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ABSTRACT. This paper addresses the numerical approximation of Fluid Structure Interaction (FSI) prob-
lems through the Arbitrary Lagrangian Eulerian (ALE) framework, high order methods and a Dirichlet-
Newmann approach for the coupling. The paper is divided in two main parts. The first part concerns
the discretization method for the FSI problem. We introduce an improved ALE map, capable of handling
curved geometries in 2D and 3D in a unified manner, that is based on a local differential operator. We
also propose a minimal Continuous Interior Penalty (CIP) stabilization term for the fluid discretization that
accounts for a smaller computational effort, while stabilizing the flow regime. The second part is dedicated
to validate our numerical strategy through a benchmark and some applications to blood flow in arteries.

1. INTRODUCTION

Over the last few years, we have been working on building a mathematical and computational frame-
work for arbitrary order fluid-structure interaction, see [1, 2, 3, 4, 5, 6], in 2D and 3D including using
simplicial meshes with a wide range of applications and in particular in bio-mechanics, e.g. blood flows
in arteries. In this paper we present the progress made since our last publications [2, 1] as well as a brief
overview of the framework we have built so far.

Our computational framework builds upon FEEL++ [6, 7] which allows for arbitrary order continuous
and discontinuous Galerkin methods (finite element, spectral elements, ...) in 1D, 2D and 3D on sim-
plices and hypercubes. The computational domain can also be high order, that is to say, the elements are
curved and in our case described by a geometrical transformation — from a straight element — which
is a polynomial of degree greater than one. These high order meshes can be generated by GMSH [8]
— up to order five in 2D and order four in 3D. — High order approximations come at a cost both in
terms of implementation and computational points of view. The former is addressed by a very generic
framework based on modern C++ programming (meta-programming, expression templates, ...) and a
language mimicing the mathematical language. The latter is addressed by a careful implementation and
optimisation, see [6].

We propose to solve the Fluid-Structure Interaction (FSI) problem in the Arbitrary Lagrangian Euler-
ian (ALE) framework detailed in section 2 in equations (3)-(7). In [1] the authors have proposed a
framework for high order (in space and time) fluid structure interaction in 2D using an efficient high or-
der ALE map construction which is described in [2]. In this paper, we follow the same ALE framework.
A fundamental ingredient in the ALE framework is the discrete ALE transformation that maps the ref-
erence configuration onto the computational domain at each timestep. The discrete ALE map proposed
in [2] allows for an accurate description of the boundary of the computational domain, while inducing
straight edges in the interior elements of the computational domain’s mesh. However, this construction
is based on the harmonic extension operator and Gordon-Hall transformations, see Gordon-Hall [9, 10].
The use of the harmonic extension can, if the mesh deformation is large enough, introduce invalid meshes
in the computations, see Figure 3. As to the Gordon-Hall transformations, they make the extension of
this ALE map intrincate to three dimensional domains. To overcome these difficulties, we propose in
this paper to replace the stage based on Gordon-Hall transformations, by the solution of a local differ-
ential problem in each element in contact with the curved boundary and the harmonic extension by the
Winslow smoother, see [11, 24]. The construction of this map shall be addressed in detail in section 3.

In the framework presented in [2], the fluid flow is stabilized with the Continuous Interior Penalty
(see the references therein for more detail on this stabilization procedure) method (CIP) in the case
of dominant convection terms. The CIP stabilization term aims at penalizing the jump of the gradient
across the faces of the triangulation. In the 2D and 3D blood flow applications presented in the paper, see
section 6, even though stabilization is not necessary due to the presence of dominant convective terms,
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it is required to control the velocity at the inlet of the domain where Neumann boundary conditions are
imposed. In fact we propose to add minimal stabilization contributions, see section 4.

The paper is organized in the following way: first, in section 2, we introduce some definitions and
notations needed to present the construction of the ALE map and the FSI framework addressed later in
sections 3 and 4 respectively. Section 5 is devoted to validating the numerical method presented with
the benchmark [12]. Finally, we apply the methodology developed to two blood flow problems under
realistic parameters, both in 2D and 3D, and using high order approximations.

