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ABSTRACT. In the literature, most of the descriptions of different classes of Leibniz su-
peralgebras (L = L0 ⊕ L1, [·, ·]) have been made by given the multiplication table on
the elements of a graded basis B = {vk}k∈K of L, in such a way that for any i, j ∈ K
we have [vi, vj ] = λi,j [vj , vi] ∈ Fvk for some k ∈ K, where F denotes the base field
and λi,j ∈ F. In order to give a unifying viewpoint of all these classes of algebras we
introduce the category of Leibniz superalgebras admitting a multiplicative basis and study
its structure. We show that if a Leibniz superalgebra L = L0⊕L1 admits a multiplicative
basis then it is the direct sum L =

⊕
α Iα with any Iα = Iα,0 ⊕ Iα,1 a well described

ideal of L admitting a multiplicative basis inherited from B. Also the B-simplicity of L is
characterized in terms of J-connections.

Keywords: Leibniz superalgebra, multiplicative basis, infinite dimension, structure the-
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1. INTRODUCTION AND PREVIOUS DEFINITIONS

Leibniz superalgebras appear as an extension of Leibniz algebras (see [4, 5, 10, 13, 14,
15, 16, 17]), in a similar way than Lie superalgebras generalize Lie algebras, motivated
in part for its applications in Physics. The present paper is devoted to the study of the
structure of Leibniz superalgebras L admitting a multiplicative basis over a field F. Since
a Leibniz algebra is a particular case of a Leibniz superalgebra (with L1 = {0}), this work
extends the results exhibited in [6]. We would like to remark that the techniques used in
this paper also hold in the infinite-dimensional case over arbitrary fields, being adequate
enough to provide us a second Wedderburn-type theorem in this general framework (Theo-
rems 2.1 and 3.1). Moreover, although we make use of the ideal I which is deeply inherent
to Leibniz theory, we believe that our approach can be useful for the knowledge of the
structure of wider classes of algebras.

Definition 1.1. A Leibniz superalgebra L is a Z2-graded algebra L = L0 ⊕ L1 over
an arbitrary base field F, with its bilinear product denoted by [·, ·], whose homogenous
elements x ∈ Li, y ∈ Lj , i, j ∈ Z2, satisfy

[x, y] ∈ Li+j

[x, [y, z]] = [[x, y], z]− (−1)jk[[x, z], y] (Super Leibniz identity)
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for any homogenous element z ∈ Lk, k ∈ Z2.

Remark 1.1. Note that Super Leibniz identity is considered by the right side in the sense
that the multiplication operators on the right by elements in L0 are derivations on the
homogeneous elements, as it is done in the references [4, 5, 10, 13, 17]. However, we
could have considered a Super Leibniz identity in which the multiplication operators on
the left by elements in L0 would act as derivations on the homogeneous elements, as it is
the case in the references [14, 15, 16]. Of course, the development of the present work
would have been similar in this case.

Clearly L0 is a Leibniz algebra. Moreover, if the identity [x, y] = −(−1)ij [y, x] holds,
then Super Leibniz identity becomes Super Jacobi identity and so Leibniz superalgebras
generalize also Lie superalgebras, which is of interest in the formalism of mechanics of
Nambu [12].

The usual concepts are considered in a graded sense. A subsuperalgebra A of L is a
graded subspaceA = A0⊕A1 satisfying [A,A] ⊂ A. An ideal I of L is a graded subspace
I = I0 ⊕ I1 of L such that

[I,L] + [L, I] ⊂ I.
The (graded) ideal I generated by

{[x, y] + (−1)ij [y, x] : x ∈ Li, y ∈ Lj , i, j ∈ Z2}

plays an important role in the theory since it determines the (possible) non-super Lie cha-
racter of L. From definition of ideal [I,L] ⊂ I and from Super Leibniz identity, it is
straightforward to check that this ideal satisfies

(1) [L, I] = 0.

Here we note that the usual definition of simple superalgebra lacks of interest in the case
of Leibniz superalgebras because would imply the ideal I = L or I = 0, being so L an
abelian (product zero) or a Lie superalgebra respectively (see Equation (1)). Abdykassy-
mova and Dzhumadil’daev introduced in [1, 2] an adequate definition in the case of Leibniz
algebras (L, [·, ·]) by calling simple to the ones such that its only ideals are {0}, L and the
one generated by the set {[x, x] : x ∈ L}. Following this vain, we consider the next
definition.

Definition 1.2. A Leibniz superalgebra L is called simple if [L,L] 6= 0 and its only
(graded) ideals are {0}, I and L.

