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Abstract. This paper supplements an earlier one by the authors which constructed

the Dedekind completion of the ring of continuous real functions on an arbitrary frame
L in terms of partial continuous real functions on L. In the present paper we provide

three alternative views of it, in terms of (i) normal semicontinuous real functions

on L, (ii) the Booleanization of L (in the case of bounded real functions) and the
Gleason cover of L (in the general case) and (iii) Hausdorff continuous partial real

functions on L. The first is the normal completion and extends Dilworth’s classical

construction to the pointfree setting. The second shows that in the bounded case the
Dedekind completion is isomorphic to the lattice of bounded continuous real functions

on the Booleanization of L and that in the non-bounded case it is isomorphic to the

lattice of continuous real functions on the Gleason cover of L. Finally, the third is the
pointfree version of Anguelov’s approach in terms of interval-valued functions. Two

new classes of frames, cb-frames and weak cb-frames, emerge naturally in the first two

representations. We show that they are conservative generalizations of their classical
counterparts.

1. Introduction

Let L be a frame and let C(L) (resp. C∗(L)) denote the lattice-ordered ring

of continuous (resp. bounded continuous) real functions on L. It is well known

that C(L) and C∗(L) are distributive lattices. In general, however, they are

not Dedekind complete: arbitrary non-void sets of continuous real functions

in C(L) and C∗(L) bounded from above need not have a least upper bound in

the lattices C(L) and C∗(L).

In a recent paper [29], we have constructed the Dedekind order completions

C(L)∨∧ and C∗(L)∨∧ of respectively C(L) and C∗(L) in terms of the frame of

partially defined real numbers and the corresponding classes of continuous

partial real functions on the given frame L. In the present paper, we establish

an alternative construction of the completion by means of normal subsets of

C(L); we use for this purpose the ring F(L) of all real functions on L (see [18])

and a special class of lower semicontinuous real functions, called normal [21],
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which are characterized by the property

f− ∈ F(L) and (f−)◦ = f,

where f◦ and f− denote the lower and upper regularizations of f , respectively.

Specifically, it is proved that the completions of C(L) and C∗(L) by normal

subsets are respectively isomorphic with the lattices

C(L)# = {f ∈ F(L) | f is normal lower semicontinuous and

there exist g, h ∈ C(L) such that g 6 f 6 h}

and

C∗(L)# = {f ∈ F(L) | f is normal lower semicontinuous and

there exist g, h ∈ C∗(L) such that g 6 f 6 h}
= {f ∈ F∗(L) | f is normal lower semicontinuous}.

The reader certainly recognizes here the classical description of the comple-

tion of C(X) due to Dilworth [11, Theorem 4.1], and simplified by Horn [22,

Theorem 11] using lower semicontinuous real functions, usually referred to as

the normal completion (cf. [24, 28]). Indeed, our results extend Dilworth’s

construction to the pointfree setting. But the pointfree situation is not merely

a mimic of the classical one; there are some differences making the whole pic-

ture much more interesting. To put this is perspective, consider a completely

regular topological space (X,OX) and the classes

C(X) = {f : X → R | f is continuous},
C∗(X) = {f : X → R | f is continuous and bounded},

C(X) = {f : X → R | f is continuous}

(where R denotes the extended real line R ∪ {−∞,+∞}). It is well known

that the following statements are equivalent [33, 30, 14]:

(1) C(X) is Dedekind complete.

(2) C∗(X) is Dedekind complete.

(3) C(X) is Dedekind complete.

(4) X is extremally disconnected.

The case OX = P(X) (i.e., the discrete topology) being trivially extremally

disconnected yields the well-known fact that F(X), F∗(X) and F(X) are

all Dedekind complete. This simple fact is used in the construction of the

Dedekind completion of C(X) (cf. [22]). The idea is that since C(X) is in-

cluded in F(X) and the latter is Dedekind complete, one may find the Dedekind

completion of C(X) inside F(X).

In the pointfree setting, however, the situation is somewhat distinct because

the frame of all sublocales of a frame L is not necessarily extremally discon-

nected. This means that, contrarily to F(X), F(L) is not necessarily complete

(indeed, given a non-void F ⊆ F(L) bounded above one cannot ensure the

existence of the supremum
∨
F in F(L), see the discussion in [20, Sections 3.2
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and 3.3]). Thus we cannot ensure a priori, as in spaces, that we can find the

completion of C(L) inside F(L).

The representation result for the completion described above, in terms of

normal semicontinuous real functions (studied in Section 4), is presented in

Section 5. As an immediate consequence of it, we get that for a completely

regular frame L, C(L) is Dedekind complete if and only if L is extremally

disconnected, a result originally due to Banaschewski and Hong [6].

Further, in Sections 6 and 7, we provide a second representation for the

completion. In the bounded case (Section 6), it states that for any completely

regular frame L, the normal completion of C∗(L) is isomorphic to the lattice of

all bounded continuous real functions on another naturally determined frame.

This is the pointfree counterpart of Dilworth [11, Theorem 6.1]. It states pre-

cisely the following: for any completely regular frame L, the normal completion

of C∗(L) is isomorphic to C∗(B(L)), where B(L) denotes the Booleanization

of L [7]. In the general case C(L), treated in Section 7, the Gleason cover G(L)

[2] of L takes the role of the Booleanization but an assumption on the frame

L is required, namely, that it is weakly continuously bounded. This is the

pointfree counterpart of Mack–Johnson [28, Proposition 4.1]. It highlights a

new class of frames introduced in the paper: the weakly continuously bounded

frames. Continuously bounded frames are introduced and studied in Section 3,

and their weak variant in Section 4.

Finally, “pour tripler notre délectation” [10], we present a third representa-

tion for the completion in terms of the so called Hausdorff continuous partial

real functions providing the pointfree setting for Anguelov’s approach [1] in

terms of interval-valued functions (cf. [9]).

2. Background

For basic notations and facts about pointfree topology and lattice theory

we refer to [26] and [31]. Below, we provide a brief survey of the background

required for this paper.

2.1. Sublocales. A sublocale set (briefly, a sublocale) S of a frame (= locale)

L is a subset S ⊆ L such that

(S1) for every A ⊆ S,
∧
A is in S, and

(S2) for every s ∈ S and every x ∈ L, x→ s is in S.

The system of all sublocales constitutes a co-frame with the order given by

inclusion, meet coinciding with the intersection and the join given by
∨
Si =

{
∧
M |M ⊆

⋃
Si}; the top is L and the bottom is the set {1}.

For notational reasons, we make the co-frame of all sublocales of a locale

L into a frame S(L) by considering the dual ordering: S1 ≤ S2 iff S2 ⊆ S1.

Thus, {1} is the top and L is the bottom in S(L) that we simply denote by 1

and 0, respectively.
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For any a ∈ L, the sets c(a) = ↑a and o(a) = {a → b | b ∈ L} are

the closed and open sublocales of L, respectively. They are complements of

each other in S(L). Furthermore, the map a 7→ c(a) is a frame embedding

L ↪→ S(L) providing an isomorphism c between L and the subframe c(L) of

S(L) consisting of all closed sublocales. On the other hand, denoting by o(L)

the subframe of S(L) generated by all o(a), the correspondence a 7→ o(a)

establishes a dual poset embedding L→ o(L).

Given a sublocale S of L, its closure and interior are defined by

S =
∨
{c(a) | c(a) 6 S} = c(

∧
S) and S◦ =

∧
{o(a) | S 6 o(a)}.

They satisfy the following properties (where S∗ and a∗ denote the pseudocom-

plements of S and a respectively in S(L) and L):

(1) 1 = 1, S 6 S, S = S, and S ∧ T = S ∧ T ,

(2) 0◦ = 0, S◦ ≥ S, S◦◦ = S◦, and (S ∨ T )◦ = S◦ ∨ T ◦,
(3) S◦ =

(
S∗
)∗

= o(
∧
S∗),

(4) c(a)◦ = o(a∗),

(5) o(a) = c(a∗).

A sublocale S is said to be regular closed (resp. regular open) if S◦ = S

(resp. S
◦

= S). It is not hard to see that S is regular closed if and only if

S = c(a) for some regular element a ∈ L (that is, such that a∗∗ = a), and

dually that S is regular open if and only if S = o(a) for some regular a.

2.2. The frame of (extended) reals. There are various equivalent ways

of introducing the frame of reals L(R) [3]. Here it will be useful to adopt

the description used in [18] given by generators (p,—) and (—, p), p ∈ Q, and

relations

(r1) (p,—) ∧ (—, q) = 0 whenever p ≥ q,
(r2) (p,—) ∨ (—, q) = 1 whenever p < q,

(r3) (p,—) =
∨
q>p(q,—), for every p ∈ Q,

(r4) (—, p) =
∨
q<p(—, q), for every p ∈ Q,

(r5)
∨
p∈Q(p,—) = 1,

(r6)
∨
p∈Q(—, p) = 1.

The meet (p,—) ∧ (—, q) is simply denoted by (p, q).

By dropping relations (r5) and (r6) in the description of L(R) above, we

have the corresponding frame of extended reals L
(
R
)

[4].

Remark. The basic homomorphism % : L
(
R
)
→ L(R) factors as

L
(
R
) νω−→ ↓ω k−→ L(R), ω =

∨
{(p, q) | p, q ∈ Q}

where νω = (·) ∧ ω and k is an isomorphism (it is obviously onto and has a

right inverse by the very definition of L(R)).
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2.3. (Extended) continuous real functions. For any frame L, a continu-

ous real function [3] (resp. extended continuous real function [4]) on a frame L

is a frame homomorphism f : L(R) → L (resp. f : L
(
R
)
→ L). We denote by

C(L) (resp. C(L)) the collection of all (resp. extended) continuous real func-

tions on L. The correspondences L 7→ C(L) and L 7→ C(L) are functorial in

the obvious way.

Remark. Using the basic homomorphism % : L
(
R
)
→ L(R) from Remark 2.2,

the f ∈ C(L) are in a one-to-one correspondence with the g ∈ C(L) such that

g(ω) = 1 (just take g = f%). In what follows we will keep the notation C(L)

to denote also the class inside C(L) of the f ’s such that f(ω) = 1.

C(L) and C(L) are partially ordered by

f 6 g ⇐⇒ f(p,—) 6 g(p,—) for all p ∈ Q
⇐⇒ g(—, q) 6 f(—, q) for all q ∈ Q.