2. DEFINITIONS AND NOTATIONS

Let Ω ⊂ Rd, d ≥ 1, denote a bounded connected domain and δ a discretisation parameter. We define
K̂ ⊂ Rd (d = 1, 2, 3) a reference elementary convex, e.g. a simplex or a hypercube. We denote by Tδ
a finite collection of nonempty, disjoint open simplices or hypercubes Tδ ≡ T(h,k) = {K = ϕgeo

K,k(K̂)}
forming a partition of Ω such that h = maxK∈Tδ hK , with hK denoting the diameter of the element
K ∈ Tδ and ϕgeo

K,k is the polynomial of degree k that maps K̂ to K which also called the geometric
transformation. The partition Tδ induces a discretization of Ω, Ωδ, defined as the union of the closure
of all elements in this partition. Note that if Ω is a polyhedral domain then Ωδ = Ω. We say that a
hyperplanar closed subset F of Ωδ is a mesh face if it has positive (d−1)-dimensional measure and
if either there exist K1, K2 ∈ Tδ such that F = ∂K1 ∩ ∂K2 (and F is called an internal face) or
there exists K ∈ Tδ such that F = ∂K ∩ ∂Ωδ (and F is called a boundary face). Internal faces are
collected in the set F iδ, boundary faces in Fbδ and we let Fδ : =F iδ ∪ F bδ . For all F ∈ Fδ, we define
TF : ={K ∈ Tδ | F ⊂ ∂K}. For every interface F ∈ F iδ we introduce two associated normals to the
elements in TF and we have nK1,F = −nK2,F , where nKi,F , i ∈ {1, 2}, denotes the unit normal to F
pointing out of Ki ∈ TF . On a boundary face F ∈ Fbδ , nF = nK,F denotes the unit normal pointing out
of Ωδ.

Without loss of generality we suppose from now on that we work with simplicial elements. Given
a positive integer N , we denote by PN (K̂) and PN (K) the spaces of polynomials of total degree less
or equal than N defined in K̂ and K respectively. We shall refer to Ωδ as the computational domain
and we introduce Ω∗δ , which will be designated as the reference domain. We assume that the reference
domain has a straight edge/face mesh associated i.e. T ∗δ ≡ T ∗(h,1). Furthermore we admit that the mesh
T ∗δ covers exactly the domain Ω∗δ , i.e., Ω∗δ =

⋃
K∗∈T ∗

δ
K∗.We denoteAδ ≡ A(h,k) a transformation that

maps Ω∗δ to Ωδ which we later call the ALE discrete map.
We define PNc (Ω∗δ ≡ Ω∗(h,1)) and [PNc (Ω∗δ ≡ Ω∗(h,1))]

d the spaces of continuous scalar and vectorial
functions respectively on Ω∗δ as follows:

(1) PNc (Ω∗δ) = {v ∈ C0(Ω∗δ) | v ◦ϕ
geo
K,1 ∈ PN (K̂) ∀K ∈ T ∗δ }, [PNc (Ω∗δ)]

d =
d∏
1

PNc (Ω∗δ).

We define similarly PNc (Ωδ ≡ Ω(h,k)) and [PNc (Ωδ ≡ Ω(h,k))]
d with k > 1:

(2) PNc (Ωδ) = {v ∈ C0(Ωδ) | v ◦ϕ
geo
K,k ∈ PN (K̂) ∀K ∈ Tδ}, [PNc (Ωδ)]

d =
d∏
1

PNc (Ωδ).

Finally let us denote by η : ∂Ω∗δ −→ ∂Ωδ a displacement function. Through η, we classify three
subsets of the boundary: (i) Γ∗M , the portion of the boundary that moves according to the displacement
η, (ii) Γ∗F , the portion of the boundary that stays fixed (ie, η(s) = s, ∀s ∈ Γ∗F ) and (iii) Γ∗N , the part
of the boundary on which we do not prescribe a displacement. The image of each subset, Γ∗M , Γ∗F and
Γ∗N by η is denoted by ΓM ,ΓF and ΓN , respectively. These three sets do not overlap and they verify
∂Ω∗δ = Γ∗M ∪ Γ∗F ∪ Γ∗N . Denote T ∗,bδ = {K∗ ∈ T ∗δ : ∂K∗ ∩ Γ∗M 6= ∅} the set of elements K∗ sharing a
face with the boundary of Ω∗δ .