Observe that we can write
L = I⊕ ¬I

where ¬I = ¬I0 ⊕ ¬I1 is a linear complement of I = I0 ⊕ I1 in L (here we adapt this
notation in order to standardize the one already used in [7, 8, 9]). Actually¬I is isomorphic
as linear space to L/I, the so called corresponding Lie superalgebra of L. In general, ¬I
is not an ideal of L from [I,¬I] ⊂ I. Then the multiplication in L is represented in the
table

I0 ¬I0 I1 ¬I1
I0 0 I0 0 I1
¬I0 0 I0 ⊕ ¬I0 0 I1 ⊕ ¬I1
I1 0 I1 0 I0
¬I1 0 I1 ⊕ ¬I1 0 I0 ⊕ ¬I0
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Hence, by taking BIi
and B¬Ii

bases of Ii and ¬Ii, for i ∈ Z2, respectively, then

B = (BI0
∪̇BI1︸ ︷︷ ︸
BI

)∪̇(B¬I0
∪̇B¬I1︸ ︷︷ ︸
B¬I

)

is a basis of L.

Definition 1.3. A basis B = {vk,i : k ∈ K, i ∈ Z2} of L is said to be multiplicative if
for any k1, k2 ∈ K, i, j ∈ Z2 we have [vk1,i, vk2,j ] ∈ Fvk,i+j for some k ∈ K.

Example 1.1. Consider the 5-dimensional Z2-graded vector space L = L0 ⊕ L1, over
a base field F of characteristic different from 2, with basis BI1

= {e1, e2},B¬I0
=

{ua, ub, uc}; where the products on these elements are given by:

[ub, ua] = −uc, [ua, ub] = uc, [ua, uc] = −2ua,

[uc, ua] = 2ua, [uc, ub] = −2ub, [ub, uc] = 2ub,

[e1, ub] = e2, [e1, uc] = −e1, [e2, ua] = e1, [e2, uc] = e2,

and where the omitted products are equal to zero. Then L = L0⊕L1 becomes a (non-Lie)
Leibniz superalgebra admitting B = BI1

∪̇B¬I0
as multiplicative basis.

Example 1.2. Let us denote by N∗ the set of non-negative integers. Consider the infinite-
dimensional complex Z2-graded vector space L = L0 ⊕ L1 with basis BI1

= {e(n,k) :
n, k ∈ N∗ and k ≤ n}, B¬I0

= {e(n,−1), e(n,−2), e(n,−3) : n ∈ N}; with the following
table of multiplication:

[e(n,−1), e(n,−3)] = 2e(n,−1), [e(n,−3), e(n,−1)] = −2e(n,−1),

[e(n,−2), e(n,−3)] = −2e(n,−2), [e(n,−3), e(n,−2)] = 2e(n,−2),

[e(n,−1), e(n,−2)] = e(n,−3), [e(n,−2), e(n,−1)] = −e(n,−3),
[e(n,k), e(n,−3)] = (n− 2k)e(n,k), for 0 ≤ k ≤ n;

[e(n,k), e(n,−2)] = e(n,k+1), for 0 ≤ k ≤ n− 1;

[e(n,k), e(n,−1)] = k(k − n− 1)e(n,k−1), for 1 ≤ k ≤ n;

and where the omitted products are equal to zero. Then L = L0⊕L1 is a (non-Lie) Leibniz
superalgebra admitting B = BI1

∪̇B¬I0
as multiplicative basis.

Remark 1.2. Observe that if we write

BIi
= {en,i}n∈Ii and B¬Ii

= {ur,i}r∈Ji , for i ∈ Z2.

Since I is an ideal together with Equation (1) we know that the only possible non-zero
products among the elements in B are:

(1) For n ∈ Ii, r ∈ Jj and i, j ∈ Z2 we have [en,i, ur,j ] ∈ Fek,i+j for some k ∈ Ii+j .
(2) For r ∈ Ji, s ∈ Jj and i, j ∈ Z2 we have either [ur,i, us,j ] ∈ Ful,i+j for some

l ∈ Ji+j or [ur,i, us,j ] ∈ Fen,i+j for some n ∈ Ii+j .

Lemma 1.1. Let (L, [·, ·]) be a Leibniz superalgebra over a base field F of characteristic
different to 2. If B = {vk}k∈K is a graded basis of L such that for any k1, k2 ∈ K we
have [vk1 , vk2 ] = λk1,k2 [vk2 , vk1 ] ∈ Fvk for some k ∈ K and some λk1,k2 ∈ F then L
admits B as multiplicative basis.

