
MORE ON SUBFITNESS AND FITNESS

JORGE PICADO AND ALEŠ PULTR

Abstract. The concepts of fitness and subfitness (as defined in Isbell [9])

are useful separation properties in point-free topology. The categorical be-

haviour of subfitness is bad and fitness is the closest modification that be-

haves well. The separation power of the two, however, differs very substan-

tially and subfitness is transparent and turns out to be useful in its own right.

Sort of supplementing the article [20] we present several facts on these con-

cepts and their relation. First the “supportive” role subfitness plays when

added to other properties is emphasized. In particular we prove that the nu-

merous Dowker-Strauss type Hausdorff axioms become one for subfit frames.

The aspects of fitness as a hereditary subfitness are analyzed, and a simple

proof of coreflectivity of fitness is presented. Further, another property, pre-

fitness, is shown to also produce fitness by heredity, in this case in a way

usable for classical spaces, which results in a transparent characteristics of

fit spaces. Finally, the properties are proved to be independent.

1. Introduction

In his celebrated paper [9], Isbell introduced the concepts of fitness and sub-

fitness. The subfitness was (with some regret) soon dismissed, after an appli-

cation in the compact context, because of its bad categorical behaviour: it was

not generally inherited by subobjects and by products, while fit frames con-

stituted a coreflective subcategory of the category of frames. Let us mention

right away, though, that subfitness can be translated into a transparent prop-

erty of a separation nature while fitness has not been given for a while any

intuitive geometrical interpretation (even the topological description given later

in [7] was not very satisfactory; the first one that is really simple may be that

given below in 4.5.2). Somewhat unexpectedly, subfitness occurred in [7] as the
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necessary and sufficient condition for admitting a nearness (not only a regular

one) extending the general concept defined for spaces by Herrlich in [6]. This

prompted Simmons (who had introduced subfitness in [19] – independently and

for other purposes – as conjunctivity) to write his very interesting paper [20]

discussing several aspects of the mentioned properties.

The present article can be viewed as a supplement to [19]. In Section 3 we

discuss the role of subfitness as a supporting separation property. Besides men-

tioning the well-known associations of subfitness with TD and with normality we

prove that numerous Hausdorff axioms of Dowker-Strauss type merge when this

condition is added. In Section 4 we discuss some aspects of fitness as hereditary

subfitness and present a simple proof of the coreflectivity of fitness based on

this and on localic techniques. Then, we introduce another concept, prefitness,

which also has the property that it produces fitness if modified by heredity.

Unlike subfitness, it suffices to assume it for closed sublocales, so that it can

be applied to subspaces to yield a simple and transparent characteristics of fit

spaces. Further we show that subfitness, obviously inherited by closed sublo-

cales, is inherited by all complemented ones. In the last section we compare the

discussed properties and show their independence.

2. Preliminaries

2.1. Recall that a frame resp. co-frame is a complete lattice L satisfying the

distributive law

a ∧ (
∨
B) =

∨
{a ∧ b | b ∈ B} resp. a ∨ (

∧
B) =

∧
{a ∨ b | b ∈ B}

for all a ∈ L and B ⊆ L. A typical frame is the lattice

Ω(X)

of all open sets of a topological space X. A frame homomorphism h : L → M

preserves all joins and finite meets; if f : X → Y is a continuous map we have

a frame homomorphism Ω(f) : Ω(Y )→ Ω(X) defined by Ω(f)(U) = f−1[U ].

2.2. If L is a frame, the mapping (x 7→ x ∧ a) : L → L preserves suprema and

hence it is a left Galois adjoint; thus we have the (uniquely defined) Heyting

operation x→y satisfying

a ∧ b ≤ c iff a ≤ b→c.

We will use some standard facts like 1→a = a, b ≤ a→ b, a ≤ b iff a→ b = 1,

a→(b→c) = (a ∧ b)→c = b→(a→c) or a→(
∧
bi) =

∧
(a→bi).

2.2.1. For each a in a frame we have the pseudocomplement

a∗ =
∨
{x | x ∧ a = 0} = a→ 0.
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We will use the standard facts like a ≤ b⇒ b∗ ≤ a∗, a ≤ a∗∗ or a∗ = a∗∗∗.

We set a ≺ b for a∗ ∨ b = 1; note that in Ω(X), U ≺ V says that U ⊆ V .