Bearing in mind these notations, let us introduce the Fluid-Structure Interaction (FSI) problem we
aim to solve, in the Arbitrary Lagrangian Eulerian (ALE) framework. It reads as: find (At,uf , pf ,ηs)
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such that

ρf
∂uf
∂t

∣∣∣∣
x∗
− divx(2µfDx(uf )) + ρf ((uf −wf ) ·∇x)uf +∇xpf = 0, in Ωt

f × I(3)

divx(uf ) = 0, in Ωt
f × I(4)

ρs
∂2ηs
∂t2

−∇ · (FsΣs) = 0, in Ωs × I(5)

uf −
∂ηs
∂t
◦ A−1

t = 0, on Γtfsi(6)

FsΣsn̂s + JAtF
−T
At σ̂f n̂f = 0, on Γ0

fsi(7)

where I = (0, T ], Ωt
f = At(Ω∗f ) and Ωs are the domains occupied by the fluid and structure, respec-

tively, Ω∗f is the ALE reference domain for the fluid, x∗ and x denote the coordinate systems in Ω∗f
and Ωt

f respectively, uf and pf the velocity and pressure of the fluid, ρf and ρs are the densities of

the fluid and structure, respectively, µf is the viscosity of the fluid, ∂uf
∂t

∣∣∣
x∗

is the ALE time deriva-

tive, Dx(uf ) the fluid deformation tensor, ηs the displacement of the structure, Fs = I + ∇ηs is the
structure deformation tensor, I is the identity tensor, Es = 1

2

(
FsF

T
s − I

)
the Green-Lagrange tensor,

Σs = λs (trEs) I+ 2µsEs represents the second Piola-Kirchoff stress tensor, Γtfsi the interface bound-
ary between the fluid and structure and At is the continuous ALE map. These notations allow to define
the stress tensor σ̂f = σf ◦ At and the normal vectors n̂f = nf ◦ At and n̂s = ns ◦ At in the reference
domain, where nf and ns denote, respectively, the normal vector associated with the fluid and structure
computational domains.

We define also FAt = ∇At and JAt = det (FAt). The problem is complemented with boundary
conditions at the inflow Γin and outflow Γout. Since our motivation is driven by blood flow in arteries,
we present in Figures 1 and 2 two simplified geometries that exemplify the domains and boundaries for
the problem described above.

Γin ΓoutΩfΓfsi Ωs

FIGURE 1. Two dimensional ge-
ometry FIGURE 2. Three dimensional

geometry

3. HIGH ORDER ALE TRANSFORMATION

In both papers [2, 1], the piecewise linear map is created is calculated by performing first a harmonic
extension (or modified harmonic extension) of the boundary data. However, if the displacement is too
large, these operators can induce meshes that are not valid due to, for instance, mesh folding. A way
to circumvent this problem, that stems from the structure of the proposed ALE map construction, is
to replace the harmonic extension by a more suitable and flexible operator that avoids these issues or
improves the mesh quality. An example of such an operator is the Winslow smoother [11, 24]. From a
continuous point of view, the Winslow smoother enforces that the inverse of the ALE map is harmonic,
not the map itself. This accounts for solving a quasi-linear system of PDEs, which can be done using a
fixed point method. Figure 3 displays the effect of the harmonic extension and the Winslow smoother
for the same imposed displacement at the top of the unit square, see [18].