Proof. By the definition of I we see that it is generated as linear space by {vj : j ∈ J},
for some subset J of K. So we can find a basis BI of I formed by elements of B and a
basis B¬I := B \ BI of ¬I which make of B a multiplicative basis. �
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The preceding lemma shows that all commutative (up to a scalar) Leibniz superalgebras
admit a multiplicative basis. For instance, this is the case of null-filiforms Leibniz superal-
gebras, Leibniz superalgebras of maximal nilindex or Leibniz superalgebras with nilindex
n+m+ 1 (see [3, 10, 11]).

The paper is organized as follows. In S2 inspired by the connections of roots developed
for split Leibniz algebras and superalgebras in [7, 8], we introduce similar techniques on
the index set of the multiplicative basis B. Our purpose is to obtain a powerful tool for
the study of this class of superalgebras. By making use of these results we see that any
Leibniz superalgebra L admitting a multiplicative basis is of the form L =

⊕
α Iα, where

every Iα is a well described ideal having a multiplicative basis inherited from B. In S3
the B-simplicity of these ideals is characterized in terms of the J-connection.

2. DECOMPOSITION AS DIRECT SUM OF IDEALS

In what follows L = (I0 ⊕ ¬I0) ⊕ (I1 ⊕ ¬I1) denotes a Leibniz superalgebra over a
base field F admitting a multiplicative basis

(2) B = (BI0
∪̇BI1

)∪̇(B¬I0
∪̇B¬I1

)

where BIi
= {en,i}n∈Ii and B¬Ii

= {ur,i}r∈Ji , for i ∈ Z2, and where, by renaming if
necessary, we can suppose Ki ∩ Pj = ∅ for any K,P ∈ {I, J}, i, j ∈ Z2 and Ki 6= Pj .
We begin this section by developing connection techniques among the elements in the
index sets I0∪̇I1∪̇J0∪̇J1 as the main tool in our study. Now, for each k ∈ I0∪̇I1∪̇J0∪̇J1,
a new assistant variable k̃ /∈ I0∪̇I1∪̇J0∪̇J1 is introduced and we denote by

Ĩi := {ñ : n ∈ Ii} and J̃i := {r̃ : r ∈ Ji},

for i ∈ Z2, the sets consisting of all these new symbols. Also, given any k̃ ∈ K̃i, K ∈
{I, J}, i ∈ Z2, we denote

(̃k̃) := k.

Finally, we write by P(A) the power set of a given set A.

Next, we consider an operation which recover, in some sense, certain multiplicative
relations among the elements of the basis B:

? : (I0∪̇I1∪̇J0∪̇J1)× (I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ1∪̇J̃0∪̇J̃1)→ P(I0∪̇I1∪̇J0∪̇J1),

where for any i, j ∈ Z2 is defined by
• For n ∈ Ii, m ∈ Ij ,

n ? m := ∅
• For n ∈ Ii and r ∈ Jj ,

n ? r

{
∅, if [en,i, ur,j ] = 0

{m}, if 0 6= [en,i, ur,j ] ∈ Fem,i+j with m ∈ Ii+j
• For n ∈ Ii and m̃ ∈ Ĩj ,

n ? m̃ := {r ∈ Ji+j : 0 6= [em,j , ur,i+j ] ∈ Fen,i}

• For n ∈ Ii and r̃ ∈ J̃j ,
n ? r̃ := {s ∈ Ji+j : 0 6= [ur,j , us,i+j ] ∈ Fen,i}∪

{t ∈ Ji+j : 0 6= [ut,i+j , ur,j ] ∈ Fen,i} ∪ {m ∈ Ii+j : 0 6= [em,i+j , ur,j ] ∈ Fen,i}.
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• For r ∈ Ji, s ∈ Jj ,

r ? s :=


∅, if [ur,i, us,j ] = 0

{t}, if 0 6= [ur,i, us,j ] ∈ Fut,i+j
{n}, if 0 6= [ur,i, us,j ] ∈ Fen,i+j

• For r ∈ Ji and ñ ∈ Ĩj ,
r ? ñ := ∅

• For r ∈ Ji and s̃ ∈ J̃j ,

r ? s̃ := {t ∈ Ji+j : 0 6= [ut,i+j , us,j ] ∈ Fur,i} ∪ {q ∈ Ji+j : 0 6= [us,j , uq,i+j ] ∈ Fur,i}.

The mapping ? is not still adequate to use in an iterative process necessary for our purposes
and so we need to introduce the following one:

φ : P(I0∪̇I1∪̇J0∪̇J1)× (I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ1∪̇J̃0∪̇J̃1))→ P(I0∪̇I1∪̇J0∪̇J1),

as
• φ(∅, I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ1∪̇J̃0∪̇J̃1)) := ∅,
• For any ∅ 6= K ∈ P(I0∪̇I1∪̇J0∪̇J1) and a ∈ I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ1∪̇J̃0∪̇J̃1,

φ(K, a) :=
⋃
k∈K

(k ? a) ∪ (a ? k).