(2.3.1)

2.4. Arbitrary (extended) real functions. Notice that there is a bijection

between the collection of all arbitrary real functions on a space (X,OX) and

the collection of all continuous real functions on (X,P(X)). Now, for a general

frame L, the role of the lattice P(X) of all subspaces of X should be taken by

the frame S(L) of all sublocales of L. This justifies thinking of frame homo-

morphisms L(R)→ S(L) as of arbitrary real functions on L. Consequently, an

f ∈ F(L) = C(S(L)) (resp. f ∈ F(L) = C(S(L))) is called an arbitrary (resp.

extended) real function on L.

Remark. By the isomorphism c : L ' c(L), each f ∈ C(L) corresponds u-

niquely to an gf ∈ F(L) (precisely the gf = c · f), and thus C(L) is equivalent

to the set of all g ∈ F(L) such that g(p,—) and g(—, q) are closed for every

p, q ∈ Q. Throughout, we keep the notation C(L) to denote also this subclass

of F(L). We proceed similarly with an f ∈ C(L).

2.4.1. Semicontinuous real functions. An f in F(L) or F(L) is

(1) lower semicontinuous if f(p,—) ∈ c(L) for every p ∈ Q;

(2) upper semicontinuous if f(—, q) ∈ c(L) for every q ∈ Q.

We denote by

LSC(L), USC(L), LSC(L) and USC(L)

the classes of lower semicontinuous and upper semicontinuous members of F(L)

and F(L) respectively.

Remarks. (1) There is a dual order-isomorphism −(·) : LSC(L) → USC(L)

defined by

(−f)(—, r) = f(−r,—) for all r ∈ Q.
When restricted to LSC(L) it becomes a dual isomorphism from LSC(L) onto

USC(L). Its inverse, denoted by the same symbol, maps a g ∈ USC(L) into

−g ∈ LSC(L) defined by (−g)(r,—) = g(—,−r) for all r ∈ Q.
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(2) Notice that C(L) = LSC(L) ∩USC(L) and C(L) = LSC(L) ∩USC(L).

(3) Lower (resp. upper) semicontinuous mappings ϕ : X → R are in a bijec-

tive correspondence with the members of LSC(OX) (resp. USC(OX)) [19, 20].

Specifically, each lower semicontinuous ϕ : X → R corresponds to the frame

homomorphism fϕ : L(R)→ S(OX) given by

fϕ(p,—) = c
(
ϕ−1((p,+∞))

)
and fϕ(—, q) =

∨
s<q

o
(
ϕ−1((s,+∞))

)
for every p, q ∈ Q, and, dually, each upper semicontinuous ϕ : X → R corre-

sponds to the upper semicontinuous real function fϕ : L(R) → S(OX) given

by

fϕ(p,—) =
∨
r>p

o
(
ϕ−1((−∞, r))

)
and fϕ(—, q) = c

(
ϕ−1((−∞, q))

)
for each p, q ∈ Q. Their restrictions to continuous mappings ϕ : X → R yield

a bijection with the members of C(OX), where the fϕ is just given by

fϕ(p,—) = c
(
ϕ−1((p,+∞))

)
and fϕ(—, q) = c

(
ϕ−1((−∞, q))

)
.

Moreover, it is easy to check that these bijections are order preserving, i.e.,

given ϕ1, ϕ2 : X → R, then ϕ1 6 ϕ2 if and only if fϕ1
6 fϕ2

.

A similar situation holds in the case of extended real functions (see [4]).

2.5. Scales. There is a useful way of specifying (extended) continuous real

functions on a frame L with the help of the so called (extended) scales ([18,

Section 4]). An extended scale in L is a map σ : Q→ L such that σ(p)∨σ(q)∗ =

1 whenever p < q. An extended scale is a scale if∨
p∈Q

σ(p) = 1 =
∨
p∈Q

σ(p)∗.

Remark. An (extended) scale is necessarily an antitone map. Conversely, if

σ is antitone and for each p < q in Q there exists a complemented element

ap,q ∈ L such that σ(q) 6 ap,q 6 σ(p), then σ is an (extended) scale (indeed,

σ(p) ∨ σ(q)
∗ ≥ ap,q ∨ ap,q∗ = 1 whenever p < q). In particular, if all σ(r) are

complemented, then σ is an (extended) scale if and only if it is antitone.

For each extended scale σ in L, the formulas

f(p,—) =
∨
r>p

σ(r) and f(—, q) =
∨
r<q

σ(r)
∗
, p, q ∈ Q, (2.5.1)

determine an f ∈ C(L); then, f ∈ C(L) if and only if σ is a scale. Moreover,

given f, f1, f2 ∈ C(L) determined by extended scales σ, σ1 and σ2, respectively,

we have:

(1) f(p,—) 6 σ(p) 6 f(—, p)∗ for every p ∈ Q.

(2) f1 6 f2 if and only if σ1(p) 6 σ2(q) for every p > q in Q.
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Examples. For each r ∈ Q, the scale σr given by σr(p) = 0 if p ≥ r and

σr(p) = 1 if p < r, determines the constant function r ∈ C∗(L), given by

r(p,—) =

{
0 if p ≥ r,
1 if p < r,

and r(—, p) =

{
1 if p > r,

0 if p 6 r.

One can similarly define two extended constant functions +∞ and −∞
generated by the extended scales σ+∞ : p 7→ 1 and σ−∞ : p 7→ 0. They are

defined for each p, q ∈ Q by

+∞(p,—) = 1 = −∞(—, q) and +∞ (—, q) = 0 = −∞(p,—),

and they are precisely the top and bottom elements of C(L).

Of course, we can also use scales in S(L) to determine arbitrary real func-

tions on L.

2.6. Complete regularity. Given a frame L and a, b ∈ L, b is really inside

a (written: b≺≺ a) if there exists a family {cr | r ∈ Q ∩ [0, 1]} ⊆ L such that

b 6 c0, c1 6 a and c∗r ∨ cs = 1 whenever r < s. A frame L is called completely

regular if a =
∨
{b ∈ L | b≺≺ a} for every a ∈ L. The following result was

proved in [15]:

Proposition. Let L be a frame and a, b ∈ L. Then

(1) b≺≺ a if and only if there exists an f ∈ C(L) satisfying 0 6 f 6 1 such

that c(b) 6 f(—, 1)∗ and f(0,—) 6 c(a).

(2) L is completely regular if and only if for each S ∈ c(L),

S =
∨
{T ∈ c(L) | there exists fT ∈ C(L) satisfying 0 6 fT 6 1,

T 6 fT (—, 1)∗ and fT (0,—) 6 S}.

3. Bounded real functions and cb-frames

Let us remind the reader that a real function f ∈ F(L) is bounded if there

exist p < q in Q such that f(p,—) = 1 = f(—, q). Equivalently, this means

that there exist p < q in Q such that p 6 f 6 q (i.e., f(—, p) = 0 = f(q,—)).

In this section we will discuss some variants of boundedness for general real

functions that will play an important role in our results.

Definition 3.1. We say that f is

(1) continuously bounded if there exist h1, h2 ∈ C(L) such that h1 6 f 6 h2;

(2) locally bounded if ∨
r∈Q

f(r,—) = 1 =
∨
r∈Q

f(—, r).
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We denote by F∗(L), Fcb(L) and Flb(L) the collections of all bounded, con-

tinuously bounded and locally bounded members of F(L) respectively. Simi-

larly we have the classes

LSC∗(L), LSCcb(L), LSClb(L), USC∗(L), USCcb(L) and USClb(L).

Remarks 3.2. (1) It readily follows from the definitions that

F∗(L)⊆ Fcb(L) ⊆Flb(L) ⊆ F(L).

(2) Note that f ∈ LSClb(L) if and only if f ∈ LSC(L) and
∨
r∈Q f(—, r) = 1

and, dually, f ∈ USClb(L) if and only if f ∈ USC(L) and
∨
r∈Q f(r,—) = 1.

(3) Recall that a real function ϕ : X → R on a topological space X is locally

bounded if for every x ∈ X there exists an open neighbourhood Ux such that

ϕ(Ux) is bounded. Consequently, ϕ is locally bounded if and only if⋃
r∈Q

Int
(
ϕ−1([r,+∞))

)
= X =

⋃
r∈Q

Int
(
ϕ−1((−∞, r])

)
,

as can be easily checked. In particular, a lower semicontinuous ϕ is locally

bounded if and only if
⋃
r∈Q Int

(
ϕ−1((−∞, r))

)
= X and an upper semicon-

tinuous ϕ is locally bounded if and only if
⋃
r∈Q Int

(
ϕ−1((r,+∞))

)
= X.

(4) Given a lower semicontinuous mapping ϕ : X → R and the corre-

sponding lower semicontinuous real function fϕ in F(OX) introduced in Re-

mark 2.4.1(3) we have that:

(a) ϕ is bounded if and only if fϕ is bounded;

(b) ϕ is continuously bounded if and only if fϕ is continuously bounded;

(c) ϕ is locally bounded if and only if fϕ is locally bounded.

For the latter, we have the following proof: For any ϕ ∈ LSC(X), the condition

of ϕ being locally bounded means precisely that, in S(OX),

1 =
∨
r∈Q

c
(
ϕ−1((r,+∞))∗

)
=
∨
r∈Q

o
(
ϕ−1((r,+∞))

)
, that is,

1 =
∨
q∈Q

∨
r<q

o
(
ϕ−1((r,+∞))

)
=
∨
q∈Q

fϕ(—, q)

(notice that for each r ∈ Q,

o
(
ϕ−1((r,+∞))

)
6

∨
r<r+1

o
(
ϕ−1((r,+∞))

)
6
∨
q∈Q

∨
r<q

o
(
ϕ−1((r,+∞))

)
,

and ∨
r<q

o
(
ϕ−1((r,+∞))

)
6 o
(
ϕ−1((q,+∞))

)
6
∨
r∈Q

o
(
ϕ−1((r,+∞))

)
for each q ∈ Q). The last identity means that fϕ ∈ LSClb(OX).

Dually, we have similar results for upper semicontinuous real functions.