We suppose from now on that only the elements touching the boundary are curved while the elements
in the interior are straight — the geometric transformation associated is affine. — The construction of
the ALE map is then done in two steps: the first step is to use the Winslow smoother to extend the
displacement η to the interior of the reference domain using piecewise linear polynomial functions and
obtain the corresponding ALE transformation,A(h,1). The second step is a correction performed in each
element that touches the curved boundary in order to build a high order approximation. In each element
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(a) Reference mesh (b) Harmonic ALE map (c) Winslow smoother ALE map

FIGURE 3. Comparison of first order meshes in 2D generated by the harmonic exten-
sion (invalid) and Winslow smoother (valid) operators respectively

K∗ ∈ T ∗,b(h,1) we look for A(hK∗ ,N) ∈ [PN (K∗)]d such that


∫
K∗
∇A(hK∗ ,N) : ∇z dx = 0, ∀z ∈ [PN (K∗)]d

A(hK∗ ,N)(x
∗) = η(x∗) + x∗ −A(h,1)(x

∗), ∀x∗ ∈ ∂K∗ ∩ Γ∗M
A(hK∗ ,N) = 0, elsewhere on ∂K∗.

where Γ∗M is the portion of boundary in the reference domain that is curved in the computational domain.
The final ALE map, Aδ ≡ A(h,N) is obtained by adding to A(h,1) the correction A(hK∗ ,N) on each
element of T ∗,b(h,1)

A(h,N)(x
∗) = A(h,1)(x

∗) +
∑

K∗∈T ∗,b
(h,1)

A(hK∗ ,N)(x
∗).

Proposition 1 (Properties of A(h,N)). Under the previous assumptions and if all reference domains
coincide for all δ then A(h,N) ∈ [PNc (T ∗,b(h,1))]

d enjoys optimal approximation properties (i.e. if η ∈
Hm(∂Ω∗δ) then the boundary approximation is O

(
hmin(N+1,m)

)
in the L2-norm) and

A(h,N) ∈ [P 1
c (T ∗(h,1)\T

∗,b
(h,1))]

d.

The proof of this Proposition can be found in [22] for d = 2, 3. The idea of the proof is to notice that
the boundary approximation error can be written as a nodal interpolation error of the displacement func-
tion. Then, using a standard scaling argument, an error estimate can be obtained which will depend on
the polynomial order N and the regularity of η. The more general case in which the reference domains
do not coincide is still open though we expect that a similar result holds. Indeed, in the following, we
present some numerical experiments that point in that direction. Let us consider the reference domain
depicted in Figure 4(a) defined by

Ω∗,cy =
{

(x∗, y∗, z∗) ∈ R3 : x∗ ∈ [0, 5] , y∗2 + z∗2 ≤ 0.52
}

and the associated displacement of its boundary ηcy(x∗) = 0.2 exp

(
x∗

5

)
sin

(
πx∗

2.5

)
n∗. Figure 4(b)

displays the computational domains colored by the corresponding ALE map.
Finally, Figure 4(c) displays the convergence rate of the quantity ‖A(h,N) (x∗)−(x∗ + η(x∗)) ‖[L2(Γ∗

M)]d

which confirms our belief that Proposition 1 is also valid in this case with respect to geometric order N .
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(a) Ω∗,cy (b) Ωcy = A(h,4)(Ω
∗,cy) (c) Convergence rates

FIGURE 4. Reference (left) and computational (center) meshes of order 4 displayed
using GMSH colored by the displacement’s magnitude. Convergence rate plots of
A(h,N), N = 1, 2, 3, 4 with respect to h (right) .

4. DISCRETIZATION METHOD

We introduce now the numerical method used to solve the FSI problem. We use a Dirichlet-Newmann
approach for the coupled FSI problem. This accounts for using a fixed point method, iterating between
solves of the fluid equations and solves of the structure equations with appropriate Dirichlet and New-
mann boundary conditions respectively. For the fluid solver, we use the same numerical methods as in
[2] which we review very briefly in the next section as well as the structure solver afterwards.