Lemma 2.1. For any K ∈ P(I0∪̇I1∪̇J0∪̇J1) and a ∈ I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ1∪̇J̃0∪̇J̃1),

(3) k ∈ φ(K, a) if and only if φ({k}, ã) ∩K 6= ∅.

Proof. It is straightforward to observe that for any k1, k2 ∈ I0∪̇I1∪̇J0∪̇J1 and

a ∈ I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ1∪̇J̃0∪̇J̃1
we have k2 ∈ k1 ? a ∪ a ? k1 if and only if k1 ∈ k2 ? ã. �

Definition 2.1. Let k and k′ be elements in the index set I0∪̇I1∪̇J0∪̇J1. We say k is
connected to k′ if either k = k′ or there exists a subset

{k1, k2, . . . , kn−1, kn} ⊂ I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ1∪̇J̃0∪̇J̃1
with n ≥ 2 such that the following conditions hold:

1. k1 = k.

2. φ({k1}, k2) 6= ∅,
φ(φ({k1}, k2), k3) 6= ∅,

...
φ(φ(· · · (φ({k1}, k2), · · · ), kn−2), kn−1) 6= ∅.

3. k′ ∈ φ(φ(· · · (φ({k1}, k2), · · · ), kn−1), kn).

The subset {k1, k2, . . . , kn−1, kn} is called a connection from k to k′.

Proposition 2.1. The relation ∼ in I0∪̇I1∪̇J0∪̇J1, defined by k ∼ k′ if and only if k is
connected to k′, is an equivalence relation.
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Proof. By definition k ∼ k, that is, the relation ∼ is reflexive. Let us see the symmetric
character of ∼: If k ∼ k′ with k 6= k′ then there exists a connection

{k1, k2, . . . , kn−1, kn}

from k to k′ satisfying Definition 2.1. Let us show that the set

{k′, k̃n, k̃n−1, . . . , k̃3, k̃2}

gives rise to a connection from k′ to k. Indeed, by taking

K := φ(· · · (φ({k1}, k2), · · · ), kn−1)

we can apply the relation given by (3) to the expression

k′ ∈ φ(K, kn)

to get

φ({k′}, k̃n) ∩K 6= ∅
and so

φ({k′}, k̃n) 6= ∅.
By taking

h ∈ φ({k′}, k̃n) ∩K,
then

h ∈ K = φ(· · · (φ({k1}, k2), · · · ), kn−1),

by the relation given by (3) we get

φ({h}, k̃n−1) ∩ φ(· · · (φ({k1}, k2), · · · ), kn−2) 6= ∅,

but h ∈ φ({k′}, k̃n), therefore {h} ⊂ φ({k′}, k̃n) and consequently

φ(φ({k′}, k̃n), k̃n−1) ∩ φ(· · · (φ({k1}, k2), · · · ), kn−2) 6= ∅.

By iterating this process we get

φ(φ(· · · (φ({k′}, k̃n), · · · ), k̃n−r+1), k̃n−r)∩

φ(φ(· · · (φ({k1}, k2), · · · ), kn−r−2), kn−r−1) 6= ∅
for 0 ≤ r ≤ n− 3. Observe that this relation in the case r = n− 3 reads as

φ(φ(· · · (φ({k′}, k̃n), · · · ), k̃4), k̃3) ∩ φ({k1}, k2) 6= ∅.

Since k1 = k, if we write K̃ := φ(φ(· · · (φ({k̃′}, k̃n), · · · ), k̃4), k̃3), the previous obser-
vation allows us to assert φ({k}, k2) ∩ K̃ 6= ∅. Hence the relation (3) applies to get

k ∈ φ(φ(· · · (φ({k′}, k̃n), · · · ), k̃3), k̃2)

and concludes ∼ is symmetric.
Finally, let us verify the transitive character of ∼. Suppose k ∼ k′ and k′ ∼ k′′. If

k = k′ or k′ = k′′ it is trivial, so suppose k 6= k′ and k′ 6= k′′ and write {k1, . . . , kn}
for a connection from k to k′ and {k′1, . . . , k′m} for a connection from k′ to k′′. Then we
clearly see that {k1, . . . , kn, k′2, . . . , k′m} is a connection from k′ to k′′. We have shown
the connection relation is an equivalence relation. �
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By the above proposition we can consider the next quotient set on the index set I0∪̇I1∪̇J0∪̇J1,

(I0∪̇I1∪̇J0∪̇J1)/ ∼= {[k] : k ∈ I0∪̇I1∪̇J0∪̇J1},
becoming [k] the set of elements in I0∪̇I1∪̇J0∪̇J1 which are connected to k.