2.3. Here are some separation axioms used for frames:

(sfit): a � b⇒ ∃c, a ∨ c = 1 6= b ∨ c.
(fit): a � b⇒ ∃c, a ∨ c = 1 & c→b 6= b.

(reg): ∀a, a =
∨
{x | x ≺ a}.

(norm): a ∨ b = 1⇒ ∃u, v such that u ∧ v = 0 and a ∨ v = 1 = u ∨ b.

One speaks of subfit, fit, regular and normal frames, in this order. The sub-

fitness is relaxed to weak subfitness ([7]; cf. property Π0 in [22])

(wsfit): a � 0⇒ ∃c 6= 1, a ∨ c = 1.

Ω(X) is regular resp. normal iff X is regular or normal in the classical sense.

2.4. One thinks of a frame L as of a generalized space. One of several repre-

sentations of a (generalized) subspace of L is that of a sublocale. It is a subset

S ⊆ L such that

(S1) M ⊆ S ⇒
∧
M ∈ S, and

(S2) ∀x ∈ L, ∀s ∈ S, x→s ∈ S.

S is a frame in the order of L and inherits its Heyting structure; the left

adjoint

νS : L→ S (2.4.1)

to the embedding map j = jS : S ⊆ L is a surjective frame homomorphism

given by νS(x) =
∧
{s ∈ S | s ≥ x}. The system of all sublocales constitutes a

co-frame

S̀ (L)

with the order given by inclusion, meet coinciding with the intersection and the

join given by ∨
Si = {

∧
M |M ⊆

⋃
Si};

the top is L and the bottom is the set O = {1}.

2.4.1. A sublocale S is complemented if there is a sublocale T such that S∨T =

L and S ∩ T = O. An important property of complemented S is that for any

system Ti, i ∈ I, of sublocales one has

S ∩
∨
Ti =

∨
(S ∩ Ti)

(note that this is exceptional: S̀ (L) is a co-frame, not a frame; in fact this law

characterizes complementarity – see [14, VI.4.4.3]).



4 JORGE PICADO AND ALEŠ PULTR

2.4.2. Open resp. closed subspaces are represented by open resp. closed

sublocales

o(a) = {x | a→x = x} = {a→x | x ∈ L} resp. c(a) = ↑a = {x | x ≥ a}.

o(a) and c(a) are complements of each other. Here are a few rules (see [14]):

– o(0) = O, o(1) = L, o(a ∧ b) = o(a) ∩ o(b), o(
∨
ai) =

∨
o(ai),

– c(0) = L, c(1) = O, c(a ∧ b) = c(a) ∨ c(b), c(
∨
ai) =

⋂
c(ai),

– o(a) ∩ c(b) 6= O iff a � b,

– c(a) ⊆ o(b) iff a ∨ b = 1,

– T = S ∩ o(a) is an open sublocale in the sublocale S. More precisely,

T = oS(νS(a)). Similarly for closed sublocales.

Due to (S2) one has an extremely simple formula for the closure S (the

smallest closed sublocale containing S):

S = ↑
∧
S.

It is easy to see that

o(a) ∩ S 6= O iff o(a) ∩ S 6= O (2.4.2)

(since o(a) ∩ S = O iff S ⊆ ↑a iff S ⊆ ↑a).

2.4.3. Note that the original definitions of fitness and subfitness in [9] are (in

our present terminology)

(sfit): each open sublocale is a join of closed ones,

(fit): each sublocale is a meet of open ones.

Now we think of these statements rather as of characterization theorems.

For more about frames see e.g. [10, 14, 13, 17, 16].

2.5. A cover of a frame L is a subset C ⊆ L such that
∨
C = 1. For a cover C

and an element x ∈ L resp. sublocale S ⊆ L set

Cx =
∨
{c ∈ C | c ∧ x 6= 0} resp. CS =

∨
{c ∈ C | o(c) ∩ S 6= O}. (2.5.1)

Note that Cx = Co(x) (since o(c) ∩ o(x) 6= O iff c(c) ∨ c(x) = ↑c ∨ ↑x 6= L iff

c ∧ x 6= 0).

A system C of covers is admissible resp. quasi-admissible if

∀a ∈ L, a =
∨
{x | ∃C ∈ C , Cx ≤ a} resp. o(a) =

∨
{S | ∃C ∈ C , CS ≤ a}.