4.1. Fluid discretization. We start by introducing some notations. Let Ω∗f,(h,1) denote the reference
domain, constructed from the high order mesh (with geometrical transformations of degree k) of the
domain occupied by the fluid at time t0 by straightening all interior edges and faces (note that as a
consequence, this domain is a polyhedron). We define Ωt

f,δ := Atδ(Ω∗f,(h,1)) which is partitioned by a
high order mesh. With these notations, the fluid problem reads as: for each n > 1, we look for the
solution (un+1

δ , pn+1
δ ) ∈ [PNc (Ωt

f,δ)]
d × PN−1

c (Ωt
f,δ), with u0

δ = u0,δ in Ωt0
f,δ, such that

(8)

ρf
β−1

∆t

(
un+1
δ ,v

)
+ a

(
un+1
δ ,v

)
+ s

(
un+1
δ ,v; u∗δ

)
−b
(
v, pn+1

δ

)
+ c

(
un+1
δ ,v; u∗δ −wn+1

δ

)
=

(
f̃n+1
δ ,v

)
, ∀v ∈ [PNc (Ω

tn+1

f,δ )]d

b
(
un+1
δ , q

)
= 0, ∀q ∈ PN−1

c (Ω
tn+1

f,δ )

where

a (unδ ,v) =

∫
Ωtnf,δ

Dx(unδ ) : ∇vdx, b (v, pnδ ) =

∫
Ωtnf,δ

divx(v) pnδ dx

(unδ ,v) =

∫
Ωtnf,δ

unδ · vdx, c (unδ ,v;β) = ρf

∫
Ωtnf,δ

[β ·∇x] un
δ · vdx

s (unδ ,v;β) = γ
∑
F∈F

∫
F
|β · n|

h2
F

N3.5
[[∇unδ ]]F · [[∇v]]F ds,

β−1 and f̃n+1
δ are determined according to the corresponding Backward Differentiation Formula (BDF),

F denotes a set of faces and [[·]]F denotes the jump across the face F , u∗δ is an extrapolated velocity and
wn+1
δ is the mesh velocity. See [2] for a complete description of all variables. At each iteration of the

fixed point method, this problem is subject to Dirichlet boundary conditions in the moving interface of
the domain and Neumann boundary conditions in the inlet and outlet (these are incorporated through the
force term f̃n+1

δ ).
In [2] the authors proposedF = F ih, i.e., the use of all internal faces in the calculation of s (unδ ,v;β).

We propose two alternatives which reduce considerably the computational effort, while still stabilizing
the flow regime in blood flow simulations, see section 6. They are (i) F = Γin ∩ Fbh for only the faces
at the inlet and (ii) F = F ih ∩

{
x ∈ Rd : (xin − x,nin) 6 0

}
, for a set of faces close to the inlet, where

xin is a suitable point inside the computational domain and nin is the outward normal to Γin.
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4.2. Structure discretization. We start this section by introducing the notation for the reference do-
main for the structure, Ωs,δ, as well as the discrete space

(9) V N
s,δ ≡ V N

s,(h,k) =
{
ηs ∈ [PNc (Ωs,δ ≡ Ωs,(h,k))]

d, ηs = 0 on Γin and Γout

}
.

where N > 1 and k > 1. Given a displacement function ηs ∈ V N
s,δ, we introduce the structure configu-

ration at time t as Ωt
s = (I + ηs)(Ωs,δ).

Using a Newmark scheme for the time discretisation at each time step tn, we define the displacement
ηns,δ and its time derivatives η̇ns,δ and η̈ns,δ, all belonging to space V N

s,δ. Moreover, we enforce that the
velocity and acceleration discretisations are functions of the previous time steps

η̈n+1
s,δ =

1

β∆t2

(
ηn+1
s,δ − η

n
s,δ

)
− 1

β∆t
η̇ns,δ −

(
1

2β
− 1

)
η̈ns,h(10)

η̇n+1
s,δ =

γ

β∆t

(
ηn+1
s,δ − η

n
s,δ

)
−
(
γ

β
− 1

)
η̇ns,δ −∆t

(
γ

2β
− 1

)
η̈ns,δ(11)

The two parameters γ and β are taken to be γ = 0.5 and β = 0.25 to ensure unconditional stability of
the Newmark scheme, see [23] for more details. The discrete variational formulation leads to finding
ηn+1
s,δ ∈ V

N
s,δ for all time step tn+1 such as:

(12)
∫

Ωs,δ

ρsη̈
n+1
s,δ · ξsdx+

∫
Ωs,δ

(
F n+1
s,δ Σn+1

s,δ

)
: ∇ξsdx =

∫
Γ0
fsi

gs · ξsds, ∀ξs ∈ V N
s,δ

where gs = JA,δF
−T
A,δ σ̂f,δn̂f is the stress induced by the fluid.