The lower and upper regularizations of a real function on L were introduced

and studied in [16, 18]. The lower regularization f◦ of an f ∈ F(L) is the
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extended real function generated by the extended scale σf◦ : r 7→ f(r,—), i.e.,

f◦(p,—) =
∨
r>p

f(r,—) and f◦(—, q) =
∨
s<q

(
f(s,—)

)∗
. (3.2.1)

Dually, the upper regularization f− of f is defined by f− = −(−f)◦. Equiv-

alently, f− is the extended real function generated by the extended scale

σf− : r 7→
(
f(—, r)

)∗
, i.e.,

f−(p,—) =
∨
r>p

(
f(—, r)

)∗
and f−(—, q) =

∨
s<q

f(—, s). (3.2.2)

The following basic properties (cf. [16, 18]) of the operators

(·)◦ : F(L)→ LSC(L) and (·)− : F(L)→ USC(L)

will be useful in the sequel.

Proposition 3.3. [18, Propositions 7.3 and 7.4] The following hold for any

f, g ∈ F(L):

(1) (+∞)◦ = +∞ and (−∞)− = −∞.

(2) f◦ 6 f 6 f−.

(3) f◦◦ = f◦ and f−− = f−.

(4) (f ∧ g)◦ = f◦ ∧ g◦ and (f ∨ g)− = f− ∨ g−. (Hence f 6 g implies that

f◦ 6 g◦ and f− 6 g−.)

(5) Both (·)◦− and (·)−◦ are idempotent, i.e., f◦−◦− = f◦− and f−◦−◦ = f−◦.

As a corollary of Proposition 3.3 we have:

Corollary 3.4. Let f ∈ F(L). Then:

(1) LSC(L) = {f ∈ F(L) | f = f◦}, USC(L) = {f ∈ F(L) | f− = f} and

C(L) = {f ∈ F(L) | f◦ = f = f−}.
(2) f◦ =

∨
{g ∈ LSC(L) | g 6 f} and f− =

∧
{g ∈ USC(L) | g ≥ f}.

In general, the regularization of a real function is an extended real function.

However, we have the following:

Proposition 3.5 ([18, Proposition 7.8]). The following hold for any f ∈ F(L):

(1) If
∨
p∈Q f(p,—) = 1 then f◦ ∈ F(L).

(2) If
∨
q∈Q f(—, q) = 1 then f− ∈ F(L).

Regarding locally bounded real functions, we have the following easy con-

sequence:

Corollary 3.6. The following statements are equivalent for any f ∈ F(L):

(1) f is locally bounded.

(2) There exist g ∈ LSC(L) and h ∈ USC(L) such that g 6 f 6 h.

(3) f◦, f− ∈ F(L).

(4) f◦ and f− are locally bounded.

(5) f◦, f−, f◦−, f−◦ ∈ F(L).

(6) f◦, f−, f◦− and f−◦ are locally bounded.
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(7) f◦, f−, f◦−, f−◦, f◦−◦, f−◦− ∈ F(L).

(8) f◦, f−, f◦−, f−◦, f◦−◦ and f−◦− are locally bounded.

Proof. (1) =⇒ (2) follows from Proposition 3.5 since f◦ ∈ LSC(L), f− ∈
USC(L) and f◦ 6 f 6 f−. (2)⇐⇒ (3) follows from Proposition 3.3. (4) =⇒
(5) =⇒ (6) and (6) =⇒ (7) =⇒ (8) follow similarly as (1) =⇒ (3) =⇒ (4).

(3) =⇒ (4): Let f ∈ F(L) such that f◦, f− ∈ F(L). By Proposition 3.3 (2)

we know that f◦ ≤ f−. Then one has∨
p∈Q

f◦(—, p) ≥
∨
p∈Q

f−(—, p) =
∨
p∈Q

f−(—, p) = 1

and, similarly, one has∨
p∈Q

f−(p,—) ≥
∨
p∈Q

f◦(p,—) =
∨
p∈Q

f◦(p,—) = 1.

By Remarks 3.2 (2) we conclude that both f◦ and f− belong to Flb(L).

(8) =⇒ (1): This is obvious since

1 =
∨
p∈Q

f◦(p,—) =
∨
p∈Q

f(p,—) and 1 =
∨
q∈Q

f−(—, q) =
∨
q∈Q

f(—, q). �

Definition 3.7. A frame L is continuously bounded (shortly, a cb-frame) if

every locally bounded real function on L is bounded above by a continuous

real function.

Proposition 3.8. The following are equivalent for a frame L:

(1) L is continuously bounded.

(2) Every upper semicontinuous and locally bounded real function on L is

bounded above by a continuous real function.

(3) Every lower semicontinuous and locally bounded real function on L is

bounded below by a continuous real function.

(4) Fcb(L) = Flb(L).

Proof. (1) =⇒ (2) and (4) =⇒ (1) are obvious and (2) ⇐⇒ (3) is also clear

since f ∈ LSC(L) if and only if −f ∈ USC(L).

(3) =⇒ (4): Let f ∈ Flb(L). We can immediately derive from Corollary 3.6

that f◦,−f− ∈ LSClb(L). Our hypothesis implies that we may find g1, g2 ∈
C(L) such that g1 6 f◦ and g2 6 −f−. Hence g1 6 f◦ 6 f 6 f− 6 −g2 and

f ∈ Fcb(L). �

Remark 3.9. Since the bijections in Remarks 2.4.1(3) and 3.2(4) are order

preserving, it follows from Proposition 3.8 that continuous boundedness is a

conservative extension of the classical notion (originally due to Horne [23], see

also [27, 28]), that is, a topological space X is a cb-space if and only if OX is

a cb-frame.

It also follows from the above result (using [17, Proposition 5.4]) that any

normal and countable paracompact frame (in particular, any perfectly normal

frame [17, Proposition 5.3]) is a cb-frame.
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4. Normal semicontinuous real functions

One can say more about f◦ and f− in case L is completely regular, as the

following result shows. In its proof we use the formulas for the operations in

the algebra F(L) obtained in [20] (cf. [3]).

Lemma 4.1. Let L be a completely regular frame and f ∈ F(L).

(1) If there exists g0 ∈ C(L) such that g0 6 f , then

f◦ =
∨
{g ∈ C(L) | g 6 f}.

(2) If there exists g0 ∈ C(L) such that f 6 g0, then

f− =
∧
{g ∈ C(L) | f 6 g}.

Proof. The proof follows the lines of [29, Lemma 3.1]. First note that by [20,

Corollary 3.5],∨
{g ∈ C(L) | g 6 f} ∈ LSC(L) and

∧
{g ∈ C(L) | f 6 g} ∈ USC(L).

Then we only need to show that f◦ 6
∨
{g ∈ C(L) | g 6 f} since the converse

inequality is trivial and (2) follows easily from (1).

We fix p ∈ Q and consider p′ ∈ Q such that p < p′. Since L is completely

regular, then by Proposition 2.6(2),

f(p′,—) =
∨
{S ∈ c(L) | exists hS ∈ C(L) satisfying 0 6 hS 6 1,

S 6 hS(—, 1)∗ and hS(0,—) 6 f(p′,—)}.

Let S ∈ c(L) be one of such closed sublocales and let

gS = g0 + (((p′ − g0) ∨ 0) · hS) ∈ C(L).

We also have that gS 6 f ; indeed, for each r ∈ Q,

gS(r,—) =
∨
r′∈Q

g0(r − r′,—) ∧ (((p′ − g0) ∨ 0) · hS)(r′,—)

=
( ∨
r′<0

g0(r − r′,—)
)
∨
( ∨
r′≥0

g0(r − r′,—) ∧
(

((p′ − f) ∨ 0) · hS
)

(r′,—)
)

= g0(r,—) ∨
( ∨
r′≥0

∨
r′′>0

g0(r − r′,—) ∧
(

(p′ − f) ∨ 0
)

(r′′,—) ∧ hS
( r′
r′′
,—
))

= g0(r,—) ∨
( ∨
r′≥0

∨
r′′>0

g0(r − r′, p′ − r′′) ∧ hS
( r′
r′′
,—
))

= g0(r,—) ∨
( ∨
r′≥0

∨
r′<r′′<p′−r+r′

g0(r − r′, p′ − r′′) ∧ hS
( r′
r′′
,—
))
.
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Now, if r ≥ p′ then p′ − r + r′ 6 r′ for each r′ ≥ 0 and thus gS(r,—) =

g0(r,—) 6 f(r,—). Otherwise, if r < p′ then

gS(r,—) 6 g0(r,—) ∨
( ∨
r′≥0

∨
r′<r′′<p′−r+r′

g0(r − r′, p′ − r′′) ∧ hS(0,—)
)

= g0(r,—) ∨
( ∨
r′≥0

g0(r − r′, p′ − r′) ∧ hS(0,—)
)

= g0(r,—) ∨
(
g0(—, p′) ∧ hS(0,—)

)
6 g0(r,—) ∨ hS(0,—)

6 f(r,—) ∨ f(p′,—) 6 f(r,—) ∨ f(p′,—) = f(r,—).

Therefore gS(r,—) 6 f(r,—) for every r ∈ Q and thus gS 6 f .

Finally, since p < p′ it follows that

gS(p,—) = g0(p,—) ∨
( ∨
r′≥0

∨
r′<r′′<p′−p+r′

g0(p− r′, p′ − r′′) ∧ hS
( r′
r′′
,—
))

≥ g0(p,—) ∨
( ∨
r′≥0

∨
r′<r′′<p′−p+r′

g0(p− r′, p′ − r′′) ∧ hS(—, 1)∗
)

= g0(p,—) ∨
( ∨
r′≥0

g0(p− r′, p′ − r′) ∧ S
)

= g0(p,—) ∨ (g0(—, p′) ∧ S)

= (g0(p,—) ∨ g0(—, p′)) ∧ (g0(p,—) ∨ S) = g0(p,—) ∨ S ≥ S

and thus S 6 gS(p,—) 6
∨
{g(p,—) | g ∈ C(L) and g 6 f}. Hence

f(p′,—) 6
∨
{g(p,—) | g ∈ C(L) and g 6 f} and

f◦(p,—) =
∨
p′>p

f(p′,—) 6
∨
{g(p,—) | g ∈ C(L) and g 6 f}.

But from [20, Lemma 3.3] we know that∨
{g(p,—) | g ∈ C(L) and g 6 f} =

(∨
{g ∈ C(L) | g 6 f}

)
(p,—).

Hence f◦ 6
∨
{g ∈ C(L) | g 6 f}. �

Corollary 4.2. Let L be a completely regular frame and f ∈ F∗(L). Then:

(1) f◦ =
∨
{g ∈ C∗(L) | g 6 f}.

(2) f− =
∧
{g ∈ C∗(L) | f 6 g}.