Note that Cx ≤ a implies x ≺ a, and that, by (2.4.2), CS = CS. Thus (using

also 2.4.3) we see that

2.5.1. The existence of an admissible system of covers implies regularity and

the existence of a quasi-admissible system of covers implies subfitness.
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2.6. We say that a cover A refines a cover B and write A ≤ B if for every a ∈ A
exists a b ∈ B such that a ≤ b.

A nearness (see e.g. [1]) on L is an admissible system of covers A such that

(N1) if A ∈ A and A ≤ B then B ∈ A , and

(N2) if A,B ∈ A then A ∧B = {a ∧ b | a ∈ A, b ∈ B} ∈ A .

This extends the concept of a regular nearness, as defined for spaces by Herrlich

[6], to the point-free context. If we wish to extend the concept of general

nearness, we relax the admissibility to quasi-admissibility and speak of a quasi-

nearness or generalized nearness.

A basis of (quasi-)nearness is a system of covers B such that A = {C | C ≥
B ∈ B} is a (quasi-)nearness. Note that obviously A is (quasi-)admissible iff B
is.

2.6.1. Proposition. A frame admits a nearness (resp. a quasi-nearness) iff it

is regular (resp. subfit).

(The implications ⇒ are in 2.5.1, the implication ⇐ for nearness is almost

trivial; for a quasi-nearness see e.g. [7].)

3. Subfitness as a supportive property

3.1. Subfitness added to another requirement often results in a more desirable

property. First, however, let us recall the nature of plain subfitness. It can be

viewed as a separation axiom slightly weaker than T1. For spaces we have

Theorem (Simmons [20], Isbell [9]). A topological space is subfit iff for every

x ∈ U open there exists a y ∈ {x} such that {y} ⊆ U .

Recall that a space X is TD if for each x ∈ X there is an open U such that

x ∈ U and U r {x} is open.

From the theorem above we now easily infer

3.2. Proposition. A topological space is T1 iff it is TD and subfit.

In [2] the point-free aspects of the TD axiom were discussed. The following

property makes a spatial frame representable by a TD-space:

each prime element p in L is completely prime. (pfTD)

From the facts in [2] we can infer

3.2.1. Proposition. Let L satisfy (pfTD) and (sfit). Then the spectrum ΣL is

T1.
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3.3. The Hausdorff axiom is mimicked in point-free topology using a number of

different requirements. The strongest is the Isbell’s Hausdorff axiom requiring

that the codiagonal in the coproduct L⊕ L be closed. Then there is a number

of variations on the Dowker-Strauss separation from [3, 4]. Let us list them:

S′2: if a ∨ b = 1 and a, b 6= 1 then there are u, v with u � a, v � b and

u ∧ v = 0 (the axiom from [3]).

S′′2 : if a � b and b � a then there are u, v with u � a, v � b and

u ∧ v = 0 (the standard strengthening of S′2).

T ′2: if 1 6= a � b then there are u, v with u � a, v � b and u ∧ v = 0

(P. Johnstone & Sun Shu Hao [11]).

T2: if 1 6= a � b then there are u, v with u � a, v � b, v ≤ a and

u ∧ v = 0 (Paseka & Šmarda [12]).

T<: if b < a 6= 1 then there are u, v with u � a, v � b, v ≤ a and

u ∧ v = 0 (equivalent with T2, introduced for technical reasons).

S2: if a � b and b � a then there are u, v with u � a, v � b, v ≤ a,

u ≤ b and u ∧ v = 0.

The relations between them are depicted in the following diagram:

T2

��

ks S2 & T<

��

S2

��
T ′2

+3 S′′2
+3 S′2

(∗)

Further one has axioms based on the properties of meet irreducibility (see

[18]), weaker than S′′2 , but we are not discussing them here.

3.3.1. To obtain a property that would coincide with the Hausdorff one in the

spatial case, Dowker & Strauss [4] introduced the combination

S2sf ≡ S′2 & (sfit).

Now adding the subfitness in fact identifies all the axioms of the group (∗). We

have

Proposition. S2 & T< & (sfit) ≡ T2 & (sfit) ≡ S2 & (sfit) ≡ T ′2 & (sfit) ≡ S′2
& (sfit) ≡ S′′2 & (sfit).