Our next goal in this section is to associate an ideal I[k] of L to any [k]. Fix k ∈
I0∪̇I1∪̇J0∪̇J1, we start by defining the linear subspaces I[k] = I[k],0 ⊕ I[k],1 ⊂ I and
¬I[k] = ¬I[k],0 ⊕ ¬I[k],1 ⊂ ¬I as follows

I[k],i :=
⊕

l∈[k]∩Ii

Fel,i ⊂ Ii,

¬I[k],i :=
⊕

h∈[k]∩Ji

Fuh,i ⊂ ¬Ii

for any i ∈ Z2. Finally, we denote by I[k] the direct sum of the two subspaces above, that
is,

I[k] := (I[k],0 ⊕ I[k],1)⊕ (¬I[k],0 ⊕ ¬I[k],1)

Definition 2.2. Let L be a Leibniz superalgebra admitting a multiplicative basis B. A
subsuperalgebra A ⊂ L admits a multiplicative basis BA inherited from B if BA is a
multiplicative basis of A satisfying BA ⊂ B.

Proposition 2.2. For any k ∈ I0∪̇I1∪̇J0∪̇J1, the linear subspace I[k] is an ideal of L
admitting a multiplicative basis inherited from the one of L.

Proof. We can write

[I[k],L] = [I[k] ⊕ ¬I[k], (
⊕
n∈I0

Fen,0)⊕ (
⊕
m∈I1

Fem,1)⊕ (
⊕
r∈J0

Fur,0)⊕ (
⊕
s∈J1

Fus,1)].

In case [el,i, ur,j ] 6= 0 for some l ∈ [k]∩Ii, r ∈ Jj and i, j ∈ Z2, we have 0 6= [el,i, ur,j ] ∈
Fep,i+j with p ∈ Ii+j and so p ∈ φ({l}, r) = l ? r, therefore the connection {l, r} gives
us l ∼ p, so p ∈ [k] and then 0 6= [el,i, ur,j ] ∈ I[k]. Hence we get

[I[k], (
⊕
r∈J0

Fur,0)⊕ (
⊕
s∈J1

Fus,1)] ⊂ I[k] ⊂ I[k].

In a similar way we have [¬I[k], (
⊕

r∈J0
Fur,0)⊕ (

⊕
s∈J1

Fus,1)] ⊂ I[k] and taking into
account Equation (1) we conclude

[I[k],L] ⊂ I[k].
On the other hand,

[L, I[k]] = [(
⊕
n∈I0

Fen,0)⊕ (
⊕
m∈I1

Fem,1)⊕ (
⊕
r∈J0

Fur,0)⊕ (
⊕
s∈J1

Fus,1), I[k] ⊕ ¬I[k]]

and in case 0 6= [en,i, uh,j ] for some n ∈ Ii, h ∈ [k] ∩ Jj and i, j ∈ Z2 we have
[en,i, uh,j ] ∈ Fep,i+j with p ∈ Ii+j . Then p ∈ φ({h}, n) = h ? n and we see that
the connection {h, n} gives us h ∼ p and so [(

⊕
n∈I0

Fen,0)⊕ (
⊕

m∈I1
Fem,1),¬I[k]] ⊂

I[k] ⊂ I[k]. In a similar way

[(
⊕
r∈J0

Fur,0)⊕ (
⊕
s∈J1

Fus,1),¬I[k]] ⊂ I[k]
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and by Equation (1) then
[L, I[k]] ⊂ I[k].

Hence I[k] is an ideal of L.
Finally, observe that the set

BI[k]
:= {en,0 : n ∈ [k] ∩ I0}∪̇{em,1 : m ∈ [k] ∩ I1}∪̇

{ur,0 : r ∈ [k] ∩ J0}∪̇{us,1 : s ∈ [k] ∩ J1}
is a multiplicative basis of I[k] satisfying BI[k]

⊂ B. Hence we see that I[k] admits a
multiplicative basis inherited from the one of L. �

Corollary 2.1. If L is simple, then there exists a connection between any couple of ele-
ments in the index set I0∪̇I1∪̇J0∪̇J1.

Proof. The simplicity of L implies [L,L] 6= 0 and so ¬I 6= ∅, then at least there exists
r0 ∈ Ji, i ∈ Z2, such that {ur0,i} ⊂ B¬Ii

. Applying Proposition 2.2, I[r0] is an ideal and
by its construction I[r0] 6⊂ I, therefore I[r0] = L being then [r0] = I0∪̇I1∪̇J0∪̇J1. That
is, any couple of elements in I0∪̇I1∪̇J0∪̇J1 are connected. �

Theorem 2.1. A Leibniz superalgebra L admitting a multiplicative basis decomposes as
the direct sum

L =
⊕

[k]∈(I0∪̇I1∪̇J0∪̇J1)/∼

I[k],

where any I[k] = I[k]⊕¬I[k] is one of the ideals, admitting a multiplicative basis inherited
from the one of L, given in Proposition 2.2.