Proof. (1) Let f ∈ F∗(L) and p, q ∈ Q be such that p 6 f 6 q. Note that

g ∨ p ∈ C∗(L) for any g ∈ C(L) such that g ≤ f , since p ≤ g ∨ p ≤ q. Then,

by Lemma 4.1 we have that

f◦ =
∨
{g ∈ C(L) | g 6 f} 6

∨
{g ∨ p | g ∈ C(L) and g 6 f}

6
∨
{g′ ∈ C∗(L) | g′ 6 f}.

The converse inequality is trivial and (2) follows dually. �

All this allows to extend the classical notions of lower and upper normal

semicontinuous real functions on a topological space (due to Dilworth [11,

Def. 3.2], see also [28]) into the pointfree setting:
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Definition 4.3. (Cf. [21]) An f ∈ F(L) is normal lower semicontinuous if

f− ∈ F(L) and f−◦ = f ;

dually, f is normal upper semicontinuous if

f◦ ∈ F(L) and f◦− = f.

We denote by NLSC(L) and NUSC(L) the classes of normal lower semicontin-

uous and normal upper semicontinuous members of F(L).

This is a slight refinement of our previous definition in [21], where we defined

an f ∈ F(L) to be normal lower (resp. upper) semicontinuous just whenever

f−◦ = f (resp. f◦− = f), certainly inspired by the original definition of

Dilworth in [11] — stating that a lower (resp. upper) semicontinuous real

function ϕ : X → R is normal if (ϕ∗)∗ = ϕ (resp. (ϕ∗)
∗ = ϕ). But it should be

noted that Dilworth [11] was only dealing with bounded real functions. In the

general case (of arbitrary, not necessarily bounded, real functions), it turns

out that there are real functions satisfying (ϕ∗)∗ = ϕ such that ϕ∗ is not real

(take, for instance, ϕ : R → R given by ϕ(x) = 0 if x 6 0 and ϕ(x) = 1
x if

x > 0). So, when dealing with arbitrary real functions, the assumption that ϕ∗

and ϕ∗ be real (or, equivalently, ϕ be locally bounded) is no longer redundant

and needs to be added to the definition (as Mack and Johnson did in [28]).

Next result provides formulas for the double regularization of a locally

bounded arbitrary real function. We direct the reader to [21, Lemma 3.4] for

a proof of this result. Notice that in [21, Lemma 3.4] the notation f ∈ Fb(L)

means that there exist g ∈ LSC(L) and h ∈ USC(L) such that g 6 f 6 h and,

by Corollary 3.6, this is equivalent to saying that f is locally bounded.

Lemma 4.4. Let f ∈ Flb(L). Then for every p, q ∈ Q we have:

(1) f−◦(p,—) =
∨
r>p f(r,—)◦ and f−◦(—, q) =

∨
s<q

(
f(—, s)

)◦
.

(2) f◦−(p,—) =
∨
r>p

(
f(r,—)

)◦
and f◦−(—, q) =

∨
s<q f(—, s)◦.

Remark 4.5. Recall that a lower semicontinuous mapping ϕ : X → R is

normal if and only if it is locally bounded and

ϕ−1((p,+∞)) =
⋃
r>p

Int
(
ϕ−1((r,+∞))

)
for each p ∈ Q. Given a lower semicontinuous mapping ϕ : X → R and the

corresponding lower semicontinuous real function fϕ in F(OX) introduced in

Remark 2.4.1(3), ϕ is normal lower semicontinuous if and only if fϕ is normal

lower semicontinuous. In fact, ϕ ∈ LSClb(X) if and only if fϕ ∈ LSClb(OX)
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and moreover

ϕ = (ϕ∗)∗ ⇐⇒ ∀p ∈ Q ϕ−1((p,+∞)) =
⋃
r>p

Int
(
ϕ−1((r,+∞))

)
⇐⇒ ∀p ∈ Q c

(
ϕ−1((p,+∞))

)
=
∨
r>p

c
(

Int
(
ϕ−1((r,+∞))

))
⇐⇒ ∀p ∈ Q c

(
ϕ−1((p,+∞))

)
=
∨
r>p

c
(
ϕ−1((r,+∞))∗∗

)
⇐⇒ ∀p ∈ Q c

(
ϕ−1((p,+∞))

)
=
∨
r>p

c
(
ϕ−1((r,+∞))

)◦
⇐⇒ ∀p ∈ Q fϕ(p,—) =

∨
r>p

fϕ(r,—)◦ = (fϕ)−◦(p,—)

⇐⇒ fϕ = (fϕ)−◦.

In conclusion, ϕ is normal lower semicontinuous if and only if fϕ ∈ NLSC(OX).

Evidently, the dual situation for upper semicontinuous real functions also

holds.

In the sequel, we shall be particularly interested in the following subclasses:

NLSCcb(L) = NLSC(L) ∩ Fcb(L), NUSCcb(L) = NUSC(L) ∩ Fcb(L),

NLSC∗(L) = NLSC(L) ∩ F∗(L) and NUSC∗(L) = NUSC(L) ∩ F∗(L).

Remarks 4.6. (1) It follows from Proposition 3.3(3) and Corollary 3.6 that

NLSC(L) ⊆ LSC(L) ∩ Flb(L) and NUSC(L) ⊆ USC(L) ∩ Flb(L).

(2) If f ∈ NLSC(L) then f− ∈ NUSC(L); dually, if f ∈ NUSC(L) then

f◦ ∈ NLSC(L). Clearly, the operators (·)◦ : NUSC(L) → NLSC(L) and

(·)− : NLSC(L)→ NUSC(L) are inverse to each other and establish an order-

isomorphism between the lattices NLSC(L) and NUSC(L). Note that there

are also order-isomorphisms between the lattices NLSCcb(L) and NUSCcb(L),

and NLSC∗(L) and NUSC(L)∗.

(3) Given f ∈ NLSC(L) it is straightforward to check that −f ∈ NUSC(L)

and hence that −(·) is a dual order-isomorphism between the lattices NLSC(L)

and NUSC(L). When restricted to NLSCcb(L) (resp. NLSC∗(L)) it becomes

a dual isomorphism from NLSCcb(L) onto NUSCcb(L) (resp. from NLSC∗(L)

onto NUSC∗(L)).

(4) The classical characteristic functions of subsets of a space have the

following pointfree counterpart: for each complemented S ∈ S(L),

σ(p) = 1 if p < 0, σ(p) = S∗ if 0 6 p < 1, σ(p) = 0 if p ≥ 1

is a scale describing a real function χS∈ F∗(L), called the characteristic func-

tion of S. Specifically, χS is defined for each p ∈ Q by

χS(p,—) =


1 if p < 0,

S∗ if 0 6 p < 1,

0 if p ≥ 1,

and χS(—, p) =


0 if p 6 0,

S if 0 < p 6 1,

1 if p > 1.

Then we have:
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(1) χS ∈ LSC∗(L) iff S is open and χS ∈ USC∗(L) iff S is closed.

(2) χS ∈ C∗(L) iff S is clopen.

(3) (χS)◦ = χS◦ and (χS)− = χS .

(4) (χo(a))
◦ = χo(a), (χc(a))

◦ = χo(a∗), (χc(a))
− = χc(a) and (χo(a))

− = χc(a∗).

(5) χo(a) ∈ NLSC∗(L) iff a = a∗∗ iff χc(a) ∈ NUSC∗(L).

We shall also need the following result:

Proposition 4.7. Let ∅ 6= F ⊆ NLSC(L). Then the join
∨
F exists in F(L).

Proof. Let σ(p) =
∨
f∈F f(p,—) for every p ∈ Q. Since F ⊆ NLSC(L), it

follows from Lemma 4.4(1) that

σ(p) =
∨
f∈F

f−◦(p,—) =
∨
f∈F

∨
r>p

f(r,—)◦

for each p ∈ Q. The map σ is clearly antitone. Since each σ(p) is a closed

sublocale (hence complemented), it follows from Remark 2.5 that σ is an ex-

tended scale in S(L). Thus it determines a real function g in F(L) given by

g(p,—) =
∨
r>p

σ(r) and g(—, q) =
∨
r<q

σ(r)
∗
, p, q ∈ Q.

We claim that g is the join of F in F(L):

• For each f ∈ F , f 6 g, that is, f(p,—) 6 g(p,—) for every p ∈ Q:

g(p,—) =
∨
r>p

σ(r) =
∨
r>p

∨
f∈F

f(r,—) =
∨
f∈F

∨
r>p

f(r,—)

=
∨
f∈F

f(p,—) ≥ f(p,—).

• If f 6 h for every f ∈ F and h ∈ F(L), then g 6 h, that is, g(p,—) 6
h(p,—) for every p ∈ Q:

g(p,—) =
∨
f∈F

f(p,—) 6 h(p,—). �

Proposition 4.8. Let f ∈ F(L). The following hold :

(1) If f ∈ Fcb(L) then f−◦ ∈ NLSCcb(L).

(2) If f ∈ F∗(L) then f−◦ ∈ NLSC∗(L).

Proof. (1) Choose f ∈ Fcb(L) and h1, h2 ∈ C(L) such that h1 6 f 6 h2. By

Proposition 3.3(4) and Corollary 3.4(1) it follows that

h1 = h−1 6 f
− 6 h−2 = h2 and h1 = h−◦1 6 f−◦ 6 h−◦2 = h2,

which, together with Proposition 3.3(5), imply that f−◦ ∈ NLSCcb(L).

(2) This follows in a similar fashion as (1). �

Now, we need to introduce a weak variant of the notion of a cb-frame:

Definition 4.9. A frame L is a weak cb-frame if each locally bounded, lower

semicontinuous real function on L is bounded above by a continuous real func-

tion.
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We note that cb-frames and weakly cb-frames have also been considered

by T. Dube [12, Definition 4.5] under different names (namely tower coz-

shrinkable and weakly tower coz-shrinkable) as the pointfree counterparts of

the cb-spaces and weak cb-spaces of Mack and Johnson [28]. In [13], weakly

tower coz-shrinkable frames are called weak-cb. Our definitions above are dif-

ferent, closer to the classical formulations but easily seen to be equivalent to

Dube’s ones.

Proposition 4.10. The following are equivalent for a frame L:

(1) L is weak cb.

(2) Every upper semicontinuous and locally bounded real function on L is

bounded below by a continuous real function.

(3) Every normal upper semicontinuous real function f on L is bounded above

by a continuous real function.