4.3. Solution strategy. The algebraic systems arising from the discretization proposed in the previous
section are solved using a Newton or quasi-Newton algorithm with a cubic line search method. At each
step, the linear solver applies the GMRES method with a LU preconditioner. The preconditioner is
typically built only once throughout the nonlinear iterations unless the nonlinearity is too stiff and the
preconditioner needs to be recalculated during the non-linear iterations. In the quasi-Newton instance,
the Jacobian can be rebuilt once in a while during the nonlinear iterations or just once, which is of-
ten preferred when simulating time-dependent problems. The underlying framework for the linear and
nonlinear solvers is PETSc [19].

5. VALIDATION

We now present a FSI benchmark presented in [12] to validate our numerical strategy. This benchmark
is a simulation of a flow in a rectangular domain with a rigid obstacle, a cylinder, and an elastic beam
clamped to the cylinder. The benchmark configuration is taken from [12], which is a well documented
test for FSI calculations. We monitor the lift and drag around the cylinder and the flag in Figures 5(c)-
5(d) as well as the displacement of a point on the flag in Figures 5(a)-5(b). We compare our results with
the ones provided in [12, 13, 14, 15, 16, 17]. In Figure 5, we denote REF the values computed by [14].

x
[
×10−3

]
y
[
×10−3

]
Drag Lift

[12] −2.69± 2.53 [10.9] 1.48± 34.38 [5.3] 457.3± 22.66 [10.9] 2.22± 149.78 [5.3]
[13] 464.5± 40.50 6.00± 166.00 [5.5]
[14] −2.88± 2.72 [10.9] 1.47± 34.99 [5.5] 460.5± 27.74 [10.9] 2.50± 153.91 [5.5]
[15] −4.54± 4.34 [10.1] 1.50± 42.50 [5.1] 467.5± 39.50 [10.1] 16.2± 188.70 [5.1]
[16] 474.9± 28.10 3.90± 165.90 [5.5]
[17] −2.83± 2.78 [10.8] 1.35± 34.75 [5.4] 458.5± 24.00 [10.8] 2.50± 147.50 [5.4]

(1) −2.86± 2.74 [10.9] 1.31± 34.71 [5.4] 459.7± 29.97 [10.9] 4.46± 172.53 [5.4]
(2) −2.85± 2.72 [10.9] 1.35± 34.62 [5.4] 459.2± 29.62 [10.9] 3.53± 172.73 [5.4]
(3) −2.88± 2.75 [10.9] 1.35± 34.72 [5.4] 459.3± 29.84 [10.9] 3.19± 171.20 [5.4]TABLE 1. Results for FSI3

The tests we present where chosen to stress that the use of high order approximations allow to reduce
the number of degrees of freedom in the calculations, while obtaining results which are in accordance
with reference values (see, for example, the configuration in [14], Table 2 and Figure 6). Only the lift
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(a) x displacement(t) (b) y displacement(t)

(c) Lift(t) (d) Drag(t)

FIGURE 5. Results for FSI3 with the configuration (3) in Table 2

is not in very good agreement: some little perturbations appear when we decrease the time step and it
seems to be caused by the Aitken relaxation, more details in [13].

Finally, with the Figures 7(a) and 7(b), we show two screenshots of this benchmark.