Proof. Since we can write L = I⊕ ¬I and

I =
⊕

[k]∈(I0∪̇I1∪̇J0∪̇J1)/∼

I[k], ¬I =
⊕

[k]∈(I0∪̇I1∪̇J0∪̇J1)/∼

¬I[k].

From I[k] = I[k] ⊕ ¬I[k] by definition, we clearly have

L =
⊕

[k]∈(I0∪̇I1∪̇J0∪̇J1)/∼

I[k].

�

Example 2.1. Consider the Leibniz superalgebra L = L0 ⊕ L1 presented in Example
1.1. We have I1 = {1, 2} and J0 = {a, b, c}. From the multiplication table of L it is not
difficult to write the operation ? in a concrete way. For instance, we have

1 ? c = 2 ? a = {1}
1 ? b = 2 ? c = {2}

a ? b = b ? a = {c}
a ? c = c ? a = {a}

Then, we can also obtain an explicit expression of the mapping

φ : P(I0∪̇I0∪̇J0∪̇J1)× (I0∪̇I0∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ0∪̇J̃0∪̇J̃1) −→ P(I0∪̇I0∪̇J0∪̇J1).

Observe that the connection {1, b} gives 1 ∼ 2, with the connection {a, b} we have a ∼ c
and considering {b, a} we obtain b ∼ c. Since 1 ? 2̃ = {b} we get 1 ∼ b and there-
fore (I0∪̇I0∪̇J0∪̇J1)/ ∼= {[1]} where [1] = {1, 2, a, b, c}. By Theorem 2.1 we see that
L = I[1], where I[1] is an ideal of L with a unique (multiplicative) basis {1, 2, a, b, c}. In
fact, since L is a simple (non-Lie) Leibniz superalgebra, by Corollary 2.2 all elements in
I0∪̇I1∪̇J0∪̇J1 are connected and we just have one ideal.
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Example 2.2. Let L = L0 ⊕ L1 be the Leibniz superalgebra considered in Example 1.2.
We have I = {(n, k) : n ∈ N, 0 ≤ k ≤ n} and J = {(n,−1), (n,−2), (n,−3) : n ∈ N}.
From the multiplication table of L it is not difficult to express the operation ? completely.
For instance, we have

(n, k) ? (n,−3) = {(n, k)} k ∈ I
(n, k) ? (n,−2) = {(n, k + 1)} k ∈ {0, . . . , n− 1}
(n, k) ? (n,−1) = {(n, k − 1)} k ∈ {1, . . . , n}
(n,−1) ? (n,−2) = (n,−2) ? (n,−1) = {(n,−3)}
(n,−1) ? (n,−3) = (n,−3) ? (n,−1) = {(n,−1)}
(n,−2) ? (n,−3) = (n,−3) ? (n,−2) = {(n,−2)}

From here, we can also obtain an explicit expression of the mapping

φ : P(I0∪̇I0∪̇J0∪̇J1)× (I0∪̇I0∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ0∪̇J̃0∪̇J̃1) −→ P(I0∪̇I0∪̇J0∪̇J1).

Observe that the connection {(n,−1), (n,−2)} gives (n,−1) ∼ (n,−3), with the connec-
tion {(n,−2), ˜(n,−2)} we get (n,−2) ∼ (n,−3), the connection {(n, k + 1), ˜(n, k)} let
us assert (n, k+1) ∼ (n,−2) and considering the connection {(n, k−1), ˜(n, k)} we have
(n, k − 1) ∼ (n,−1), for k ∈ {0, . . . , n− 1} and k ∈ {1, . . . , n}, respectively. Hence,

(I0∪̇I1∪̇J0∪̇J1)/ ∼= {[(n, 0)] : n ∈ N}

where any

[(n, 0)] = {(n, k) : 0 ≤ k ≤ n} ∪ {(n,−1), (n,−2), (n,−3)}

and so Theorem 2.1 allows us to assert

L =
⊕
n∈N
I[(n,0)]

being any I[(n,0)] = I[(n,0)],0⊕I[(n,0)],1, with I[(n,0)],0 = span{e(n,−1), e(n,−2), e(n,−3)}
and I[(n,0)],1 = span{e(n,k) : 0 ≤ k ≤ n}, an ideal admitting a (multiplicative) basis
inherited from the one of L.