Proof. Let L be subfit and let it satisfy S′2. First we will show that it satisfies

S′′2 .
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Let a � b and b � a. Then there is a c such that a ∨ c = 1 6= b ∨ c. Hence

a � b ∨ c (else 1 = a ∨ c ≤ b ∨ c) and a ∨ (b ∨ c) = 1 so that we have u � a and

v � b ∨ c (and hence v � b) such that u ∧ v = 0.

Now, again, take a � b and b � a. Then there are c1, c2 such that

a ∨ c1 = 1 6= b ∨ c1 and a ∨ c2 6= 1 = b ∨ c2.

We have

b ∨ c1 � a ∨ c2 and a ∨ c2 � b ∨ c1

(indeed, if b ≤ a∨c2 then 1 = b∨c2 ≤ a∨c2; the other statement by symmetry).

We already know that L satisfies S′′2 and hence we have u′, v′ such that u′ �
a ∨ c2, v′ � b ∨ c1 and u′ ∧ v′ = 0. Then u = u′ ∧ b � a since otherwise

u = u ∧ (b ∨ c2) ≤ a ∨ (u ∧ c2) ≤ a ∨ c2, and similarly v = v′ ∧ a � b. Hence we

have S2.

Finally let b < a 6= 1. Again take a c such that a ∨ c = 1 6= b ∨ c. Then we

have a ∨ (b ∨ c) = 1 with a, b ∨ c incomparable, and using S2 for this pair we

obtain T<. �

3.4. Let us also recall the standard fact that normality does not imply regularity

but augmented with subfitness it does.

3.4.1. In [5] the authors introduced, a.o., the concept of almost normality:

(a.norm): if a∨ b = 1 and a = a∗∗ then there are u, v with a∨ v = 1 =

u ∨ b and u ∧ v = 0.
Note that

3.4.2. A frame L is almost normal iff the relation ≺ in L interpolates.

(Indeed: if a ≺ b then a∗ ∨ b = 1 and we have u, v with u ∧ v = 0 – and hence

v∗ ≥ u – and a∗ ∨ v = 1 = u ∨ b. Then a ≺ v ≺ b. On the other hand, if ≺
interpolates and a∗∗ ∨ b = 1 then a∗ ≺ b and we have a∗ ≺ v ≺ b for some v;

then a∗ ∨ v = 1 and v∗ ∨ b = 1.)

3.4.3. Similar to the implication (normal) & (subfit) ⇒ (regular) we have

Proposition. If L is almost normal and subfit then for every a ∈ L

a∗∗ =
∨
{x | x ≺ a∗∗}.

Proof. Suppose a∗∗ � b =
∨
{x | x ≺ a∗∗}. By (sfit) there is a c such that

a ∨ c = 1 6= c ∨ b. Then, by (a.norm) there is a u such that a ∨ u∗ = 1 = u ∨ c.
Hence we have u ≺ a, and then u ≤ b and b ∨ c = 1, a contradiction. �
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4. Fitness conditions and sublocales

4.1. Fitness is well-known to be inherited by all sublocales and it implies

subfitness. Although the following fact is standard, we will present a proof. It

will be shorter than the proofs usually found in literature, but first of all, it will

introduce a class of sublocales which will be of interest later.

Proposition. If every sublocale of a locale L is subfit then L is fit.

Proof. Suppose not. Then there are a � b such that a∨u = 1⇒ u→b = b. Set

S = {x | a ∨ u = 1⇒ u→x = x}.

Then S is obviously a sublocale and b ∈ S. We also have a ∈ S since if a∨u = 1

then a = (a ∨ u)→a = (a→a) ∧ (u→a) = u→a. If S is subfit there is a c ∈ S
such that a ∨ c = 1 and b ∨ c 6= 1; but since c ∈ S, a ∨ c = 1 implies c→ c = c

and c→c = 1, a contradiction. �

4.1.1. Note that the sublocale S from the previous proof is in fact the inter-

section

sc(a) =
⋂
{o(u) | c(a) ⊆ o(u)}.

We will speak of these sublocales as of semiclosed ones. From proof in 4.1 we

now obtain

Theorem. The following are equivalent for any frame L:

(1) L is fit.

(2) Each semiclosed sublocale is closed.

(3) Each semiclosed sublocale is subfit.

Proof. (1)⇔(2) is in the standard definition of fitness, (1)⇒(3) is trivial, and

for (3)⇒(1) realize that in the proof above we have shown that in the non-fit

case sc(a) is not subfit. �

4.1.2. Obviously, if every closed sublocale of L is weakly subfit then L is subfit.

Consequently, we have:

Corollary. If every sublocale of a frame L is weakly subfit then L is fit.

