t0, t1) × Ω;Rd). By density of C∞

c we conclude that vi = ∇fi in
L2(O, dµ), which shows in particular that the limit is independent of t0, t1 and the
subsequence. Whence

∀ 0 ≤ t0 ≤ t1 :

∫ t1

t0

∫

Ω

ui|∇fi|
2 ≤ lim inf

k→∞

∫ t1

t0

∫

Ω

ũMk

i |∇fMk

i |2.

The argument is identical for the terms ũMk

i |fMk

i |2. In order to finally retrieve the
Entropy-Dissipation-Inequality, observe that uMk → u in L2(0, T ; (L2)N) implies
that E(uMk(t)) → E(u(t)) for almost every t ∈ (0, T ). Taking the lim inf

Mk→∞
in (4.11)

we obtain

E(u(t1)) +
∑

i

∫ t1

t0

∫

Ω

ui(|∇fi|
2 + |fi|

2) ≤ E(u(t0)) + T
δ

2λA

‖∇m‖2L2 (4.15)
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for almost every 0 ≤ t0 ≤ t1 ≤ T .

4.3 The limit δ → 0

We are now ready to pass to the last limit δ → 0. By (4.13) we can find a sequence
δk → 0 such that, for the corresponding solutions uδk to (4.14), we have

uδk ⇀ u weakly in L2(0, T ; (H1)N) and weakly-* in L∞(0, T ; (L2)N),

uδk → u strongly in L2(0, T ; (L2)N) and in C([0, T ]; ((H1)∗)N),

(uδk)′ ⇀ u′ weakly-* in L2(0, T ; (C1(Ω)∗)N)

for every fixed T > 0. Arguing as before for the products uδk
i ∇f δk

i and uδk
i f δk

i we can
take the strong-weak limits, and the δ∆ui term in (4.14) goes weakly to zero due to
the L2(0, T ;H1) bound. Similarly to the previous step, u ∈ Cw([0, T ]; (L

2)N), and
we can pass to the limit in the initial condition. Thus the limit u is a weak solution
to the original problem (2.1). By standard diagonal extraction arguments it is easy
to see that u = limuδk can be chosen independent of the fixed time T > 0. Thus the
above convergence holds locally in time in [0,∞), the weak solution is global, and
has the desired regularity in any finite time interval.

As for the Entropy-Dissipation-Inequality, we can repeat the exact same argu-
ment as in the previous section and pass to the lim inf

δk→0
in (4.15) (with the last term

T δk
2λA

‖∇m‖2(L2)N×d vanishing in any finite time interval) to obtain (2.3).

5 Long-time convergence

This section is devoted to the proof of Theorem 2, and without further mention we
assume that for any I = {i1, . . . , ir} ⊂ {1, . . . , N}, i1 < · · · < ir, and j /∈ I there
holds

∣

∣

∣

∣

∣

∣

∣

∣

∣

ai1i1 · · · ai1ir mi1
...

. . .
...

...
airi1 · · · airir mir

aji1 · · · ajir mj

∣

∣

∣

∣

∣

∣

∣

∣

∣

(x) ≥ κ (5.1)

for some constant κ ≡ κ(A,m) > 0.

Remark 5.1. Letting I = ∅ in (5.1), we see that necessarily mj(x) ≥ κ > 0 for any
j and x ∈ Ω, which means that there are only positive resources.
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With this assumption, some elementary algebra shows in particular that the ideal
free distribution

u∞(x) = A−1m(x) ≥ cκ > 0

becomes now a biologically relevant (non-negative) coexistence steady state of (2.1)
with f ≡ 0. This particular distribution is clearly mathematically significant given
the definition of the entropy (2.2), and we shall prove below that it also attracts the
long-time dynamics as in Theorem 2. However, (5.1) also implies the existence of a
finite number of non-negative partial extinction steady states constructed as follows:
given any I ⊂ {1, . . . , N} and recalling that by definition f = m− Au, it is easy to
see from (5.1) that the linear system

{

ui = 0 (i ∈ I)
fj = 0 (j /∈ I),

has a unique solution uI(x) satisfying uj(x) ≥ cκ > 0 for all j 6∈ I (thus uI(x) > 0
componentwise). Note that those uI are trivially steady states of (2.1) with (ui)i∈I ≡
0 and (fj)j 6∈I ≡ 0, and that the ideal free distribution u∞ = u∅ is the unique
coexistence state obtained by taking I = ∅ ⇔ f = 0. In fact our condition (5.1) is
equivalent to the hypothesis that all the components (uI

j)j 6∈J of those steady states
are positive and uniformly bounded away from zero, cf. [19] (by definition the other
components (uI

i )i∈I vanish identically).
The partial extinction set is then the collection of all such stationary solutions

uI(x) for all possible choices of I ⊂ {1, . . . , N} with I 6= ∅, of which there is a finite
combinatorial number pN :

Uext = {uext,1(x), . . . ,uext,pN (x)} = {uI(x) : ∅ 6= I ⊂ {1, . . . , N}} ⊂ H1(Ω)N .

