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Abstract. Due to the nature of product in the category of lo-
cales, the entourage uniformities in the point-free context only
mimic the classical Weil approach while the cover (Tukey type)
ones can be viewed as an immediate extension. Nevertheless the
resulting categories are concretely isomorphic. We present a trans-
parent construction of this isomorphism, and apply it to the natu-
ral uniformities of localic groups. In particular we show that localic
group homomorphisms are uniform, thus providing natural forget-
ful functors from the category of localic groups into any of the two
categories of uniform locales.

Introduction

In the classical spaces, a uniformity on X is approached, basically,
by two different (but equivalent) ways:

– one can take systems of special covers of X – the Tukey mode
(see e.g. [23, 10]),

– or one can consider systems of special “neighborhoods of the
diagonal” (entourages) in the product X ×X – the Weil mode
([24]).

Both can be extended to the point-free spaces (locales). Thus we have
an extensive literature about the cover uniformities, starting with the
pioneering Isbell’s [11] (further see e.g. [1, 2, 3, 9, 21, 22], etc.). On
the other hand, the entourage and kindred types of uniformities were
thoroughly studied e.g. in [18, 19, 20] and from another technical stand-
point e.g. in [7, 8] (for a discussion of the relation with the entourage
technique see [6]).
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Comparing the two extensions we see a fundamental difference. The
cover one is immediate in the sense that a classical uniformity on
a space X coincides with the point-free one on the frame of open
sets Ω(X). The entourage uniformity, however, happens in the prod-
uct X × X; now the category of (completely regular) locales extend-
ing that of (completely regular) spaces is much bigger, and the co-
product in this bigger category considerably differs (the embedding
CRegSp → CRegLoc does not preserve products; the classical en-
tourage uniformity is something that happens in Ω(X ×X) while the
point-free extension applied for X happens in Ω(X) × Ω(X) in Loc
which is generally something else). Yet, the two approaches are, again,
equivalent (which is a somewhat deeper fact than what meets the eye,
and should come, in a way, as a bit of surprise).

As we have already said, there is abundant literature on both the
cover and the entourage uniformities. The relation between the two,
however, has been somewhat neglected. The equivalence was proved
by the first author in his Thesis ([18]; cf. [19]) using a certain technical
detour; but this seems to be about all. Thus, one does not have, to our
knowledge, a direct proof of the equivalence in the standard journal
literature; one of the aims of this paper is to fill in this gap.

Further, we concentrate on the uniform structure of localic groups
(analogues of topological groups in the point-free context). In the orig-
inal article about this subject ([12]) it was shown that similarly like
in the classical case one has natural cover uniformities induced by the
group structure. In fact one has equally (if not even more) natural en-
tourage ones ([20]). We describe them and show their equivalence with
the cover uniformities; while doing this we also discuss the semigroup
of open parts of a localic group (which has not yet been presented in
this detail). As an application we present an extremely simple proof of
the fact that the localic group homomorphisms are uniform; it should
be noted that this fact has so far, to our knowledge, not been proved in
the literature by the cover methods, and even remaking our simple en-
tourage proof to a cover one by translation seems to be rather complex.
We see it as another corroboration of the usefulness of the entourage
approach.

Only basic knowledge of classical topology is assumed. The neces-
sary definitions and facts concerning frames (locales) are presented in
Preliminaries below.
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1. Preliminaries

1.1. Recall that a frame is a complete lattice satisfying the distributive
law

(
∨

A) ∧ b =
∨
{a ∧ b | a ∈ A}

for all subsets A ⊆ L and all b ∈ L. A frame homomorphism h : L→M
preserves all joins (including the void one, the bottom 0) and all finite
meets (including the top 1). The resulting category will be denoted by

Frm.

A typical frame is the lattice Ω(X) of all open sets of a topological
space X; if f : X → Y is a continuous map then Ω(f) = (U 7→
f−1[U ]) : Ω(Y ) → Ω(X) is a frame homomorphism. Thus one has a
contravariant functor Ω : Top → Frm (where Top is the category of
topological spaces). Setting

Loc = Frmop

one obtains the category of locales; then, Ω becomes a contravariant
functor Top→ Loc.

1.2. Restricted to the subcategory Sob of sober spaces, Ω is a
full embedding. In this paper we will be interested in the category
of completely regular spaces resp. locales (notation CRegSp resp.
CRegLoc) and, as usual in the point-free context, the spaces will be
always T0. Thus, our spaces will be always Hausdorff and hence in
particular sober, We will write

O : CRegSp→ CRegLoc

for the full embedding restriction of the covariant Ω and we will think
of CRegLoc as of a natural extension of CRegSp.

1.3. For more about frames and locales see e.g. [13, 22] (technically,
we will mostly work with the comfortable frame techniques). Since,
however, the product of locales (coproduct of frames) will be crucial,
let us present a simple construction of the coproduct of two frames (see
e.g. [13, 22]; it should be noted that the first construction of frame
coproducts appeared in [5]). The subcategory of completely regular
frames is coreflective in Frm; hence the construction applies for our
special case as well.