(4) Every normal lower semicontinuous real function f on L is bounded below

by a continuous real function.

(5) LSCcb(L) = LSClb(L).

(6) USCcb(L) = USClb(L).

(7) NUSCcb(L) = NUSC(L).

(8) NLSCcb(L) = NLSC(L).

Proof. (1) ⇐⇒ (2) and (3) ⇐⇒ (4) are clear since f ∈ LSClb(L) if and only if

−f ∈ USClb(L) and f ∈ NLSC(L) if and only if −f ∈ NUSC(L).

(1) =⇒ (3): Let f ∈ NUSC(L). If follows from Corollary 3.6 that f◦ ∈
LSClb(L). The hypothesis says there is a g ∈ C(L) such that f◦ 6 g. Hence

f = f◦− 6 g− = g.

(4) =⇒ (1): Let f ∈ LSClb(L). If follows from Corollary 3.6 that f−, f−◦− ∈
F(L). Moreover, f−◦− = f− and so f− ∈ NUSC(L). By the hypothesis there

is a g ∈ C(L) such that f− 6 g. Hence f 6 f− 6 g.

(5) =⇒ (1), (6) =⇒ (2), (7) =⇒ (3) and (8) =⇒ (4) are obvious.

(1) =⇒ (5): Let f ∈ LSClb(L). Then −f− ∈ LSClb(L). By the hypothesis

(applied to both f and −f−) there exist g1, g2 ∈ C(L) such that g1 6 f and

g2 6 −f−. Hence g1 6 f 6 f− 6 −g2.

(2) =⇒ (6) is dual to (1) =⇒ (5).

(3) =⇒ (7): Let f ∈ NUSC(L). Then, by Remark 4.6(2), −f◦ ∈ NUSC(L).

The hypothesis says there are g1, g2 ∈ C(L) such that f 6 g1 and −f◦ 6 g2.

Hence −g2 6 f◦ 6 f 6 g1.

(4) =⇒ (8) is dual to (3) =⇒ (7). �

The careful reader will observe readily enough that in view of Proposi-

tion 4.10 and Remarks 2.4.1(3), 4.5, a topological space X is a weak cb-space

if and only if the frame OX is weak cb.

It also follows immediately from Proposition 4.10 (now using [21, Corol-

lary 3.7]) that the class of weak cb-frames includes extremally disconnected

frames.
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5. The normal completion of C(L) and C∗(L)

We follow [32, Section 1.3] for the terminology on completions of a poset.

Recall from there that a completion of P is a pair (C,ϕ) where C is a com-

plete lattice and ϕ : P → C is a join- and meet-dense embedding (that is, each

element of C is a join of elements from ϕ[P ], and dually each element of C is

a meet of elements from ϕ[P ]).

Given a poset P = (P,6), we denote by > and ⊥ (in case they exist) the

top and bottom elements of P , respectively. Given A ⊆ P , let Au (resp. Al)

denote the set of all upper (resp. lower) bounds of A:

Au = {x ∈ P | y 6 x for all y ∈ A} and Al = {x ∈ P | x 6 y for all y ∈ A}.

For any A,B ⊆ P , we have:

(1) Au is an upper set and Al is a lower set.

(2) A ⊆ Aul ∩Alu.

(3) If A ⊆ B then Au ⊇ Bu and Al ⊇ Bl.
(4) Aulu = Au and Alul = Al.

The MacNeille completion (or normal completion) of P is the complete lattice

M(P ) = {A ⊆ P | Aul = A}

ordered by set inclusion, with ϕ(a) = {a}l for every a ∈ P . The top element of

M(P ) is the whole poset P . On the other hand, the bottom element of M(P )

is the subset {⊥} in case P has a bottom element ⊥, and ∅ otherwise.

Sometimes a weaker kind of completeness is more useful: a poset (P,6) is

Dedekind (order) complete (or conditionally complete) if every non-void sub-

set A of P which is bounded from above has a supremum in P (and then, in

particular, every non-void subset B of P which is bounded from below will

have a infimum in P ). Of course, being complete is equivalent to Dedekind

complete plus the existence of top and bottom elements. A Dedekind com-

pletion (or conditional completion) of P is a join- and meet-dense embedding

ϕ : P → D(P ) in a Dedekind complete poset D(P ). The Dedekind completion

is slightly smaller than the MacNeille completion: it can be obtained from

M(P ), in case P is directed, just by removing its top and bottom elements.

In other words,

D(P ) = {A ⊆ P | Aul = A and {⊥} 6= A 6= P}

in case P has a bottom element ⊥ and

D(P ) = {A ⊆ P | Aul = A and ∅ 6= A 6= P}

if P has no bottom element.

Next we shall prove that the Dedekind completion D(C(L)) of C(L) is

isomorphic with NLSCcb(L) (and consequently, by Remark 4.6(2), also with

NUSCcb(L)).



18 J. Gutiérrez Garćıa, I. Mozo Carollo, and J. Picado

In order to describe D(C(L)) there is no loss of generality if we restrict

ourselves to completely regular frames (see the discussion in [6, Section 2]).

Theorem 5.1. Let L be a completely regular frame. The map

Φ: D(C(L))→ NLSCcb(L) defined by Φ(A) =
(∨
A
)−◦

(where
∨
A denotes the supremum of A in F(L)) is a lattice isomorphism,

with inverse

Ψ: NLSCcb(L)→ D(C(L)) given by Ψ(f) = {g ∈ C(L) | g 6 f}.

Proof. (1) Φ is well defined: Let A ∈ D(C(L)). We first note that since C(L)

has no bottom element,

D(C(L)) = {A ⊆ C(L) | Aul = A and ∅ 6= A 6= C(L)}

and so A 6= ∅. On the other hand, Au 6= ∅ (otherwise A = Aul = C(L)).

Let f ∈ A and g ∈ Au. The join
∨
A exists in F(L) by Proposition 4.7

and satisfies f 6
∨
A 6 g, hence

∨
A ∈ Fcb(L). Then, by Proposition 4.8(1),

(
∨
A)−◦ ∈ NLSCcb(L).

(2) Ψ is well defined: First note that since f ∈ Fcb(L), there exists a

g ∈ C(L) such that g 6 f . Hence {g ∈ C(L) | g 6 f} 6= ∅. Also, {g ∈ C(L) |
g 6 f} 6= C(L) (since C(L) has no top element). Moreover, given h ∈ C(L),

we have by Lemma 4.1(1)

h ∈ {g ∈ C(L) | g 6 f}u ⇐⇒ g 6 h for all g ∈ C(L) such that g 6 f

⇐⇒ f = f◦ =
∨
{g ∈ C(L) | g 6 f} 6 h.

Then, by Lemma 4.1(2) we have, for each h′ ∈ C(L),

h′ ∈ {g ∈ C(L) | g 6 f}ul ⇐⇒ h′ 6 h for all h ∈ {g ∈ C(L) | g 6 f}u

⇐⇒ h′ 6 h for all h ∈ C(L) such that f 6 h

⇐⇒ h′ 6
∧
{h ∈ C(L) | f 6 h} = f−

⇐⇒ h′ = h′
◦
6 f−◦ = f.

Hence {g ∈ C(L) | g 6 f}ul = {g ∈ C(L) | g 6 f}.
(3) Both Φ and Ψ are order-preserving: Choose A,B ∈ D(C(L)) such that

A ⊆ B. Then
∨
A 6

∨
B and so (

∨
A)−◦ 6 (

∨
B)−◦, i.e., Φ(A) 6 Φ(B).

Conversely, let f, g ∈ NLSCcb(L) satisfying f 6 g. Then

Ψ(f) = {h ∈ C(L) | h 6 f} ⊆ {h ∈ C(L) | h 6 g} = Ψ(g).

(4) Φ is a bijection with inverse Ψ: Let f ∈ NLSCcb(L). By Lemma 4.1(1),

Φ(Ψ(f)) = Φ({g ∈ C(L) | g 6 f}) =
(∨
{g ∈ C(L) | g 6 f}

)−◦
= (f◦)−◦ = f−◦ = f.
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On the other hand, given A ∈ D(C(L)) and g ∈ C(L), we have (by

Lemma 4.1(2) and since g = g◦)

g 6 (
∨
A)−◦ ⇐⇒ g 6 (

∨
A)− =

∧{
h ∈ C(L) |

∨
A 6 h

}
⇐⇒ g 6

∧
{h ∈ C(L) | h ∈ Au} ⇐⇒ g ∈ Aul = A.

Hence

Ψ(Φ(A)) = Ψ((
∨
A)−◦) = {g ∈ C(L) | g 6 (

∨
A)−◦} = A. �

The preceding theorem (together with Proposition 4.10) leads immediately

to the following:

Corollary 5.2. For any completely regular, weak cb-frame L, the Dedekind

completion D(C(L)) of C(L) is isomorphic with NLSC(L), as well as with

NUSC(L). �

Note that by Remark 4.5 this generalizes a classical result of Horn [22,

Theorem 11].

It also follows from Theorem 5.1 that NLSCcb(L) is Dedekind complete.

For the sake of completeness, we present here a direct proof of this fact. First

we will need the following lemma.

Lemma 5.3. If f ∈ NLSCcb(L) then −f− ∈ NLSCcb(L).

Proof. Since there exist h1, h2 ∈ C(L) such that h1 6 f 6 h2, it follows by

Proposition 3.3(4) and Corollary 3.4(1) that

−h2 = (−h2)− 6 −f− 6 (−h1)− = −h1,

and so −f− ∈ Fcb(L). On the other hand, (−f−)− = −f◦− = −f ∈ F(L).

Since f− = f−◦−, we also have

(−f−)−◦ = (−f−◦−)−◦ = −f−◦−◦− = −f−.

Hence −f− ∈ NLSCcb(L). �

Proposition 5.4. NLSCcb(L) is Dedekind complete.

Proof. Let ∅ 6= F ⊆ NLSCcb(L) and f ′ ∈ NLSCcb(L) such that

f 6 f ′ for all f ∈ F .