3. THE B-SIMPLE COMPONENTS

In this section our target is to characterize the minimality of the ideals which give rise
to the decomposition of L in Theorem 2.1, in terms of connectivity properties in the index
set I0∪̇I1∪̇J0∪̇J1. Taking into account Definition 1.2 we introduce the next concept in a
natural way.

Definition 3.1. A Leibniz superalgebra L admitting a multiplicative basis B is called B-
simple if [L,L] 6= 0 and its only ideals admitting a multiplicative basis inherited from B
are {0}, I and L.

As in the previous section, L = (I0⊕¬I0)⊕(I1⊕¬I1) denotes a Leibniz superalgebra
over an arbitrary base field F and of arbitrary dimension, admitting a multiplicative basis
B = (BI0

∪̇BI1
)∪̇(B¬I0

∪̇B¬I1
) where BIi

= {en,i}n∈Ii and B¬Ii
= {ur,i}r∈Ji , for

i ∈ Z2, and where Ki ∩ Pj = ∅ for any K,P ∈ {I, J}, i, j ∈ Z2 and Ki 6= Pj .

We have the opportunity of restricting the connectivity relation to the set I0∪̇I1 and to
the set J0∪̇J1 by just allowing that the connections are formed by elements in J0∪̇J1∪̇J̃0∪̇J̃1.
Then we say two indexes of Υ0∪̇Υ1, where either Υ ∈ {I, J}, are J-connected.
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Definition 3.2. Let k and k′ be two elements in Υ0∪̇Υ1 with either Υ = I or Υ = J . We
say k is J-connected to k′ and we denote by k ∼J k′, if either k = k′ or there exists a
connection {r1, r2, . . . , rn} from k to k′ (in the sense of Definition 2.1) such that

r2, . . . , rn ∈ J0∪̇J1∪̇J̃0∪̇J̃1.
We also say the set {r1, r2, . . . , rn} is a J-connection from k to k′.

We observe that it is straightforward to verify the arguments in Proposition 2.1 allow us to
assert that the relation ∼J is an equivalence relation in I0∪̇I1 and in J0∪̇J1. Therefore

(Υ0∪̇Υ1)/ ∼J= {[k]J : k ∈ Υ0∪̇Υ1}
becoming [k]J the set of elements in Υ0∪̇Υ1 which are J-connected to k, with either
Υ = I or Υ = J .

Let us introduce the notion of ?-multiplicativity in the framework of Leibniz superal-
gebras with multiplicative bases, in a similar way to the ones of closed-multiplicativity
for split Leibniz algebras, split Leibniz superalgebras and graded Leibniz algebras (see
[7, 8, 9] for these notions and examples). From now on, for any j̃ ∈ J̃i, i ∈ Z2, we denote
uj̃ = 0.

Definition 3.3. A Leibniz superalgebra L = I ⊕ ¬I admits a ?-multiplicative basis B =
{vk,i : k ∈ K, i ∈ Z2}, which decomposes as in Equation (2), if it is multiplicative and

for any k, r ∈ I0∪̇I1∪̇J0∪̇J1 and a ∈ I0∪̇I1∪̇J0∪̇J1∪̇Ĩ0∪̇Ĩ0∪̇J̃0∪̇J̃1 such that k ∈ r ? a,
then vk,i ∈ [vr,j ,Li+j ].

Proposition 3.1. Suppose L admits a ?-multiplicative basis B. If J0∪̇J1 has all of their
elements J-connected, then any nonzero ideal I ⊂ L with a multiplicative basis inherited
from B such that I 6⊂ I satisfies I = L.

Proof. Since I 6⊂ I we can take some r0 ∈ Ji0 such that

(4) 0 6= ur0,i0 ∈ I.

for certain i0 ∈ Z2. We know that J0∪̇J1 has all of their elements J-connected. If
J0∪̇J1 = {r0} trivially ¬I ⊂ I. If |J0∪̇J1| > 1 we take s ∈ Jj (with j ∈ Z2) dif-
ferent from r0, being then 0 6= Fus,j , we can consider a J-connection

(5) {r0, r2, . . . , rn} ⊂ J0∪̇J1∪̇J̃0∪̇J̃1
from r0 to s.

We know that
φ({r0}, r2) 6= ∅

and so we can take a1 ∈ φ({r0}, r2) = r0 ? r2. Now, taking into account Equation (4) and
the ?-multiplicativity of B we get, if a1 ∈ Ji0+j

0 6= ua1,i0+j ∈ F[ur0,i0 , ul2,j ] ⊂ I
or, if a1 ∈ Ii0+j

0 6= ea1,i0+j ∈ F[ur0,i0 , ul2,j ] ⊂ I
for l2 = {r2, r̃2} ∩ Jj and j ∈ Z2.