First take the Cartesian product L×M as a poset and D(L×M) =
{U ⊆ L×M | ↓U = U 6= ∅} (where ↓U = {(x, y) | (x, y) ≤ (a, b) ∈ U},
as usual). Call a U ∈ D(L×M) saturated if
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(1) for any subset A ⊆ L and any b ∈ M , if A × {b} ⊆ U then
(
∨
A, b) ∈ U , and

(2) for any a ∈ L and any subset B ⊆ M , if {a} × B ⊆ U then
(a,

∨
B) ∈ U .

The set A resp. B can be void; hence, in particular, each saturated set
contains as a subset

n = {(0, b), (a, 0) | a ∈ L, b ∈M}.
It is easy to check that for each (a, b) ∈ L×M ,

a⊕ b =↓(a, b) ∪ n is saturated.

To finish the construction take

L⊕M = {U ∈ D(L×M) | U saturated}
with the coproduct injections

ιL = (a 7→ a⊕ 1) : L→ L⊕M, ιM = (b 7→ 1⊕ b) : M → L⊕M.

Note that we have

(1.3.1) for each saturated U ,

U =
∨
{a⊕ b | (a, b) ∈ U} =

⋃
{a⊕ b | (a, b) ∈ U}, and

(1.3.2) if a⊕ b ≤ c⊕ d and b 6= 0 then a ≤ c.

Convention. Using the symbol L ×M when speaking of L ⊕M
as a product in the category Loc would probably obscure the matter.
Therefore, we will keep the notation L ⊕ M also in Loc. We only
have to keep in mind that then the injections ι become projections
ιL, ιM : L⊕M → L,M .

1.4. The category CRegLoc is much bigger than the category
CRegSp (more precisely, the image of CRegSp under O) and hence
it is no surprise that the products in CRegLoc considerably differ
from those in CRegSp. That is, the embedding Ω resp. O does not
generally preserve products (it is a left adjoint, not a right one). One
does have O(X ×Y ) ∼= O(X)⊕O(Y ) in some important special cases,
but by far not in the generality of all the completely regular spaces.

2. Cover (Tukey) uniformities

2.1. A cover of a frame L is a subset U ⊆ L such that
∨
U = 1. A

cover U refines (or is a refinement of) a cover V (written, U ≤ V ) if

∀u ∈ U ∃v ∈ V such that u ≤ v.
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For covers U, V we have the largest common refinement

U ∧ V = {u ∧ v | u ∈ U, v ∈ V }.
If U ⊆ L is a cover and a ∈ L we set

Ua =
∨
{u ∈ U | u ∧ a 6= 0}

and for covers U, V define

UV = {Uv | v ∈ V }.
Note that if U is a cover of L and if h : L → M is a frame homomor-
phism then

h[U ]h(a) ≤ h(Ua) (2.1.1)

(if h(u)∧ h(a) 6= 0 then u∧ a 6= 0 and hence h(u) ≤ h(Ua) for u ∈ U).

Finally, for a set of covers U define a relation

b CU a ≡df there is a U ∈ U such that Ub ≤ a.

U is said to be admissible if

∀a ∈ L, a =
∨
{b | b CU a}.

2.2. A cover-uniformity (briefly, c-uniformity) on a frame L is an
admissible non-empty system of covers U such that

(U1) if U ∈ U and U ≤ V then V ∈ U ,
(U2) if U, V ∈ U then U ∧ V ∈ U ,
(U3) for every U ∈ U there is a V ∈ U such that V V ≤ U .

Often one works with a basis of a uniformity B, a system satisfying just
(U2) and (U3). Then one obtains a uniformity taking all the U ≥ V
with V ∈ B.

A c-uniform frame resp. c-uniform locale is a pair (L,U) where U is
a c-uniformity on L. A frame homomorphism h : L→M is a uniform
homomorphism (L,U)→ (M,V) if

∀U ∈ U , h[U ] ∈ V
(if U ,V are bases of uniformities this condition is replaced by

∀U ∈ U ∃V ∈ V such that h[U ] ≥ V.)

The resulting category, in the localic setting, will be denoted by

UniCLoc.

2.3. If Ua ≤ b then a ≺ b (since 1 =
∨
U = Ua∨

∨
{x ∈ U | x∧ a =

0} and
∨
{x ∈ U | x ∧ a = 0} ≤ a∗). Furthermore, if U is a uniformity

then the relation CU interpolates, that is, if a CU b then there is a
c such that a CU c CU b (if Ua ≤ b take a V from (U3) and set
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c = V a; use the easy fact that U(V x) ≤ (UV )x to obtain V c ≤ b).
Thus, a CU b ⇒ a ≺≺ b and hence each L admitting a uniformity is
completely regular and we have the forgetful functor

((L,U) 7→ L) : UniCLoc→ CRegLoc.

2.4. The classical Tukey uniformities. A cover uniformity on
a space X in the classical setting is nothing else but a c-uniformity
on O(X) and a continuous map f : X → Y is a uniformly continuous
map (X,U)→ (Y,V) precisely when Ω(f) is a uniform homomorphism.
Thus, if we denote by UniCSp the category of classical (cover) uniform
spaces, we have a natural full embedding

OC : UniCSp→ UniCLoc

carried by O.

3. Entourage (Weil) uniformities.

3.1. An entourage in L is an element E ∈ L⊕ L such that

{u | u⊕ u ≤ E}
is a cover of L.