By Proposition 4.7 we know that the join g =
∨
F exists in F(L). Then f 6

g 6 f ′ for each f ∈ F and so there exist h1, h2 ∈ C(L) such that h1 6 g 6 h2,

i.e., g ∈ Fcb(L). By Proposition 4.8(1) ,it follows that g−◦ ∈ NLSCcb(L). We

claim that g−◦ is the join of F in NLSCcb(L):

• f 6 g for every f ∈ F and so it follows by Proposition 3.3(4) and Corol-

lary 3.4(1), that f = f−◦ 6 g−◦ for every f ∈ F .
• If g′ ∈ NLSCcb(L) is such that f 6 g′ for every f ∈ F , then g 6 g′ and

thus (again by Proposition 3.3(4)) g−◦ 6 (g′)−◦ = g′.
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Now let ∅ 6= F ⊆ NLSCcb(L) and f ′ ∈ NLSCcb(L) such that

f ′ 6 f for all f ∈ F .

It follows from Lemma 5.3 that ∅ 6= G = {−f− | f ∈ F} ⊆ NUSCcb(L),

−f ′− ∈ NLSCcb(L) and

−f− 6 −f ′− for all f ∈ F .

By the result above we have that (
∨
G)−◦ is the join of G in NLSCcb(L). We

claim that −(
∨
G)−◦− is the meet of F in NLSCcb(L):

• −(
∨
G)−◦− ∈ NLSCcb(L) by Lemma 5.3.

• Since −f− 6 (
∨
G)−◦ for each f ∈ F we have

−f = −f−◦ = (−f−)− 6 (
∨
G)−◦−

and therefore −(
∨
G)−◦− 6 f for every f ∈ F .

• Let g′ ∈ NLSCcb(L) satisfying g′ 6 f for each f ∈ F . It follows that

−f− 6 −g′− for each f ∈ F with −g′− ∈ NLSCcb(L) and consequently

(
∨
G)−◦ 6 −g′−. To finish off the proof observe that

g′ = g′
−◦
6 (−(

∨
G)−◦)◦ = −(

∨
G)−◦−. �

The bounded case. It is a straightforward exercise to adapt the proof of

Theorem 5.1 to the case of bounded real functions. We then conclude the

following:

Theorem 5.5. Let L be a completely regular frame. The Dedekind completion

D(C∗(L)) of C∗(L) is isomorphic with NLSC∗(L). �

This generalizes Dilworth [11, Theorem 4.1] for spaces.

The case of extremally disconnected frames. Recall that a frame L is

said to be extremally disconnected if a∗∨a∗∗ = 1 for every a ∈ L (equivalently,

L is extremally disconnected iff a∗∗ is complemented for every a ∈ L iff the

closure of every open sublocale of L is open iff the interior of every closed

sublocale of L is closed).

We first note the following:

Proposition 5.6. The following statements are equivalent for any frame L:

(1) L is extremally disconnected.

(2) NLSC(L) = C(L).

(3) NUSC(L) = C(L).

(4) NLSC∗(L) = C∗(L).

(5) NUSC∗(L) = C∗(L).

(6) NLSCcb(L) = C(L).

(7) NUSCcb(L) = C(L).
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Proof. (1) =⇒ (2): Let f ∈ NLSC(L). Then, by Lemma 4.4, for every q ∈ Q
we have that

f(—, q) = f−◦(—, q) =
∨
s<q

(
f(—, s)

)◦
.

Since L is extremally disconnected, it follows that
(
f(—, s)

)◦
is a closed sublo-

cale for any s ∈ Q and so f(—, q) is closed for each q ∈ Q, i.e., f ∈ USC(L).

Hence f ∈ C(L).

(2) =⇒ (1): For each a ∈ L, χo(a∗∗) ∈ NLSC(L) = C(L) and so o(a∗∗) is a

clopen sublocale, i.e., a∗∗ is complemented.

The equivalences (1) ⇐⇒ (3), (1) ⇐⇒ (4) and (1) ⇐⇒ (5) follow similarly.

Finally, the implications (2)=⇒(6) and (3)=⇒(7) are trivial while (6)=⇒(1)

follows from the fact that χo(a∗∗) is indeed in NLSC(L)cb = C(L). Similarly

for (7)=⇒(1). �

As an immediate corollary we get the following result from Banaschewski-

Hong [6]:

Corollary 5.7. ([6, Proposition 1]) The following are equivalent for any com-

pletely regular frame L:

(1) L is extremally disconnected.

(2) C(L) is Dedekind complete.

(3) C∗(L) is Dedekind complete. �

6. The completion as a function ring: bounded case

In this section we will show that the Dedekind completion of the lattice of

bounded continuous real functions on any completely regular frame is isomor-

phic to the lattice of all bounded continuous real functions on another suitably

determined frame. The latter is a Boolean frame, namely the Booleanization

B(L) of L [7], that is, the complete Boolean algebra of all regular elements

a = a∗∗.

Notation. Along the next two sections, for each real function f and each

p ∈ Q we shall denote the infima of the sublocales f(p,—) and f(—, p) by fp
and fp, respectively. In other words, c(fp) = f(p,—) and c(fp) = f(—, p).

Remarks 6.1. (1) Note that 0 = f(p,—) ∧ f(—, p) ≥ f(p,—) ∧ f(—, p) =

c(fp) ∧ c(fp) = c(fp ∧ fp) and thus fp ∧ fp = 0 for every p ∈ Q.

(2) If f is locally bounded, then

1 =
∨
p∈Q

f(p,—) =
∨
p∈Q

c(fp) = c
( ∨
p∈Q

fp
)

and so
∨
p∈Q fp = 1; similarly

∨
p∈Q f

p = 1.

(3) If f is lower semicontinuous (resp. upper semicontinuous) then, for each

p ∈ Q, we have
∨
r>p fr = fp (resp.

∨
r<p f

r = fp).
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(4) If f is normal lower semicontinuous then, by Lemma 4.4(1), c(fp) =∨
r>p c((fr)

∗∗) and therefore
∨
r>p(fr)

∗∗ = fp. Dually, if f is normal upper

semicontinuous then
∨
s<q(f

s)∗∗ = fq.

(5) Note also that if f is continuous, the frame homomorphism ϕ : L(R)→ L

such that f = c ·ϕ is given precisely by ϕ(p,—) = fp and ϕ(—, p) = fp for each

p ∈ Q (see Remark 2.4.1(2)).

Theorem 6.2. Let L be a completely regular frame. The Dedekind completion

of C∗(L) is isomorphic with C∗(B(L)).

Proof. For each f ∈ NLSC∗(L) define σ : Q→ B(L) by σ(r) = (fr)
∗∗ for every

r ∈ Q. The map σ is trivially antitone and hence an extended scale in B(L)

by Remark 2.5. Moreover, since f is bounded, there exist p, q ∈ Q such that

f(p, q) = 1. Then fp = 1 = fq,∨
r∈Q

σ(r) ≥ fp = 1 and
∨
r∈Q

σ(r)∗ ≥ (fq)
∗ ≥ fq = 1.

Hence σ is a scale in B(L) and it then follows from (2.5.1) that the formulas

Φ(f)(p,—) =
B(L)∨
r>p

(fr)
∗∗ =

( L∨
r>p

(fr)
∗∗
)∗∗

=
( L∨
r>p

fr

)∗∗
= (fp)

∗∗ and

Φ(f)(—, q) =
B(L)∨
s<q

(fs)
∗ =

( L∨
s<q

(fs)
∗
)∗∗

determine a bounded continuous real function Φ(f) in B(L). It is straightfor-

ward to check that the map Φ: NLSC∗(L)→ C∗(B(L)) is order-preserving.

On the other hand, for each g ∈ C∗(B(L)), let σ : Q → S(L) be given by

σ(r) = c(g(r,—)) for every r ∈ Q. The map σ is trivially antitone and hence,

by Remark 2.5, an extended scale in S(L). Moreover, since g is bounded there

exist p, q ∈ Q such that g(p, q) = 1. Hence∨
r∈Q

σ(r) ≥ c(g(p,—)) = c(1) = 1 and
∨
r∈Q

σ(r)∗ ≥ o(g(q,—)) = o(0) = 1.

This shows that σ is a scale in S(L) and it follows from (2.5.1) that the formulas

Ψ(g)(p,—) =
∨
r>p

c(g(r,—)) and Ψ(g)(—, q) =
∨
s<q

o(g(s,—))

determine a bounded lower semicontinuous real function Ψ(g) in L. Moreover,

(Ψ(g))−◦(p,—) =
∨
r>p

Ψ(g)(r,—)◦ =
∨
r>p

c
( L∨
s>r

g(s,—)
)◦

=
∨
r>p

c
(( L∨

s>r
g(s,—)

)∗∗)
=
∨
r>p

c
(B(L)∨
s>r

g(s,—)
)

=
∨
r>p

c(g(r,—)) = Ψ(g)(p,—)

for each p ∈ Q. Hence Ψ(g) ∈ NLSC∗(L). Here again it is easily seen that the

map Ψ: C∗(B(L))→ NLSC∗(L) is order-preserving.
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Finally, for each f ∈ NLSC∗(L), g ∈ C∗(B(L)) and p ∈ Q, it follows from

Remark 6.1(4) that

Ψ(Φ(f))(p,—) = c
( ∨
r>p

Φ(f)(r,—)
)

= c
( ∨
r>p

(fr)
∗∗
)

= c(fp) = f(p,—) and

Φ(Ψ(g))(p,—) = (Ψ(g)p)
∗∗ =

( L∨
r>p

g(r,—)
)∗∗

=
B(L)∨
r>p

g(r,—) = g(p,—)

and so Ψ·Φ = 1NLSC∗(L) and Φ·Ψ = 1C∗(B(L)). �

7. The completion as a function ring: general case

The preceding theorem has no counterpart for a general C(L) since there

are frames L (even spatial frames) for which the Dedekind completion of C(L)

cannot be isomorphic to some C(M). In order to deal with the general case

we shall need first to review briefly some basic notions and facts about frame

homomorphisms and their right adjoints.

Given a frame homomorphism h : L → M , let h∗ : M → L denote its right

adjoint, characterized by the condition h(a) 6 b if and only if a 6 h∗(b) for all

a ∈ L and b ∈ M . Obviously, h is injective iff h∗h = idL iff h∗ is surjective.

In particular, if h is injective then h∗(0) = 0. We shall denote by h∗[−] the

image map S(M)→ S(L) induced by h∗ (which sends each sublocale S of M

to h∗[S]). This is a localic map [31, 2.2].

Recall that h is said to be

(1) closed if h∗[−] preserves closed sublocales, that is, if h∗[c(a)] = c(h∗(a))

for every a ∈M ,

(2) proper (also, perfect) if it is closed and h∗ preserves directed joins,

(3) an essential embedding if it is injective and h∗(a) = 0 implies a = 0 for

each a ∈M (cf. [5, Lemma 1]).