4.1.3. Note the sharp contrast between inheriting subfitness by all the sub-

spaces of a space X and by all the sublocales of Ω(X). In the former case we

will not need more than T1 (stronger than (sfit) and subspace hereditary). In

the latter one we obtain in fact a rather strong separation akin of regularity,

see 4.4-4.5.2.
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4.2. It is easy to see that subfitness is inherited by every closed sublocale. But

we have much more. For that we need the following lemma about the operator

from (2.5.1) and the map from (2.4.1).

4.2.1. Lemma. Let S be a sublocale of L. For any cover C of L and any

a, b ∈ L,

Cc(b) ≤ a⇒ νS [C](c(b) ∩ S) ≤ νS(a).

Proof. Suppose o(νS(c)) ∩ c(b) ∩ S 6= O. Then there is a s ≥ b in S such that

νS(c) → s = s from which it follows that s = jS(νS(c) → s) = c → s (see the

localic map formula in [14, II.2.3]), that is, s ∈ o(c). Therefore o(c) ∩ c(b) 6= O

and consequently c ≤ a. Thus νS(c) ≤ νS(a). �

4.2.2. Proposition. Let N be a quasi-nearness on L. If S is a complemented

sublocale of L, then {νS [C] | C ∈ N} is a basis of a quasi-nearness on S.

Proof. It is obvious that B = {νS [C] | C ∈ N} is a basis of nearness on S. We

have to show that it is quasi-admissible.

Let T be an open sublocale of S. Then T = oS(a) = S ∩ o(a) for some a ∈ S.

By the hypothesis we have

o(a) =
∨
{c(x) | x ∈ L,∃C ∈ N , Cc(x) ≤ a}

and so, using the lemma, we obtain

oS(a) = S ∩ o(a) = S ∩ (
∨
{c(x) | x ∈ L,∃C ∈ N , Cc(x) ≤ a})

=
∨
{S ∩ c(x) | x ∈ L,∃C ∈ N , Cc(x) ≤ a}

≤
∨
{S ∩ c(x) | x ∈ L,∃C ∈ N , νS [C](S ∩ c(x)) ≤ a}

≤
∨
{cS(x) | x ∈ S,∃C ∈ N , νS [C]cS(x) ≤ a}. �

4.2.3. Since a frame is subfit iff it admits a quasi-nearness we obtain

Corollary. Let L be subfit. Then each of its complemented sublocales is subfit.

�

4.3. The point of view of 4.1.1 can be used for a simple proof of the coreflectivity

of the category FitFrm of fit frames in the category Frm of all frames.

For that recall the localic map f : M → L associated with a frame homomor-

phism h : L→M , that is, its right Galois adjoint ([14], II.3) and the concepts of

image and co-image of a sublocale ([14], III.4 – f [S] is the set theoretical image,

f−1[S] is the set theoretical preimage slightly modified). One has f [S] ⊆ T iff
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S ⊆ f−1[T ] and hence f−1[−] preserves meets. We will use the formulas ([14],

III.6.3)

f−1[c(a)] = c(h(a)) and f−1[o(a)] = o(h(a)). (4.3)

4.3.1. For a frame L define

F1(L) = {a ∈ L | c(a) = sc(a)} = {a ∈ L | c(a) =
⋂
{o(x) | c(a) ⊆ o(x)}}.

Explicitly, a ∈ F1(L) iff

(a ∨ u = 1⇒ u→x = x)⇒ x ≥ a. (∗)

Lemma. F1(L) is a subframe of L, and F1(L) = L iff L is fit.

Proof. Obviously, 0, 1 ∈ F1(L). Let ai ∈ F1(L). We will show that
∨
ai satisfies

(∗). Assume ∨
ai ∨ u = 1⇒ u→x = x

and suppose that ai ∨ u = 1. Then
∨
ai ∨ u = 1 and consequently u→x = x.

Since ai satisfies (∗), we have that x ≥ ai for every i and hence x ≥
∨
ai.

Finally let a, b ∈ F1(L). We have

c(a ∧ b) = c(a) ∨ c(b) =
⋂
{o(x) | c(a) ⊆ o(x)} ∨

⋂
{o(y) | c(b) ⊆ o(y)} =

=
⋂
{o(x ∨ y) | c(a) ⊆ o(x), c(b) ⊆ o(y)} ⊇

⋂
{o(u) | c(a) ∨ c(b) ⊆ o(u)}.