For entourages E,F of L set

E ◦ F =
∨
{a⊕ c | ∃b 6= 0, a⊕ b ≤ E and b⊕ c ≤ F} =

=
∨
{a⊕ c | ∃b 6= 0, (a, b) ∈ E and (b, c) ∈ F}.

(Caution: unions of saturated sets are not necessarily saturated and
the join above is typically bigger than the corresponding union.)

Further, for an entourage E set

E−1 = {(a, b) | (b, a) ∈ E}
(which is obviously an entourage again).

If E is an entourage (resp. E a set of entourages) write

b CE a if E ◦ (b⊕ b) ≤ a⊕ a, and b CE a if ∃E ∈ E , b CE a.
A set of entourages E is said to be admissible if

∀a ∈ L, a =
∨
{b | b CE a}.

An entourage-uniformity (briefly, e-uniformity) on a frame L is an
admissible set of entourages E such that

(E1) if E ∈ E and E ≤ F then F ∈ E ,
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(E2) if E,F ∈ E then E ∩ F ∈ E ,
(E3) if E ∈ E then E−1 is in E , and
(E4) for every E ∈ E there is an F ∈ E such that F ◦ F ≤ E.

Note that obviously intersections of saturated elements are saturated;
hence the E ∩ F in (E2) makes sense.

Similarly as above, a basis of a uniformity B is a system satisfying
just (E2) and (E3) and (E4) and a uniformity is obtained by taking all
the F ≥ E with E ∈ B.

3.2. An e-uniform frame resp. e-uniform locale is a pair (L, E) where
E is an e-uniformity on L. A frame homomorphism h : L → M is a
uniform homomorphism (L, E)→ (M,F) if

∀E ∈ E , (h⊕ h)(E) ∈ F

(where h ⊕ h is the frame homomorphism L ⊕ L → M ⊕M defined
by (h ⊕ h)ιi = ιih for i = 1, 2). If E , F are bases of uniformities this
condition is replaced by

∀E ∈ E ∃F ∈ F such that (h⊕ h)(E) ≥ F.

The resulting category, in the localic setting, will be denoted by

UniELoc.

3.3. It is easy to prove that, again, a CE b implies a ≺≺ b so that
if L admits an e-uniformity it is completely regular and hence we have
the forgetful functor ((L, E) 7→ L) : UniELoc → CRegSp. But it is
not quite as straightforward as in the cover case and we will get it for
free in the next section anyway. Therefore we need not go into it now.

3.4. A more suspect thing is the relation of our entourage uniformity
with the classical one. Recall that a Weil uniformity on a topological
space X is a non-empty system E of open subsets of the product X×X,
each containing the diagonal ∆ = {(x, x) | x ∈ X}, such that

(E’1) if U ∈ E and U ⊆ V then V ∈ E ,
(E’2) if U, V ∈ E then U ∩ V ∈ E ,
(E’3) if U ∈ E then U−1 is in E , and
(E’4) for every U ∈ E there is an V ∈ E such that V ◦ V ≤ E

(where ◦ indicates the standard composition of binary relations, and
U−1 = {(x, y) | (y, x) ∈ U}), such that

(Adm) for each x ∈ X, the system {Ux = {y | (x, y) ∈ U} | U ∈ E} is
the basis of neighbourhoods in the original topology.
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Now we see that the condition in the definition of entourage that
{u | u ⊕ u ≤ E} is a cover stands for U containing the diagonal,
the admissibility makes for the (Adm) and the (Ei)’s are analogues of
the classical (E’i)’s so that the entourage uniformity above seems to
be a natural extension of the classical one. But, even if we believe
the statement in 3.3, the fact that the functor O really carries a full
embedding OE : UniESp → UniELoc (again) should come at least
as a minor pleasant surprise: for a space X the classical Weil unifor-
mity happens in Ω(X ×X) while the entourage uniformity from 3.2 is
defined in Ω(X)⊕ Ω(X) which is by far not the same.

4. Translations

4.1.1. Lemma. Let U be a cover of L, let x⊕y ≤
∨
{u⊕u | u ∈ U}

and let y 6= 0. Then x ≤ Uy.

Proof. We have

x⊕ y =
∨
{(u ∧ x)⊕ (u ∧ y) | u ∈ U} =

=
∨
{(u ∧ x)⊕ (u ∧ y) | u ∈ U, u ∧ y 6= 0} ≤ (Uy ∧ x)⊕ y.

Thus, if y 6= 0, x ≤ x ∧ Uy, and finally x ≤ Uy. �

4.1.2. Lemma. If E is an entourage then E ≤ E ◦ E.

Proof. Let a⊕ b ≤ E and b 6= 0. We have

b =
∨
{b ∧ u | u⊕ u ≤ E} =

∨
{b ∧ u | u⊕ u ≤ E, u ∧ b 6= 0}.

Now we have, for b∧ u 6= 0, a⊕ (b∧ u) ≤ E and (b∧ u)⊕ (b∧ u) ≤ E,
hence a ⊕ (b ∧ u) ≤ E ◦ E and hence a ⊕ b = a ⊕

∨
{b ∧ u | u ⊕ u ≤

E} =
∨
{a⊕ (b ∧ u) | u⊕ u ≤ E} ≤ E ◦ E. �

4.2. For an entourage E define

Ẽ =
∨
{u⊕ u | u⊕ u ≤ E}.

Note that trivially Ẽ ≤ E.