Nelt Ndof [PNc (Ωf,δ)]
2 × PN−1

c (Ωf,δ)× V N
s,δ ∆t

[14] 15872 304128 0.00025
(1) 1284 27400 [P 4

c (Ωf,(h,3))]
2 × P 3

c (Ωf,(h,3))× V 3
s,(h,3) 0.005

(2) 2117 44834 [P 4
c (Ωf,(h,3))]

2 × P 3
c (Ωf,(h,3))× V 3

s,(h,3) 0.005
(3) 4549 95427 [P 4

c (Ωf,(h,3))]
2 × P 3

c (Ωf,(h,3))× V 3
s,(h,3) 0.005

TABLE 2. Benchmark configurations for FSI3

FIGURE 6. Reference mesh used for (1) in table 2
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(a) Configuration (1) (b) Configuration (3)

FIGURE 7. Results for FSI3 with the configuration (1) and configuration (3)

6. BLOOD FLOW APPLICATIONS

We now describe a 2D and 3D benchmark in the blood flow context which are simulating the prop-
agation of a pressure pulse through a pipe. In both cases the minimal CIP stabilization strategy is used to
control the velocity at the inlet. For the 2D case, we have chosenF = F ih∩

{
x ∈ R2 : (xin − x, nin) 6 0

}
,

with xin = (0.3, 0). For the 3D case, we stabilize only on the faces of the inlet, i.e. F = Γin ∩ Fbh.

6.1. 2D Benchmark. The geometry is a rectangle of 6 cm long by 1cm. In this particular case, we use
a 1D reduced model for the structure, the generalized string model, using the discretization as in [5].
The purpose of this simulation is to show that under realistic parameters, the minimal CIP stabilization,
as well as the high order approximation for both fluid and structure provide satisfactory results.

(a) Velocity (top) and pressure (bottom) us-
ing minimal CIP stabilisation

(b) Velocity without stabilisation
(t=0.0027s)

(c) Velocity without stabilisation
(t=0.0027s)

FIGURE 8. Simulation using a P 4
c (Ωf,(h,3))×P 3

c (Ωf,(h,3)) fluid discretisation, V 3
s,(h,1)

for the structure and timestep ∆t = 10−4. All others parameters are taken from [20].

We plot the flow rate and average pressure at various cross sections of the flow for several timesteps
in Figure 9. The results are in good agreement with [20].

6.2. 3D Benchmark. Finally we present a blood flow application in large arteries, as presented in [21].
The geometry is a straight pipe of length L = 6 with an axis (1, 0, 0) and a radius 0.5. A pressure pulse
1.3332 × 104g/

(
cm s2

)
has been imposed at the inlet boundary during 0.003s. The thin elastic vessel

(0.1cm) is clamped at the inlet and outlet. Figure 10 displays the radial displacement at various points of
the FSI interface while figure 11 shows the pressure wave propagation for different time steps. We have
used a P 3

c (Ωf,(h,2))×P 2
c (Ωf,(h,2)) space for the fluid and V2,(h,2) for the structure. The time scheme for

the fluid is a BDF scheme of second order.
Again the results are in agreement with [21] however a more thorough benchmarking is needed.

7. CONCLUSION

We now have a complete high order fluid-structure interaction framework in 2D and 3D. However
much remains to be done in various areas. Indeed we need to make a thorough study of the presented
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(a) Average pressure (b) Flow rate

FIGURE 9. Average pressure and flow rate at various cross-sections of the flow and
various time steps.

FIGURE 10. Radial displacement versus time for several points on the fsi interface

(a) Fluid pressure (b) Fluid pressure (c) Fluid pressure

(d) Structure displacement (e) Structure displacement (f) Structure displacement

FIGURE 11. Pressure wave in a straight pipe. We show the fluid pressure and the fluid
displacement of the pipe is magnified 10 times.

framework for solving the Navier-Stokes equations in moving domains in terms of approximations — the
Arbitrary Lagrangian Eulerian framework in particular — as well the underlying linear algebra solvers
updating the results of our previous paper [2]. The FSI framework needs also to be more thoroughly
benchmarked especially in 3D however there are no available benchmarks to our knowledge. Also, in the
three dimensional case, a more robust strategy for the first step of the ALE map is under investigation.
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[23] Valdés Vázquez, J.G., Fluid-Structure Interaction Analysis ,VDM Verlag Dr. Mueller e.K., 2008.
[24] Liseı̆kin, VD, Grid generation methods, Springer Verlag (1999)
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