Remark 7.1. In case h∗ preserves directed joins, then h∗(a
∗) 6 h∗(a)∗. In-

deed, h∗(a
∗) = h∗(

∨
{x | x ∧ a = 0}) and the set {x | x ∧ a = 0} is clearly

directed; hence

h∗(a
∗) =

∨
{h∗(x) | x ∧ a = 0} 6

∨
{y | y ∧ h∗(a) = 0} = h∗(a)∗.

Lemma 7.2. Let h be an essential embedding. Then:

(1) For each a ∈M , h∗(a
∗) = h∗(a)∗. Consequently, h∗(a

∗∗) = h∗(a)∗∗.

(2) For each a ∈M , h(h∗(a))∗ = a∗. Consequently, h(h∗(a))∗∗ = a∗∗.

Proof. (1) First note that h∗(a
∗)∧h∗(a) = h∗(0) = 0 and thus h∗(a

∗) 6 h∗(a)∗.

On the other hand, fix an a ∈ M . Since h∗ is surjective there exists xa ∈ M
such that h∗(a)∗ = h∗(xa) and so h∗(xa ∧ a) = h∗(xa) ∧ h∗(a) = 0. It then

follows that xa ∧ a = 0 since h is an essential embedding. Hence xa 6 a∗ and

h∗(a)∗ = h∗(xa) 6 h∗(a∗).
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(2) The first inequality is immediate since h(h∗(a)) 6 a and therefore

h(h∗(a))∗ ≥ a∗ for every a ∈ M . On the other hand, from (1) we have

that

0 = h∗(a) ∧ h∗(a)∗ = h∗(a) ∧ h∗(h(h∗(a)))∗ = h∗(a) ∧ h∗(h(h∗(a))∗)

= h∗(a ∧ h(h∗(a))∗)

and therefore a ∧ h(h∗(a))∗ = 0. Hence h(h∗(a))∗ 6 a∗ and finally observe

that a∗∗ 6 h(h∗(a))∗∗. �

We shall also make use of the following result, which is the version for

completely regular frames, due to Chen [8], of a original result of Banaschewski

[2] for compact regular frames (cf. [25, 26]):

Theorem 7.3. For every completely regular frame L, there exist a completely

regular and extremally disconnected frame G(L) and a proper essential embed-

ding γL : L→ G(L). Moreover, γL is unique up to isomorphism.

The embedding γL : L → G(L) is usually called the Gleason cover (also

Gleason envelope) of L.

Let h : L → M be a closed frame homomorphism and f ∈ LSC(M). For

each t ∈ Q, f(t,—) = c(ft) and so h being closed implies that h∗[f(t,—)] =

c(h∗(ft)) for every t ∈ Q. First, let us check that the composition h∗[−] ·
f : L(R) → S(L) establishes a real function whenever h is a proper essential

embedding.

Lemma 7.4. Let h : L → M be a closed frame homomorphism and f ∈
LSC(M). The map σ : Q→ S(L) given by

σ(p) = h∗[f(p,—)]) = c(h∗(fp))

is an extended scale in S(L).

Proof. Let p < q. Then

σ(p) ∨ σ(q)∗ = c(h∗(fp)) ∨ o(h∗(fq)) ≥ c(h∗(fp)) ∨ o(h∗(fp)) = 1. �

It then follows from (2.5.1) that the formulas

h←(f)(p,—) =
∨
r>p

h∗[f(r,—)]) =
∨
r>p

c(h∗(fr)) and

h←(f)(—, q) =
∨
s<q

(h∗[f(s,—)])∗ =
∨
s<q

o(h∗(fs))

determine a real function h←(f) in LSC(L).

Clearly, h←(·) is monotone, that is, f1 6 f2 implies h←(f1) 6 h←(f2).

Proposition 7.5. If h : L → M is a proper essential embedding and f ∈
C(M), then h←(f) ∈ NLSC(L).

Proof. Since h∗ preserves directed joins, we have

h←(f)(p,—) = c
(
h∗

( ∨
r>p

fr

))
= c(h∗(fp)) = h∗[c(fp)] (7.5.1)
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for each p ∈ Q.

We first prove that h←(f) turns the defining relation (r5) into an identity

in S(L). Indeed, since h∗ preserves directed joins, we have∨
p∈Q

h←(f)(p,—) =
∨
p∈Q

c(h∗(fp)) = c
(
h∗

( ∨
p∈Q

fp

))
= c(h∗(1)) = 1.

On the other hand, in order to prove that h←(f) turns the defining relation

(r6) into an identity in S(L), we proceed as follows. Since h∗ preserves meets

we have that

c(h∗(ft)) ∧ c(h∗(f
t)) = c(h∗(ft ∧ f t)) = c(h∗(0)) = c(0) = 0

and consequently c(h∗(ft)) ∧ c(h∗(f
t)) = 0. Hence c(h∗(f

t)) 6 o(h∗(ft)).

Finally observe that, since h∗ preserves directed joins and f is locally bounded,∨
q∈Q

h←(f)(—, q) =
∨
q∈Q

∨
s<q

o(h∗(fs)) ≥
∨
q∈Q

∨
s<q

c(h∗(fs)) =
∨
r∈Q

c(h∗(f
s))

= c
(
h∗

( ∨
r∈Q

fs
))

= c(h∗(1)) = c(1) = 1.

Therefore
∨
q∈Q h

←(f)(—, q) ≥
∨
q∈Q h

←(f)(—, q) = 1 and h←(f) ∈ LSC(L).

Moreover, we have also proved that h←(f) is locally bounded. Conse-

quently, in order to demonstrate that h←(f) is normal we only need to prove

that (h←(f))−◦ = h←(f). By Lemma 4.4, using Lemma 7.2(1) and Re-

mark 6.1(4), we get, for each p ∈ Q

(h←(f))−◦(p,—) =
∨
r>p

h←(f)(r,—)◦ =
∨
r>p

c(h∗(fr))◦ =
∨
r>p

c(h∗(fr)
∗∗)

=
∨
r>p

c(h∗((fr)
∗∗))) = c

(
h∗

( ∨
r>p

(fr)
∗∗
))

= c(h∗(fp))) = h←(f)(p,—)). �

Proposition 7.6. Let h : L → M be a frame homomorphism with M ex-

tremally disconnected. For each g ∈ NLSC(L) and p, q ∈ Q define

h→(g)(p,—) =
∨
r>p

c(h(gr)
∗∗) and h→(g)(—, q) =

∨
s<q

c(h(gs)
∗). (7.6.1)

Then h→(g) ∈ C(M). Moreover, if g1, g2 ∈ NLSC(L) are such that g1 6 g2

then h→(g1) 6 h→(g2).

Proof. For each g ∈ NLSC(L) define σ : Q → M by σ(r) = h(gr)
∗∗ for every

r ∈ Q. Let p < t < q in Q. Since M is extremally disconnected, we have

σ(p) ∨ σ(q)∗ = h(gp)
∗∗ ∨ h(gq)

∗ ≥ h(gt)
∗∗ ∨ h(gt)

∗ = 1.

Since g is locally bounded, it follows from Remark 6.1(2) that∨
p∈Q

σ(p) =
∨
p∈Q

h(gp)
∗∗ ≥

∨
p∈Q

h(gp) = h
( ∨
p∈Q

gp

)
= h(1) = 1.
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On the other hand, since gp ∧ gp = 0, then h(gp)∧h(gp) = 0 and thus h(gp) 6
h(gp)

∗ for every p ∈ Q. Consequently, by Remark 6.1(2), we also get∨
p∈Q

σ(p)∗ =
∨
p∈Q

h(gp)
∗ ≥

∨
p∈Q

h(gp) = h
( ∨
p∈Q

gp
)

= h(1) = 1.

Hence σ is a scale in M .

It then follows from (2.5.1) and Remark 2.4.1(2) that the formulas (7.6.1)

determine a continuous real function h→(g) in C(M).

The last statement is easy to check. �

It should be remarked that h→ is a right (Galois) adjoint of h←, that is,

h←(f) 6 g ⇐⇒ f 6 h→(g)

for every f ∈ LSC(M) and g ∈ NLSC(L). When we restrict the class of real

functions on the left to C(M) this Galois connection yields an order isomor-

phism:

Theorem 7.7. Let h : L → M be a proper essential embedding with M an

extremally disconnected frame. The map

h→ : NLSC(L)→ C(M)

is an order isomorphism, with inverse

h← : C(M)→ NLSC(L).

Proof. As seen above, both h→ and h← are well-defined order-preserving maps.

It remains to check that h→ is a bijection with inverse h←.

If f ∈ C(M) then, by Proposition 7.5, h←(f) ∈ NLSC(L) and by Propo-

sition 7.6, h→(h←(f)) ∈ C(M). By (7.5.1) we obtain that h←(f)(r,—) =

c(h∗(fr)) for each r ∈ Q and so h←(f)r = h∗(fr)). Applying (7.6.1), (7.5.1),

Lemma 7.2(2) and Remark 6.1(4) we obtain for each p ∈ Q
h→(h←(f))(p,—) =

∨
r>p

c(h(h←(f)r)
∗∗) =

∨
r>p

c(h(h∗(fr))
∗∗)

=
∨
r>p

c((fr)
∗∗) = c

( ∨
r>p

(fr)
∗∗
)

= c(fp) = f(p,—).

Hence h→(h←(f)) = f .

On the other hand, starting with a g ∈ NLSC(L), then h→(g) ∈ C(M) and

h←(h→(g)) ∈ NLSC(L). By (7.6.1) we have h→(g)(p,—) = c
(∨

r>p h(gr)
∗∗)

for every p ∈ Q and so h→(g)p =
∨
r>p h(gr)

∗∗. On the other hand, by (7.5.1),

Lemma 7.2(1) and Remark 6.1(4), and since h∗ preserves directed joins, it

follows that

h←(h→(g))(p,—) = c(h∗(h
→(g)p)) = c

(
h∗

( ∨
r>p

h(gr)
∗∗
))

=
∨
r>p

c(h∗(h(gr)
∗∗)) =

∨
r>p

c(h∗(h(gr))
∗∗)

=
∨
r>p

c((gr)
∗∗) = c

( ∨
r>p

(gr)
∗∗
)

= c(gp) = g(p,—)
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for every p ∈ Q. Hence h←(h→(g)) = g. �

Corollary 7.8. Let L be a completely regular frame and let γL : L → G(L)

be its Gleason cover. The correspondence f 7→ γ←L (f) establishes a lattice

isomorphism between C(G(L)) and NLSC(L). �

It now follows immediately from Corollaries 5.2 and 7.8 that for weak cb-

frames L the Dedekind completion of C(L) is indeed isomorphic to C(M) for

some frame M . More specifically:

Corollary 7.9. Let L be a completely regular, weak cb-frame. The Dedekind

completion of C(L) is isomorphic to C(G(L)). �

This is the pointfree counterpart of the classical result, originally due to

Mack and Johnson [28], that for any completely regular, weak cb-space X

and its minimal projective extension Y , the Dedekind completion of C(X) is

isomorphic to C(Y ).