4.2.1. Lemma. Let F be a symmetric entourage and let F ◦F ≤ E.
Then for each 0 6= a⊕ b ≤ F we have (a ∨ b)⊕ (a ∨ b) ≤ E.

Consequently, if E is a uniformity then Ẽ ∈ E for each E ∈ E.

Proof. Let a⊕ b ≤ F , so that also b⊕ a ≤ F and hence

a⊕ a, b⊕ b ≤ F ◦ F ≤ E;
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by 4.1.2 also
a⊕ b, b⊕ a ≤ F ◦ F ≤ E.

Thus a⊕ (a∨ b) ≤ E, b⊕ (a∨ b) ≤ E and finally (a∨ b)⊕ (a∨ b) ≤ E

and we conclude that a⊕ b ≤ (a ∨ b)⊕ (a ∨ b) ≤ Ẽ. �

4.3. Translations. For a cover U define an entourage EU , and for
an entourage E define a cover UE by setting

EU =
∨
{x⊕ x | x ∈ U} and UE = {x | x⊕ x ≤ E}.

4.3.1. Lemma. (a) U ≤ UEU
≤ UU .

(b) Ẽ = EUE
≤ E.

Proof. (a) If x ⊕ x ≤ EU then for any u0 ∈ U such that u0 ∧ x 6= 0
we have by 4.1.1

x ≤ U(u0 ∧ x) ≤ Uu0.

Thus,
UEU

= {x | x⊕ x ≤ EU} ≤ UU.

On the other hand, trivially, U ≤ UEU
.

(b) follows immediately from the definitions. �

4.3.2. Lemma. (a) b CE a ⇒ UEb ≤ a.
(b) Ub ≤ a ⇒ b CEU

a.

Proof. (a) Let u ∈ UE and u ∧ b 6= 0. Then u ⊕ (u ∧ b) ≤ E and
(u ∧ b) ⊕ b ≤ b ⊕ b, and hence u ⊕ b ≤ E ◦ (b ⊕ b) ≤ a ⊕ a; thus, as
b 6= 0, u ≤ a and we conclude that UEb ≤ a.

(b) Let Ub ≤ a and let x ⊕ y ≤ EU and y ⊕ z ≤ b ⊕ b for some
y 6= 0. Then x ⊕ y ≤

∨
{u ⊕ u | u ∈ U} and by 4.1.1, x ≤ Uy. Thus,

x⊕ z ≤ Uy ⊕ b ≤ Ub⊕ b ≤ a⊕ a. �

4.4. For an entourage-uniformity E set UE = {V | V ≥ UE, E ∈ E}
and for a cover-uniformity U define EU = {F | F ≥ EU , U ∈ U}.
4.4.1. Proposition. If E is an e-uniformity then UE is a c-

uniformity, and if U is a c-uniformity then EU is an e-uniformity. We
have EUE = E and UEU = U .

Proof. By 4.3.2, CU=CEU (and CE=CUE ). Thus, if any of the as-
sociated uniformities is admissible then the other one is admissible as
well.

The formulas EUE = E and UEU = U follow from 4.3.1.
Thus, it remains to be proved that the systems UE and EU are c-

resp. e-uniformities. We will prove (U3) and (E4), the other facts are
straightforward.
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To prove (U3) we will show that if F is symmetric and (F ◦F )◦ (F ◦
F ) ≤ E then UFUF ≤ UE. Set F1 = F ◦ F . Fix a u ∈ UF and take
an arbitrary v ∈ UF such that u ∧ v 6= 0. Then because of u ∧ v 6= 0,
v ⊕ u ≤ F1 = F ◦ F and since F1 is saturated,

UFu⊕ u = (
∨
{v | v ∧ u 6= 0})⊕ u ≤ F1.

Since F is symmetric, F1 is symmetric as well and hence by 4.2.1,
UFu⊕ UFu ≤ F1 ◦ F1 ≤ E, and UFu ∈ UE.

To prove (E4) we will show that EU ◦ EU ≤ EUU . Take an x⊕ z ≤
EU ◦EU ; hence there is a y 6= 0 such that x⊕ y ≤ EU and y⊕ z ≤ EU .
Choose a u ∈ U such that u ∧ y 6= 0. Since x ⊕ (u ∧ y) ≤ EU and
(u ∧ y)⊕ z ≤ EU we obtain from 4.1.1 that x⊕ z ≤ Uu⊕ Uu ≤ EUU .

�

4.4.2. Theorem. The categories UniELoc and UniCLoc are con-
cretely isomorphic with the isomorphism functors C : UniELoc →
UniCLoc and E : UniCLoc→ UniELoc carried by the identity.

Proof. Set C(L, E) = (L,UE) and E(L,U) = (L, EU). After 4.4.1 it
remains to be proved that the concepts of uniform homomorphisms in
the associated c- and e-uniformities coincide.

I. Suppose that for each E ∈ E there exists an F ∈ F such that

(h⊕ h)(E) ≥ F. (∗)

Take U ∈ U and a V ∈ U such that V V ≤ U . By (∗) (and 3.1) there
exists in particular a W ∈ V such that

(h⊕ h)(EV ) ≥ EW .