Since s ∈ J0∪̇J1, necessarily φ({r0}, r2) ∩ (J0∪̇J1) 6= ∅ and we have

(6) 0 6=
⊕

r∈φ({r0},r2)∩Ji

Fur,i ⊂ I.
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for any i ∈ Z2. Since
φ(φ({r0}, r2), r3) 6= ∅

we can argue as above, taking into account Equation (6), to get

0 6=
⊕

r∈φ(φ({r0},r2),r3)∩Ji

Fur,i ⊂ I

for i ∈ Z2. By reiterating this process with the J-connection (5) we obtain

0 6=
⊕

r∈φ(φ(···(φ(r0,r2),··· ),rn−1),rn)∩Ji

Fur,i ⊂ I.

Since s ∈ φ(φ(· · · (φ(r0, r2), · · · ), rn−1), rn) ∩ Jj we conclude us,j ∈ I for all s ∈
Jj \ {r0} and j ∈ Z2 and so

(7) ¬I =
⊕

p∈J0,q∈J1

(Fup,0 ⊕ Fuq,1) ⊂ I.

Considering I ⊂ [I,¬I] + [¬I,¬I] by ?-multiplicativity, Equation (7) allows us to assert

(8) I ⊂ I.

Finally, since L = I⊕ ¬I, Equations (7) and (8) give us I = L. �

Proposition 3.2. Suppose L admits a ?-multiplicative basis B. If I0∪̇I1 has all of its
elements J-connected, then any nonzero ideal I ⊂ L with a multiplicative basis inherited
from B such that I ⊂ I satisfies I = I.

Proof. Taking into account I ⊂ I we can fix a some n0 ∈ Ii0 satisfying

0 6= en0,i0
∈ I

for certain i0 ∈ Z2. Since I0∪̇I1 has all of its elements J-connected, we can argue from
n0 with the ?-multiplicativity of B as it is done in Proposition 3.1 from r0 to get I ⊂ I
and then I = I. �

Theorem 3.1. Suppose L admits a ?-multiplicative basis B. Then L is B-simple if and
only if I0∪̇I1 and J0∪̇J1 have respectively all of their elements J-connected.

Proof. Suppose L is B-simple. We take n ∈ I0∪̇I1 and we observe that the linear space⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1) is an ideal of L with a multiplicative basis inherited

from B. Indeed, we have trivially[
L,

⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1)
]

+
[ ⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1), I
]
⊂

⊂ [L, I] = 0.

We only need to prove[ ⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1), ur,0 ⊕ us,1
]
⊂

⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1)

for any r ∈ J0, s ∈ J1. In fact, given any en0,i0
∈

⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1)

such that 0 6= [en0,i0
, ut,j ] = ep,i0+j , for ut,j ∈ {ur,0, us,1} and some p ∈ Ii0+j . We
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have p ∈ n0 ? t and so {n0, t} is a J-connection meaning that n0 ∼J p. By the symmetry
p ∼J n0 and by transitivity of p ∼J n0 ∼J n, and we get

ep,i0+j ∈
⊕

m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1).

Hence [en0,i0
, ut,j ] ⊂

⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1) as desired. We conclude

⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1)

is an ideal of L endowed with a multiplicative basis inherited from B (trivial by construc-
tion) and so, by B-simplicity, necessarily

⊕
m∈I0∩[n]J ,l∈I1∩[n]J

(Fem,0 ⊕ Fel,1) = I and

consequently any couple of indexes in I are J-connected. Consider now any r ∈ J and
the linear subspace

I⊕
⊕

s∈J0∩[r]J ,t∈J1∩[r]J

(Fus,0 ⊕ Fut,1).

Using a similar argument to the above one we see this linear subspace is actually an ideal
of L which admits a multiplicative basis inherited from B. From B-simplicity,

I⊕
⊕

s∈J0∩[r]J ,t∈J1∩[r]J

(Fus,0 ⊕ Fut,1) = L

which implies in particular

I⊕
⊕

s∈J0∩[r]J ,t∈J1∩[r]J

(Fus,0 ⊕ Fut,1) = I⊕
⊕

r∈J0,q∈J1

(Fur,0 ⊕ Fuq,1)

and so we get any couple of indexes in J are also J-connected.

Conversely, consider I a nonzero ideal of L admitting a multiplicative basis inherited
by the one of L. We have two possibilities for I, either I 6⊂ I or I ⊂ I. In the first one,
Proposition 3.1 gives us I = L, while in the second one Proposition 3.2 shows I = I.
Therefore in both cases L is B-simple. �
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