Remark 7.10. The above corollary shows in particular that the Dedekind

completion of C(L) is a lattice-ordered ring whenever L is a completely regular

weak cb-frame. Besides, one may wonder if this also holds in the more general

case of not necessarily weak cb-frames, namely, if the algebraic operations of

C(L) can be extended to the completion in such a way that the latter becomes

a lattice-ordered ring. We point out that this question was already answered

in the affirmative in [29, Remark 3.11]. Notice that there is a misprint in that

Remark: it should say that the operations on C(L) can be easily extended

to C∨∧(L) (not IC(L)). We take this occasion to correct a further inaccuracy

in [29], on the misuse of the word “ring” in the first sentence of its abstract:

indeed, the class IC(L) of all partial real functions on a frame is not in general

an ordered ring.

8. A third representation: Hausdorff continuous functions

Dropping the relation (r2) from the definition of the frame of reals (in 2.2)

yields the frame L(IR) of partial real numbers [29]. Frame homomorphisms

L(IR)→ L are called continuous partial real functions [29] on L.

The set

IC(L)

of continuous partial real functions on L is partially ordered by f 6 g iff

f(p,—) 6 g(p,—) and g(—, q) 6 f(—, q)

for every p, q ∈ Q.

We call any f in

IF(L) = IC(S(L)) = Frm(L(IR),S(L))

an arbitrary partial real function on L. As for total real functions, we say that

f is lower (resp. upper) semicontinuous if f(p,—) ∈ c(L) (resp. f(—, p) ∈ c(L))
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for every p ∈ Q. Further, IC(L) can be seen as the subclass of IF(L) of all

lower and upper semicontinuous real functions.

Remark 8.1. The obvious order embedding ι : L(IR) → L(R) defined by

(p, q) 7→ (p, q) induces an embedding I : F(L)→ IF(L) (given by f 7→ f · ι). So

we may look to F(L) as a subset of IF(L), specifically as the subset of partial

real functions such that

f(p,—) ∨ f(—, q) = 1 for every p < q in Q.

Similarly, we can embed C(L), LSC(L) and USC(L) in IF(L):

IF(L)

ILSC(L) F(L) IUSC(L)

LSC(L) IC(L) USC(L)

C(L)

As for real functions (recall Definition 3.1), a partial real function f ∈ IF(L)

is

(1) bounded if there exist p < q in Q such that f(p,—) = 1 = f(—, q);

(2) continuously bounded if there exist h1, h2 ∈ C(L) such that h1 6 f 6 h2;

(3) locally bounded if ∨
r∈Q

f(r,—) = 1 =
∨
r∈Q

f(—, r).

We denote the corresponding collections of real functions by IF∗(L), IFcb(L)

and IFlb(L) respectively.

Remark 8.2. Obviously, bounded partial real functions and continuous func-

tions are continuously bounded and any continuously bounded partial real

function is locally bounded. Thus

IF∗(L) ∪ IC(L) ⊆ IFcb(L) ⊆ IFlb(L).

In order to extend the lower and upper regularizations of a real function

(3.2.1-3.2.2) to partial real functions we need the following result.

Lemma 8.3. Let f ∈ IFlb(L). Then σ : Q→ S(L), defined by σ(r) = f(r,—),

is a scale in S(L).

Proof. Since σ is clearly antitone and each σ(r) is complemented, it follows

from Remark 2.5 that it is an extended scale. On the other hand, since f is

locally bounded and 0 = f(r,—) ∧ f(—, r) ≥ f(r,—) ∧ f(—, r) for every r ∈ Q
we have∨
r∈Q

σ(r) =
∨
r∈Q

f(r,—) = 1 and
∨
r∈Q

σ(r)∗ =
∨
r∈Q

(
f(r,—)

)∗ ≥ ∨
q∈Q

f(—, r) = 1
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and thus σ is a scale in S(L). �

Note also that Remark 2.4.1(1) has its counterpart in IF(L) and there is a

dual order-isomorphism −(·) : ILSC(L)→ IUSC(L) defined by

(−f)(—, r) = f(−r,—) for all r ∈ Q.

When restricted to ILSClb(L) it becomes a dual isomorphism from ILSC(L)lb

onto IUSC(L)lb. With the help of the lemma, it is now a straightforward

exercise to check that the lower and upper regularizations defined in Section 3

are immediately extendable to any f ∈ IFlb(L) yielding operators

(·)◦ : IFlb(L)→ LSC(L) and (·)− : IFlb(L)→ USC(L) (8.3.1)

with properties similar to the ones in Proposition 3.3 and Corollary 3.4. In

particular:

Proposition 8.4. The following properties hold for any f, g ∈ IFlb(L):

(1) f◦ 6 f 6 f−.

(2) f◦◦ = f◦ and f−− = f−.

(3) f◦ 6 g◦ and f− 6 g− whenever f 6 g.

(4) f◦−◦− = f◦− and f−◦−◦ = f−◦.

Definition 8.5. An f ∈ IFlb(L) is Hausdorff continuous if f ∈ IC(L), i.e.,

f(p,—), f(—, q) ∈ c(L) for every p, q ∈ Q, f◦− = f− and f−◦ = f◦.

We denote by H(L) the collection of all Hausdorff continuous partial real

functions on L.

Obviously, C(L) ⊆ H(L) ⊆ IC(L) since f is continuous if and only if f =

f◦ = f−. Moreover, f− ∈ NUSC(L) and f◦ ∈ NLSC(L) for every f ∈ H(L).

We conclude the paper with the promised third representation for the

Dedekind completion of C(L).

Theorem 8.6. Let L be a completely regular frame. The Dedekind completion

of C(L) is isomorphic with Hcb(L) = H(L) ∩ IFcb(L).

Proof. For each f ∈ H(L), let Φ(f) = f◦. By (8.3.1), Φ(f) ∈ LSC(L). More-

over, Φ(f)− = f◦− = f− ∈ F(L) and Φ(f)−◦ = f◦−◦ = f−◦ = f◦ = Φ(f).

Thus Φ(f) ∈ NLSC(L).

The map Φ: H(L) → NLSC(L) is order-preserving and its restriction to

C(L) is the identity map. Hence Φ(f) ∈ NLSCcb(L) whenever f ∈ Hcb(L),

and Φ|Hcb(L) is an order-preserving map from Hcb(L) into NLSCcb(L).

Conversely, given g ∈ NLSC(L) and p, q ∈ Q define

Ψ(g)(p,—) = g(p,—) and Ψ(g)(—, q) = g−(—, q).

In order to show that Ψ(g) ∈ IF(L) we only need to prove that Ψ(g) turns the

defining relations (r1) and (r3)–(r6) into identities in S(L):

(r1) For each p ≥ q, it follows from Remarks 6.1 that

Ψ(g)(p,—) ∧Ψ(g)(—, q) = g(p,—) ∧ g−(—, q) 6 g(p,—) ∧ g(—, q) = 0.
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(r3)–(r6) follow since g ∈ NLSC(L) and g− ∈ NUSC(L). Further,∨
r∈Q

Ψ(g)(r,—) =
∨
r∈Q

g(r,—) =
∨
r∈Q

g(r,—) = 1 and∨
r∈Q

Ψ(g)(—, r) =
∨
r∈Q

g−(—, r) =
∨
r∈Q

g−(—, r) = 1,

which ensures that Ψ(g) ∈ IFlb(L). Moreover,

Ψ(g)◦(p,—) =
∨
r>p

Ψ(g)(r,—) =
∨
r>p

g(r,—) = g(p,—) and

Ψ(g)−(—, q) =
∨
s<q

Ψ(g)(—, s) =
∨
s<q

g−(—, s) = g(—, q)

for every p, q ∈ Q. Hence Ψ(g)◦ = g, Ψ(g)− = g−, Ψ(g)◦− = g− and Ψ(g)−◦ =

g−◦ = g and so Ψ(g) ∈ H(L).

It is also easy to check that Ψ: NLSC(L) → H(L) is order-preserving and

its restriction to C(L) is the identity. Therefore, Ψ(g) ∈ Hcb(L) whenever

g ∈ NLSC(L), and Ψ|NLSCcb(L) is an order-preserving map from NLSCcb(L)

into Hcb(L).

Finally, for each f ∈ Hcb(L), g ∈ NLSCcb(L) and p, q ∈ Q, we have that

Ψ(Φ(f))(p,—) = Φ(f)(p,—) = f◦(p,—) =
∨
r>p

f(r,—) =
∨
r>p

f(r,—) = f(p,—),

Ψ(Φ(f))(—, q) = Φ(f)−(—, q) =
∨
s<q

Φ(f)(—, s) =
∨
s<q

f◦(—, s) = f◦−(—, q)

= f−(—, q) =
∨
s<q

f(—, s) =
∨
s<q

f(—, s) = f(—, q) and

Φ(Ψ(g))(p,—) = Ψ(g)◦(p,—) =
∨
r>p

Ψ(g)(r,—) =
∨
r>p

g(r,—) =
∨
r>p

g(r,—)

= g(p,—),

that is, Ψ·Φ = 1Hcb(L) and Φ·Ψ = 1NLSCcb(L). �

This is the pointfree version of Anguelov’s characterization in [1] of the

Dedekind completion of C(X) in a constructive form, as a set of real functions

on the same space X.
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[16] Gutiérrez Garćıa J., Kubiak T., Picado J.: Lower and upper regularizations of frame

semicontinuous real functions. Algebra Universalis 60, 169–184 (2009)
[17] Gutiérrez Garćıa J., Kubiak T., Picado J.: Pointfree forms of Dowker’s and Michael’s

insertion theorems. J. Pure Appl. Algebra 213, 98–108 (2009)
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