Take a w ∈ W . Then w ⊕ w ≤
∨
{h(v) ⊕ h(v) | v ∈ V } and hence,

by 4.4.1, if we take a v0 ∈ V such that y = w ∧ h(v0) 6= 0 we obtain
that w ≤ h[V ]y ≤ h[V ]h(v0) ≤ h(V v0) ≤ h(u) for some u ∈ U . Thus,
W ≤ h[U ].

II. Let for each U ∈ U there be a V ∈ V such that

h[U ] ≥ V.

Consider an E ∈ E . There is an F ∈ F such that h[UE] ≥ UF . Let
v ⊕ v ≤ F . Then v ∈ UF and hence there is a u ∈ UE such that
v ≤ h(u). Then

v ⊕ v ≤ h(u)⊕ h(u) ≤ (h⊕ h)(u⊕ u) ≤ (h⊕ h)(E)

and hence (h⊕ h)(E) ≥ F̃ . Recall 4.2. �
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4.5. From 4.3.2 and the ensuing equalities CU=CEU and CE=CUE ,
and from 2.3 we see that the underlying locale of an e-uniform locale
is completely regular (as indicated in 3.3). Now consider the diagram

UniELoc
C //

UniCLoc
E

oo

UniESp

O

OO

CSp //
UniCSp

ESp

oo

OC

OO

where CSp and ESp are the concrete isomorphism functors representing
the standard classical equivalence of Tukey and Weil uniformities. We
have a full embedding

OE : UniESp→ UniELoc

carried by O defined by OE = E ·OC · CSp. It should be emphasized
again that due to the nature of the localic product (frame coproduct)
the isomorphisms C, E and the embedding OE are somewhat deeper
than meets the eye.

5. Localic groups

5.1. A group in a category C with products is a collection of data
(A,m, i, e) with

m : A× A→ A, i : A→ A, e : T → A morphisms in C

such that
m(m× id) = m(id×m),

m(e× id) = m(id× e) = id, and

m(i× id)∆ = m(id× i)∆ = e · tA.
(T = A0 is the empty product, that is, the terminal object of C,
tX : X → T is the unique morphism, ∆ is the diagonal morphism).
If (A,m, i, e), (A′,m′, i′, e′) are groups in C, the homomorphism f :
(A,m, i, e)→ (A′,m′, i′, e′) is a morphism f : A→ A′ such that

fm = m′(f × f), f i = i′f and fe = e′.

In particular we will be interested in groups in the category Loc; for
convenience we will use the frame language, so that we will consider
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the cogroups in Frm, that is, systems (L, µ, ι, ε) where

µ : L→ L⊕ L, γ : L→ L, ε : L→ 2 = {0, 1}
are frame homomorphisms such that

(µ⊕ id)µ = (id⊕ µ)µ,

(ε⊕ id)µ = (id⊕ ε)µ = id, and

∇(γ ⊕ id)µ = ∇(id⊕ γ)µ = σLε

where σL : 2 → L sends 0 to 0 and 1 to 1, and ∇ is the codiag-
onal L ⊕ L → L, and the homomorphisms (we will call them LG-
homomorphisms) h : (L, µ, ι, ε) → (L′, µ′, ι′, ε′) will be frame homo-
morphisms h : L→ L′ such that

µ′h = (h⊕ h)µ, γ′h = hγ and ε′h = ε (5.1.1)

The dual to the resulting category, the category of localic groups will
be denoted by

LocGr.

5.2. Localic groups and topological groups. A topological
group (X,m, i, e) cannot be always viewed as a localic one: the target
Ω(X × X) of Ω(m) cannot be always naturally replaced by Ω(X) ⊕
Ω(X). More precisely, consider the diagram

Ω(X)
µ //

Ω(m) ))

Ω(X)⊕ Ω(X)

κ

��
Ω(X ×X)

where κ is defined by κ · ιi = Ω(pi), pi the projections. Now κ is always
dense (which, for regular frames means it is monomorphic, although it
is not typically one-to-one). If Ω(m) can be lifted to the µ indicated by
the dashed arrow, we have associated with (X,m, i, e) a localic group
(Ω(X), µ,Ω(i),Ω(e)). For some important cases (locally compact X,
complete metric X and others), κ is an isomorphism and we have the
desired localic group trivially. It is an open problem whether there
exists a case of a non-trivial lifting µ (that is, one with non-isomorphic
κ; this was named by John Isbell as one of the hardest problems of the
theory). On the other hand, there is a lot of topological groups that
cannot be made to localic ones. For instance, by the Closed Subgroup
Theorem ([12], see also [14]) this holds for any topological subgroup
that is not closed.
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5.3. It is well known (see e.g. [16]) that the counterpart of each
identity that can be deduced in a classical equational class (variety) of
algebras holds in the associated category of algebras in C. This spares
us a lot of tedious computations in deriving the following identities
(τ : L ⊕ L → L ⊕ L is the homomorphism defined by τιi = ι3−1,
i = 1, 2):

(5.3.1) γγ = id (corresponding to (x−1)−1 = x),
(5.3.2) εγ = ε (corresponding to e−1 = e),
(5.3.3) (γ ⊕ γ)µ = τµγ (corresponding to (xy)−1 = y−1x−1),
(5.3.4) and the fact that α = (id ⊕ ∇)(µ ⊕ γ) satisfies αα = id and

αι1 = µ (α corresponds to the mapping (x, y) 7→ (xy, y−1)).