This shows that F1(L) is a subframe of L.

The second statement is in 4.1.1. �

4.3.2. For ordinals α define Fα as follows:

F0(L) = L, Fα+1 = F1(Fα(L)) and Fα(L) =
⋂
β<α

Fβ(L) for a limit ordinal.

Since Fα(L) decrease there is an ordinal γ(L) such that F1(Fγ(L)(L)) = Fγ(L)(L).

Set

F (L) = Fγ(L)(L).

Theorem. F can be extended to a functor Frm → FitFrm and together with

the inclusion homomorphisms ιL : F (L)→ L it constitutes a coreflection.

Proof. It suffices to show that for each frame homomorphism h : L → M one

has

h[F1(L)] ⊆ F1(M).

Let a ∈ F1(L) and consider the localic map f adjoint to h. We have

c(a) =
⋂
{o(x) | c(a) ⊆ o(x)}



MORE ON SUBFITNESS AND FITNESS 11

and hence, by (4.3) and since f−1[−] preserves meets,

c(h(a)) = f−1[c(a)] = f−1[
⋂
{o(x) | c(a) ⊆ o(x)}] =

⋂
{f−1[o(x)] | c(a) ⊆ o(x)} =

=
⋂
{o(h(x)) | c(a) ⊆ o(x)} ⊇

⋂
{o(y) | c(h(a)) ⊆ o(y)}. �

4.4. A frame is said to be prefit if

a 6= 0 ⇒ ∃x 6= 0, x ≺ a. (pfit)

Note. In [21] the author introduced almost regularity for spaces as the require-

ment that for a regular open non-empty U (that is, ∅ 6= U = intU) there be a

non-empty open V such that V ⊆ U . This corresponds to relaxing our (pfit) by

assuming a = a∗∗.

4.4.1. Prefitness is in fact quite a strong property akin to regularity. Set

ρ(a) =
∨
{x | x ≺ a}.

We have

Proposition. A frame L is prefit iff for each a ∈ L,

a ≤ ρ(a)∗∗.

In other words, if o(a) ⊆ o(ρ(a)).

Proof. Suppose ρ(a)∗∗ � a. Then a ∧ ρ(a)∗ 6= 0 and hence there is an x > 0

such that x ≺ (a ∧ ρ(a)∗), that is,

x∗ ∨ (a ∧ ρ(a)∗) = (x∗ ∨ a) ∧ (x∗ ∨ ρ(a)∗) = 1

so that in particular x ≺ a (and hence x ≤ ρ(a) so that further ρ(a)∗ ≤ x∗), and

x∗ ∨ ρ(a)∗ = 1 and consequently x∗ = x∗ ∨ ρ(a)∗ = 1 and hence x ≤ x∗∗ = 0, a

contradiction. �

Note. This is not to be confused with another relaxation of regularity, (a.norm)

& (sfit) from 3.4.1. In regularity one has ∀a, a = ρ(a); in prefit ∀a, a∗∗ = ρ(a)∗∗

and in (a.norm) & (sfit) ∀a, a∗∗ = ρ(a∗∗).

4.5. Note that

each fit frame is prefit.

(Indeed, if a � 0 we have a c such that a ∨ c = 1 and c∗ = c→ 0 6= 0. Set

x = c∗.)

4.5.1. Realize that the pseudocomplement in the closed sublocale c(b) = ↑b of

L is given by the formula

x∗b = x→b.
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Proposition. A frame is fit iff each of its closed sublocales is prefit.

Proof. I. Let each closed sublocale c(b) = ↑b of L be prefit. Let a � b. Then

a1 = a ∨ b > b = 0c(b) and hence there is an x > b such that

a1 ∨ x∗b = a ∨ b ∨ (x→b) = (x→b) ∨ a = 1.

Set c = x→b = x∗b . Then a ∨ c = 1 and c→b = c∗b = x∗b∗b ≥ x > b.