The critical entropy E∗ > 0 appearing in Theorem 2 is then defined as the minimal
entropy among all the partial extinction states,

E∗ = min
{

E(uext) : uext ∈ Uext
}

, (5.2)

and depends only on A,m (and Ω).
Though biologically admissible, the partial extinction states are actually degen-

erate points in our analysis: whenever ui(x) ≡ 0, the formal Riemannian structure
from Section 3 degenerates since the i-th tangent plane Tui

M+ = {0} becomes triv-
ial, see in particular the definition of tangent norms (3.1) in terms of ‖.‖H1(du) norms.
As a consequence we will need to stay away from those points. This is particularly
clear in the following functional inequality, which will be the key to proving the long-
time convergence below and follows from a more general Poincaré-Beckner inequality
established by us in [19]:
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Theorem 3. Let U ⊂ H1(Ω,RN) be a set of functions such that

(i) u ≥ 0 for any u ∈ U;

(ii) no sequence {uk}k≥0 ⊂ U converges strongly in Lq(Ω)N to any of the partial
extinction states uext ∈ Uext for some q ∈ [1, 2).

Then there exists a constant CU > 0 such that

∀u ∈ U :

∫

Ω

N
∑

i=1

|fi|
2 dx ≤ CU

∫

Ω

N
∑

i=1

ui(|fi|
2 + |∇fi|

2) dx. (5.3)

Remark 5.2. Apart from U, the constant CU also depends on the upper bounds for
|m| and |A|, on λA, and on κ in (5.1).

Condition (ii) means that the U must be separated from the finite set of par-
tial extinction points Uext. Moreover, this Poincaré-type inequality can be rein-
terpreted as an entropy-entropy production inequality, as is common in the frame-
work of gradient flows in Wasserstein spaces. Indeed from Section 3 and the formal
Riemannian structure the right-hand side is nothing but the dissipation D(u) =
‖ grad

D
E(u)‖2

TuM+ , and recalling E(u) . ‖f‖2
L2(Ω) from the coercivity, the left hand

side controls E(u) = E(u) − E(u∞). Thus (5.3) gives the entropy-entropy dissipa-
tion control D(u) ≥ C(E(u)− E(u∞)), which classically implies convergence in the
entropy sense.

We are now in position of proving the long-time convergence:

Proof of Theorem 2. Recalling the definition of the critical entropy (5.2) and given
a subcritical initial data

E(u0) < E∗,

we introduce the set

U :=
{

u = (u1, . . . , uN) : ui ≥ 0, ui ∈ H1(Ω), E(u) ≤ E(u0)
}

(depending only on u0, A, m, and Ω). From the EDI (2.3) we see that we have
invariance

u(0) = u0 ∈ U ⇒ u(t) ∈ U for a.a. t ≥ 0

along the time-evolution, and we claim that U meets the assumptions of Theorem 3.
To see this, assume by contradiction that there is a sequence uk ∈ U such that
uk → uext strongly in Lq(Ω) for some partial extinction state uext ∈ Uext and some
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q ∈ [1, 2). Since λA

2
‖uk − u∞‖2L2(Ω) ≤ E(uk) ≤ E(u0) we see that {uk} is bounded in

L2(Ω), and up to extraction of a subsequence we can therefore assume that uk ⇀ u

weakly in L2 for some limit u. By uniqueness of the limit we see that u = uext, and
by lower semi-continuity

E(uext) ≤ lim inf
k→∞

E(uk) ≤ E(u0) < E∗.

This is impossible by the definition (5.2) of E∗, which entails the claim.
From (2.2) and the coercivity A ≥ λA we recall that E(u) ≤ CA

∫

Ω
|f |2. We can

therefore apply Theorem 3 in the Entropy-Dissipation-Inequality (2.3) and conclude
that there is γ = γU > 0, depending only on E(u0) and the data, such that for a.e.
t ≥ t0 ≥ 0 there holds

E(u(t)) + γ

∫ t

t0

E(u(s))ds ≤ E(u(t)) +
∑

i

∫ t

t0

∫

Ω

(|∇fi|
2 + |fi|

2)ui ≤ E(u(t0)).

Hence t 7→ E(u(t)) + γ
∫ t

0
E(u(s))ds is monotone non-increasing, and therefore

dE

dt
+ γE ≤ 0

in the sense of scalar distributions D′(0,∞). This immediately implies the ex-
ponential decay (2.4) for a.e t by a standard Grönwall argument. Finally, since
u ∈ Cw([0,∞);L2(Ω)N), the function t 7→ E(u(t)) is lower semicontinuous, and (2.4)
extends to all t ≥ 0.