5.4. Monotone maps f : (X,≤) → (Y,≤), g : (Y,≤) → (X,≤),
viewed as functors between (thin) categories, are adjoint (f is the left
adjoint and g is the right one) if

f(x) ≤ y iff x ≤ g(y)

(in the context of posets one speaks of a Galois adjunction). We will
denote the left adjoint f of g by

g#.

In particular, if X, Y are complete lattices f is a left adjoint (resp. g
is a right adjoint) iff it preserves all suprema (resp. infima). Thus in
particular each frame homomorphism has a right adjoint. However, we
also have

5.4.1. Proposition. (a) The multiplication µ in a localic group has
a left adjoint, and

(b) also µ⊕ id and id⊕ µ have left adjoints and there holds

(µ⊕ id)#(a⊕ b) = µ#(a)⊕ b and (id⊕ µ)#(a⊕ b) = a⊕ µ#(b).

Proof. (a) Recall (5.3.4). The isomorphism α is its own adjoint, and
ι1 has, as it is easy to check, the left adjoint

(ι1)#(u) =
∨
{x | ∃y 6= 0, x⊕ y ≤ u}.

Thus, we have µ# = (ι1)#α.
(b) It is easy to check that if E ∈ L⊕L is saturated then the union⋃
{↓(µ(x), y) | x⊕ y ≤ E} is saturated (recall 1.3) so that

(µ⊕ id)(E) =
⋃
{↓(µ(x), y) | x⊕ y ≤ E}.
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Hence

F ≤ (µ⊕ id)(E)

iff ∀a⊕ b ≤ F, (a, b) ∈
⋃
{↓(µ(x), y) | x⊕ y ≤ E}

iff ∀a⊕ b ≤ F ∃x⊕ y ≤ E, a ≤ µ(x) and b ≤ y

iff ∀a⊕ b ≤ F ∃x⊕ y ≤ E, µ#(a) ≤ x and b ≤ y

iff ∀a⊕ b ≤ F µ#(a)⊕ b ≤ E

iff ϕ(F ) =
∨
{a⊕ b | µ#(a)⊕ b ≤ E} ≤ E.

In particular (µ⊕ id)#(a⊕ b) = ϕ(a⊕ b) = µ#(a)⊕ b. �

Note. The first statement is a part of Johnstone’s stronger obser-
vation ([14]) that µ is an open homomorphism (open homomorphisms
are counterparts of open continuous maps, and are characterized as the
Heyting homomorphisms that have left adjoint – see [15]; in the regular
case the preservation of the Heyting operation follows from the specific
behaviour of congruence in regular frames, see [13, 22]).

6. The semigroup of open parts

The algebra (L, ∗, (−)−1) to be introduced is a counterpart of the
semigroup (with involution) of open subsets of a topological group,
with the operations

UV = {uv | u ∈ U, v ∈ V }, U−1 = {u−1 | u ∈ U}.
It appeared in passing in [4] with the proofs of the properties just
hinted. Here we will be more explicit. We will use it for a treatment of
the cover uniformities of a localic group, somewhat more elegant than
the original procedures in [12].

6.1. Define a (classical) binary operation ∗ and a unary operation
(−)−1 on L by setting

x ∗ y = µ#(x⊕ y), x−1 = γ(x).

6.2. Since ι1 is one-one so is µ = αι1 (recall (5.3.4)) and we easily
infer that

µµ# ≥ id and µ#µ = id and in particular µ#(0) = 0.

6.2.1. Each localic group has at least one point, namely ε : L→ 2.
We will write

N = NL = {a | ε(a) = 1}
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for the set of (representatives of) the neighbourhoods of the unit.
We obviously have

a, b ∈ N ⇒ a ∧ b ∈ N and a ∈ N ⇒ a−1 = γ(a) ∈ N.

6.2.2. Proposition. (1) If x′ ≤ x and y′ ≤ y then x′ ∗ y′ ≤ x ∗ y.
(2) If x = 0 or y = 0 then x ∗ y = 0.
(3) The operation ∗ is associative.
(4) If y ∈ N then x ∗ y ≥ x and y ∗ x ≥ x.
(5) If x ∧ y 6= 0 then x ∗ y−1 ∈ N .
(6) (x ∗ y)−1 = y−1 ∗ x−1.
(7) If x ∈ N then x−1 ∈ N .

Proof. (1) and (2) are trivial.
(3) Using 5.4.1 we obtain

a ∗ (b ∗ c) = µ#(a⊕ µ#(b⊕ c)) = µ#(id⊕ µ)#(a⊕ b⊕ c) =

= ((id⊕ µ)µ)#(a⊕ b⊕ c) = ((µ⊕ id)µ)#(a⊕ b⊕ c) =

= µ#(µ⊕ id)#(a⊕ b⊕ c) = µ#(µ#(a⊕ b)⊕ c) = (a ∗ b) ∗ c.
(4) Applying id⊕ ε on both sides of µµ#(x⊕ y) ≥ x⊕ y we obtain

x ∗ y ≥ (id⊕ ε)(x⊕ y) = x⊕ ε(y) = x ∧ ε(y).