II. Let L be fit and let c(b) be a closed sublocale. Let a > b = 0c(b); then we have

a c such that a∨ c = 1 and c→b > b. Set x = c∗b = c→b. Then x∗b = c∗b∗b ≥ c
and hence x ≺ a in c(b). �

4.5.2. Each closed sublocale of a topological space is induced by a closed

subspace. Thus, unlike in the sublocale characterization of fitness in 4.1, we

obtain here a characterization of fit spaces:

Corollary. A topological space X is fit if and only if for each closed Y ⊆ X

and each open U such that U ∩ Y 6= ∅ there is an open V such that V ∩ Y 6= ∅
and V ∩ Y ⊆ U ∩ Y . �

Note. The referee pointed out the difference between the inclusions V ∩ Y ⊆
U ∩ Y and V ∩ Y ⊆ U ∩ Y and the fact that the latter could be expressed in a

general frame as the implication

a � b ⇒ (∃c) (c � b & a ∨ b ∨ c∗ = 1).

This last condition implies fitness, and is worth a closer study.

4.6. As we said in 4.1.3, comparing 4.5 (and 4.4.1) with 4.1 is an indication of

the difference between the system of all subspaces and that of all sublocales of a

space. If we require a property that in itself is weaker than T1 to be inherited by

all subspaces we do not go beyond T1. If we require it to be inherited by all the

sublocales we reach a property of regularity type! (For more about inheriting

subfitness by subspaces see Theorem 3.4 in [7].)

Also note that we have in the sublocales sc(a) in subfit but not fit frames a

store of examples of non-spatial frames.

5. Comparing the properties

5.1. It is obvious that

(sfit) ; (pfit) :

even T1 does not imply (pfit) in spaces: see the cofinite topology.
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5.2. The prefitness, however, is a fairly strong property and we will have more

trouble to show it does not imply subfitness. It does not, as we will see in the

following

Example. Let N be the set of natural numbers, ω /∈ N× {0, 1}. Set

X = (N× {0, 1}) ∪ {ω}

and endow it with the following topology:

U ⊆ X is open if

(∃n, (n, 1) ∈ U) ⇒ ω ∈ U, and

ω ∈ U ⇒ ∃k (n ≥ k ⇒ (n, 0) ∈ U).

Thus in particular U0 = N × {0}, U1 = (N × {0}) ∪ {ω} and each of U(n) =

(N × {0}) ∪ {ω} ∪ {(n, 1)} are open and we have ω ∈ U1 and U1 r {ω} = U0,

(n, 1) ∈ U(n) and U(n) r {(n, 1)} = U1, and finally each {(n, 0)} is open, so

that X is TD. Thus,

X is not subfit

since otherwise, by 3.1, it would be T1, and {ω} contains N× {1}. But

X is prefit.

Indeed, each {(n, 0)} is clopen and each non-void open set contains some of the

{(n, 0)}.

5.3. On the other hand prefit obviously implies (wsfit): if a 6= 0 then x ≺ a for

some x 6= 0. Put c = x∗. Then a ∨ c = 1 and c 6= 1 because c = 1 would yield

x∗∗ = 0 and hence x = 0.

Thus, the situation is as follows

(fit)

}� ������

������

� 
::::::

::::::

(pfit) / +3

�!
;;;;;;

;;;;;;
(sfit)/ks

~� ������

������

(wsfit)

with none of the indicated implications reversible.

5.4. Finally we will show that

(pfit) & (sfit) ; (fit).
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Example. Consider the square X = I× I where I is the standard unit interval

and set Y = {(x, 1) | x ∈ I}. On X define a topology by declaring U open if

either U ∩ Y = ∅ and for each (x, y) ∈ U there is a standard

ε-neighbourhood V ⊆ U,

or U ∩ Y 6= ∅, for each (x, y) ∈ U there is a standard

ε-neighbourhood V ⊆ U, and Y r U is finite.

Then X is T1 and hence it is subfit. The space X is also prefit. Indeed, let U be

non-void open. Then U ∩ (X r (I ×{0})) is non-void open and we can choose a

non-void open U ′ ⊆ U ∩ (X r (I × {0})) such that the standard metric closure

of U ′ does not meet Y (it suffices to take an (x, y) ∈ U ∩ (X r (I × {0})) and

an open ε-neighbourhood of (x, y) with ε sufficiently small). Then the closure

of any V ⊆ U ′ in X coincides with the standard metric closure in I × I and the

statement follows. On the other hand, X is not fit: Y is closed in X and it is

obviously not prefit.

Acknowledgement. We are indebted to the referee for useful comments and

suggestions.
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