Remark 5.3. From the biological perspective, the distributions uI (I 6= ∅) describe
scenarios when some of the species (ui)i∈I have died out, and the survivors (uj)j 6∈J
compose a (lower-dimensional) ideal free distribution. It is important to point out
that these partial ideal free distributions (which we need to avoid to secure the entropy-
entropy production inequality) are unstable and repulsive: if a small L∞ density of
any of the extinct populations (ui)i∈I is reintroduced, its fitness fi will be positive
and bounded away from zero (see [19]), therefore the environment is favorable to that
species and it will unlikely go extinct again. That is why we conjecture that (2.4)
holds for any u0 ≥ 0 (unless some component of u0 is identically zero).
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Appendix

Assume that X ⊂ Y are two Hilbert spaces, with continuous embedding operator
i : X → Y , and that i(X) is dense in Y . The adjoint operator i∗ : Y ∗ → X∗ is
continuous and, since i(X) is dense in Y , one-to-one. Since i is one-to-one, i∗(Y ∗)
is dense in X∗, and one may identify Y ∗ with a dense subspace of X∗. Due to the
Riesz representation theorem, one may also identify Y with Y ∗. We arrive at the
chain of inclusions:

X ⊂ Y ≡ Y ∗ ⊂ X∗ (5.4)

with dense and continuous embeddings. Observe that in this situation, for f ∈ Y, u ∈
X, their scalar product in Y coincides with the < X∗, X > duality

(f, u)Y = 〈f, u〉X∗,X . (5.5)

Such triples (X, Y,X∗) are called Hilbert triples (sometimes also referred to as Gelfand
or Lions triples), see, e.g., [31, 35] for more details.

Lemma 5.1. Let
X ⊂ Y ⊂ X∗

be a Hilbert triple. Let A : X → X∗ be a linear continuous operator such that

〈Au, u〉 ≥ α‖u‖2X

for all u ∈ X and some common α > 0. Let V be a Banach space such that

X ⊂ V ⊂ Y

where the first embedding is compact and the second is continuous. Assume that both
X and V are separable. Let

Q : V → X∗

be a continuous operator. Assume that

‖Q(u)‖X∗ ≤ C(1 + ‖u‖V ) (5.6)
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for all u ∈ X. Then the Cauchy problem

u′(t) +Au(t) = Q(u(t)), u|t=0 = u0, (5.7)

has a solution in the class

L2(0, T ;X) ∩H1(0, T ;X∗) ∩ C([0, T ]; Y ) (5.8)

for every u0 ∈ Y .

We omit the proof since a more general statement is proven in [30], cf. also [35,
Section 6.3], [34, Section 4].

References

[1] J. Alkhayal, S. Issa, M. Jazar, and R. Monneau. Existence result for degenerate
cross-diffusion system with application to seawater intrusion. ArXiv e-prints,
August 2014.

[2] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient Flows: in Metric
Spaces and in the Space of Probability Measures. Basel: Birkhäuser Basel, 2008.

[3] Jean-David Benamou and Yann Brenier. A computational fluid mechanics solu-
tion to the monge-kantorovich mass transfer problem. Numerische Mathematik,
84(3):375–393, 2000.

[4] Robert Stephen Cantrell, Chris Cosner, and Yuan Lou. Approximating the
ideal free distribution via reaction-diffusion-advection equations. J. Differential
Equations, 245(12):3687–3703, 2008.

[5] Robert Stephen Cantrell, Chris Cosner, Yuan Lou, and Chao Xie. Random dis-
persal versus fitness-dependent dispersal. J. Differential Equations, 254(7):2905–
2941, 2013.

[6] Li Chen and Ansgar Jüngel. Analysis of a parabolic cross-diffusion population
model without self-diffusion. J. Differential Equations, 224(1):39–59, 2006.

[7] Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard.
Unbalanced optimal transport: geometry and Kantorovich formulation. arXiv
preprint arXiv:1508.05216, 2015.

24



[8] Lenaic Chizat, Bernhard Schmitzer, Gabriel Peyré, and François-Xavier Vialard.
An interpolating distance between optimal transport and Fischer-Rao. arXiv
preprint arXiv:1506.06430, 2015.

[9] Y. S. Choi, Roger Lui, and Yoshio Yamada. Existence of global solutions for
the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion.
Discrete Contin. Dyn. Syst., 10(3):719–730, 2004.

[10] Chris Cosner. A dynamic model for the ideal-free distribution as a partial
differential equation. Theoretical Population Biology, 67(2):101–108, 2005.