(5) Since we have

σε(x ∗ y−1) = ∇(id⊕ γ)µµ#(id⊕ γ)(x⊕ y) ≥
≥ ∇(id⊕ γ)(id⊕ γ)(x⊕ y) = x ∧ y 6= 0,

ε(x ∗ y−1) cannot be 0.
(6) Since τ# = τ and γ# = γ, we obtain from (5.3.3) that

µ#(γ ⊕ γ) = γµ#τ,

and as τ(x⊕ y) = y ⊕ x we conclude

x−1 ∗ y−1 = µ#(γ(x)⊕ γ(y)) = γµ#(y ⊕ x) = (y ∗ x)−1.

(7) follows from (5.3.2). �

6.3.1. Lemma. If c ∗ b ≤ a, u ∗ u−1 ≤ c and u ∧ b 6= 0 then u ≤ a.

Proof. We have c⊕ b ≤ µ(a) and u⊕ γ(u) ≤ µ(c) so that

u⊕γ(u)⊕ b ≤ µ(c)⊕ b = (µ⊕ id)(c⊕ b) ≤ (µ⊕ id)µ(a) = (id⊕µ)µ(a).

Applying id⊕∇(γ ⊕ id) we obtain on the leftmost side u⊕ (u∧ b) (as
∇(x⊕ y) = x ∧ y) and on the rightmost one

(id⊕ (∇(γ ⊕ id)µ)µ(a) = (id⊕ σε)µ(a) =

= (id⊕ σ)(id⊕ ε)µ(a) = (id⊕ σ)(a) = a⊕ 1.
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Thus u⊕ (u ∧ b) ≤ a⊕ 1 and since u ∧ b 6= 0, u ≤ a. �

6.3.2. Lemma. For each a ∈ N there are b, c ∈ N such that
b ∗ b ≤ a and c ∗ c−1 ≤ a.

Proof. Any L can be viewed as a coproduct

2
σL−−−→ L

idL←−−− L

and since σ2 = id2 we have

ε = id2 ⊕ ε : L = 2⊕ L→ 2⊕ 2 = 2.

Hence, ε = (id2 ⊕ ε)(ε⊕ idL)µ = (ε⊕ ε)µ and we obtain, for a ∈ N ,

1 = ε(a) =
∨
{ε(x)⊕ε(y) | x⊕y ≤ µ(a)} =

∨
{ε(x)⊕ε(y) | x∗y ≤ a}

so that there are x, y such that x ∗ y ≤ a and ε(x) = ε(y) = 1. Set
b = x ∧ y and c = x ∧ γ(y). �

7. Uniformities on localic groups

7.1. For an a ∈ N set

U(a) = {x ∈ L | x⊕ γ(x) ≤ µ(a)} = {x ∈ L | x ∗ x−1 ≤ a},
V (a) = {x ∈ L | γ(x)⊕ x ≤ µ(a)} = {x ∈ L | x−1 ∗ x ≤ a}

and consider the systems

U = {U | U ≥ U(a), ε(a) = 1} and V = {V | V ≥ V (a) ε(a) = 1}.

7.1.1. Proposition. U and V are uniformities on L.

Proof. It will be done for U .
I. Each U(a) is a cover. We have

U(a) = {x ∧ y | x⊕ y ≤ (id⊕ γ)µ(a)}.

(Indeed, if x⊕γ(x) ≤ µ(a) then x⊕x ≤ (id⊕γ)(x⊕γ(x)) ≤ (id⊕γ)µ(a).
On the other hand, if x ⊕ y ≤ (id ⊕ γ)µ(a) then (x ∧ y) ⊕ γ(x ∧ y) ≤
(id⊕ γ)(x⊕ y) ≤ (id⊕ γ)(id⊕ γ)µ(a) = µ(a).)

Thus,∨
U(a) =

∨
{x ∧ y | x⊕ y ≤ (id⊕ γ)µ(a)} =

=
∨
{∇(x⊕ y) | x⊕ y ≤ (id⊕ γ)µ(a)} =

= ∇
∨
{x⊕ y | x⊕ y ≤ (id⊕ γ)µ(a)} = ∇(id⊕ γ)µ(a) = σε(a) = 1.
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II. The system U is admissible. By 6.3.1, if c ∗ b ≤ a then U(c)b ≤ a.
We have a = (ε⊕ id)µ(a) =

∨
{ε(c)⊕ b | c⊕ b ≤ µ(a)} =

∨
{b | u ∗ b ≤

a, c ∈ N} ≤
∨
{b | U(c)b ≤ a, c ∈ N}.

III. Trivially U(a ∧ b) ≤ U(a) ∧ U(b).
IV. For a ∈ N choose, by 6.3.2, a b ∈ N such that b∗b∗b−1∗b−1 ≤ a.

We will show that U(b)U(b) ≤ U(a).
Fix an x ∈ U(b) and consider any u ∈ U(b) such that u ∧ x 6= 0.

Thus, x∗x−1 ≤ b and u∗u−1 ≤ b and, by 6.2.2, (u∧x)−1 ∗ (u∧x) ∈ N .
Thus,

u ≤ u ∗ (u ∧ x)−1 ∗ (u ∧ x) ≤ u ∗ u−1 ∗ x ≤ b ∗ x
and hence U(b)x ≤ b ∗x and finally, since also b−1 ∈ N , again by 6.2.2,

U(b)x ∗ (U(b)x)−1 ≤ b ∗ x ∗ x−1 ∗ b−1 ≤ b ∗ b ∗ b−1 ≤ b ∗ b ∗ b−1 ∗ b−1 ≤ a

and U(b)x ∈ U(a). �

7.1.2. The uniformity U (resp. V) is called the left uniformity (resp.
right uniformity) on the localic group.

7.1.3. Note. The cover uniformities just defined remind us of the
intuition in classical topological groups where one can think of the basic
covers as obtained by taking a neighbourhood of the unit and shifting
it by the obvious homeomorphisms x 7→ ax to all the other points a.
It should be noted, however, that a localic group does not have to be
spatial; indeed it may be arbitrarily large with the unit being the only
point (see [12]).

7.2. In view of the naturalness of the uniformities (and recalling
the classical facts) we may well ask whether the correspondences L 7→
(L,U(L)) resp. L 7→ (L,V(L)), L ∈ LocGr, can be extended to
functors

LocGr→ UniCLoc,

that is, whether each LG-homomorphism h : L → M is a uniform ho-
momorphism (L,U(L)) → (M,U(M)). Proving this does not seem to
be easy. However, we can present an extremely simple and straightfor-
ward proof if we do it for the entourages instead.

7.3. For an a ∈ N set

E(a) = (id⊕ γ)µ(a) and F (a) = (γ ⊕ id)µ(a);

hence

E(a) =
∨
{x⊕ y | x⊕ y ≤ (id⊕ γ)µ(a)} =

∨
{x⊕ y | x ∗ y ≤ a},

and similarly for F (a).
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7.3.1. Observation. E(a) and F (a) are entourages.

Proof. For x ∈ U(a) we have x⊕ γ(x) ≤ µ(a). Hence∨
{x | x⊕ x ≤ E(a)} ≥

∨
U(a) = 1

since U(a) is a cover, as we already know. �

7.3.2. Denote by E ′ resp. F ′ the system of entourages {E(a) | a ∈
N} resp. {F (a) | a ∈ N}, and set

E = {E | E entourage, E ≥ E(a) ∈ E ′},
F = {E | E entourage, E ≥ F (a) ∈ F ′}.

7.3.3. Proposition. The systems E and F are e-uniformities and
we have, in the notation of 7.1 and 4.4, E = EU and F = EV .

Proof. We will show that E = {E | E entourage, E ≥ E(a) ∈ E ′} =
EU = {E | E entourage, E ≥ EU(a), a ∈ N}.

We have EU(a)(=
∨
{x⊕ x | x⊕ γ(x) ≤ µ(a)}) ≤ E(a).

To obtain an estimate from the other side, choose by 6.3.2 b, c ∈ N
such that b∗ b−1 ≤ c and c∗ c−1 ≤ a. Let x⊕y ≤ E(b). We can assume
x⊕ y 6= 0, hence x 6= 0 6= y. First, as y 6= 0, we have by 6.2.2 ((4), (5)
and (7)),

x ∗ x−1 ≤ x ∗ y−1 ∗ y ∗ x−1 ≤ b ∗ b−1 ≤ c and x ∗ y−1 ≤ b ∗ b−1 ≤ c

and hence (x, x), (x, y) ∈ E(c) and since E(c) is saturated (recall 1.3)
we have, for z = x ∨ y,

(x, z) ∈ E(c), that is, x ∗ z−1 ≤ c.

Now (x∗z−1)∗(x∗z−1)−1 ≤ c∗c−1 ≤ a, hence (x∗z−1)⊕(x∗z−1) ≤ EU(a)

and (x ∗ z−1) ∗ (x ∗ z−1)−1 ≤ µ(EU(a)). Since x ∧ z 6= 0 we have
(x ∗ z−1)−1 ∈ N by 6.2.2(5), and by 6.2.2(4) we obtain

x ∗ z−1 ≤ x ∗ z−1 ∗ (x ∗ z−1)−1 ≤ µ(EU(a))

so that x⊕ y ≤ x⊕ z ≤ EU(a). Thus, E(b) ≤ EU(a). �

Remarks. Note that we did not have to prove that E is a uniformity.
It followed from the fact that EU is one.

7.4. Theorem. Each LG-homomorphism h : (L, µL, γL, εL) →
(M,µM , γM , εM) is uniform with respect to both the left and the right
uniformities. Thus we have identity carried functors

(L 7→ (L, E(L)) resp.(L,F(L)) : LocGr→ UniELoc and

(L 7→ (L,U(L)) resp.(L,V(L)) : LocGr→ UniCLoc.
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Proof. We will prove it for the left uniformity. By 7.3.2 and 4.4.2
we can choose whether we will prove it for the U or for the entourage-
uniformity E . We will do it for the latter. By (5.1.1) we have

(h⊕ h)(E(a)) = (h⊕ h)(idL ⊕ γ)µL(a) =

= (idM ⊕ γM)(h⊕ h)µL(a) = (idM ⊕ γM)µM(h(a)) = E(h(a))

(since εMh = εL, h(a) ∈ NM , and E(h(a)) makes sense). �
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Paris, 1938.

CMUC, Department of Mathematics, University of Coimbra, 3001-
454 Coimbra, PORTUGAL

E-mail address: picado@mat.uc.pt

Department of Applied Mathematics and ITI, MFF, Charles Univer-
sity, Praha, CZECH REPUBLIC

E-mail address: pultr@kam.ms.mff.cuni.cz