[11] Chris Cosner. Beyond diffusion: conditional dispersal in ecological models. In
J. Mallet-Paret et al., editor, Infinite Dimensional Dynamical Systems, pages
305–317. Springer, 2013.

[12] Chris Cosner and Michael Winkler. Well-posedness and qualitative properties
of a dynamical model for the ideal free distribution. Journal of mathematical
biology, 69(6-7):1343–1382, 2014.

[13] Stephen D Fretwell. Populations in a seasonal environment. Princeton Univer-
sity Press, 1972.

[14] Stephen Dewitt Fretwell and Henry L Lucas. On territorial behavior and other
factors influencing habitat distribution in birds I. Theoretical development. Acta
Biotheoretica, 19(1):16–36, 1969.

[15] T. Galloüet and L. Monsaingeon. A JKO splitting scheme for Kantorovich-
Fisher-Rao gradient flows. ArXiv e-prints, February 2016.

[16] A. Jüngel and N. Zamponi. Qualitative behavior of solutions to cross-diffusion
systems from population dynamics. ArXiv e-prints, December 2015.

[17] Ansgar Jüngel. The boundedness-by-entropy method for cross-diffusion systems.
Nonlinearity, 28(6):1963–2001, 2015.

[18] S. Kondratyev, L. Monsaingeon, and D. Vorotnikov. A new optimal transport
distance on the space of finite Radon measures. Adv. Differential Equations, to
appear, 2016.

[19] Stansislav Kondratyev, Léonard Monsaingeon, and Dmitry Vorotnikov. A new
multicomponent Poincaré-Beckner inequality. ArXiv e-prints, March 2016.

25



[20] M. A. Krasnoselskii. Topological methods in the theory of nonlinear integral
equations. Translated by A. H. Armstrong; translation edited by J. Burlak. A
Pergamon Press Book. The Macmillan Co., New York, NY, USA, 1964.

[21] Pierre Legendre and Marie Josée Fortin. Spatial pattern and ecological analysis.
Vegetatio, 80(2):107–138, 1989.

[22] Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal entropy-
transport problems and a new Hellinger-Kantorovich distance between positive
measures. arXiv preprint arXiv:1508.07941, 2015.

[23] Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal transport
in competition with reaction: the Hellinger-Kantorovich distance and geodesic
curves. arXiv preprint arXiv:1509.00068, 2015.

[24] Yuan Lou and Wei-Ming Ni. Diffusion, self-diffusion and cross-diffusion. J.
Differential Equations, 131(1):79–131, 1996.

[25] Yuan Lou, Youshan Tao, and Michael Winkler. Approaching the ideal free
distribution in two-species competition models with fitness-dependent dispersal.
SIAM J. Math. Anal., 46(2):1228–1262, 2014.

[26] Yuan Lou and Michael Winkler. Global existence and uniform boundedness of
smooth solutions to a cross-diffusion system with equal diffusion rates. Comm.
Partial Differential Equations, 40(10):1905–1941, 2015.

[27] Alec D MacCall. Dynamic geography of marine fish populations. Washington
Sea Grant Program Seattle, 1990.

[28] Daniel Matthes, Robert J McCann, and Giuseppe Savaré. A family of nonlin-
ear fourth order equations of gradient flow type. Communications in Partial
Differential Equations, 34(11):1352–1397, 2009.

[29] Felix Otto. The geometry of dissipative evolution equations: the porous medium
equation. Comm. Partial Differential Equations, 26(1-2):101–174, 2001.

[30] V.B. Surya Prasath and Dmitry Vorotnikov. On time adaptive critical variable
exponent vectorial diffusion flows and their applications in image processing.
ArXiv e-prints, March 2016.

[31] R. Temam. Navier-Stokes equations, volume 2 of Studies in Mathematics and
its Applications. North-Holland Publishing Co., Amsterdam, Revised edition,
1979. Theory and numerical analysis, With an appendix by F. Thomasset.

26



[32] Cédric Villani. Topics in optimal transportation. American Mathematical Soc.,
2003.

[33] Cédric Villani. Optimal transport: old and new. Springer Science & Business
Media, 2008.

[34] Dmitry A. Vorotnikov. Weak solvability for equations of viscoelastic diffu-
sion in polymers with variable coefficients. Journal of Differential Equations,
246(3):1038–1056, 2009.

[35] V. G. Zvyagin and D. A. Vorotnikov. Topological approximation methods for
evolutionary problems of nonlinear hydrodynamics, volume 12 of de Gruyter
Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin,
Germany, 2008.

27


	1 Introduction
	2 Conventions and main results
	3 The gradient-flow structure and a priori estimates
	4 Existence of weak solutions
	4.1 The limit 0
	4.2 The limit M
	4.3 The limit 0

	5 Long-time convergence

