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ABSTRACT. In the literature, most of the descriptions of different classes of Leibniz su-

peralgebras (£ = £5 @ £1, [, -]) have been made by given the multiplication table on
the elements of a graded basis B = {vg }rex of £, in such a way that for any ¢,j € K
we have [v;,v;] = Aj j[vj,v;] € Fuy, for some k € K, where F denotes the base field

and \; ; € . In order to give a unifying viewpoint of all these classes of algebras we
introduce the category of Leibniz superalgebras admitting a multiplicative basis and study
its structure. We show that if a Leibniz superalgebra £ = £5 @ £ admits a multiplicative
basis then it is the direct sum £ = @a T withany 7, = Ia,ﬁ D Ia Ta well described
ideal of £ admitting a multiplicative basis inherited from B. Also the B-simplicity of £ is
characterized in terms of J-connections.

Keywords: Leibniz superalgebra, multiplicative basis, infinite dimension, structure the-
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1. INTRODUCTION AND PREVIOUS DEFINITIONS

Leibniz superalgebras appear as an extension of Leibniz algebras (see [4, 5, 10, 13, 14,
15, 16, 17]), in a similar way than Lie superalgebras generalize Lie algebras, motivated
in part for its applications in Physics. The present paper is devoted to the study of the
structure of Leibniz superalgebras £ admitting a multiplicative basis over a field F. Since
a Leibniz algebra is a particular case of a Leibniz superalgebra (with £ = {0}), this work
extends the results exhibited in [6]. We would like to remark that the techniques used in
this paper also hold in the infinite-dimensional case over arbitrary fields, being adequate
enough to provide us a second Wedderburn-type theorem in this general framework (Theo-
rems 2.1 and 3.1). Moreover, although we make use of the ideal J which is deeply inherent
to Leibniz theory, we believe that our approach can be useful for the knowledge of the
structure of wider classes of algebras.

Definition 1.1. A Leibniz superalgebra £ is a Zo-graded algebra £ = £5 © L7 over
an arbitrary base field F, with its bilinear product denoted by [-, -], whose homogenous

elements = € £,y € £5,1,] € Lo, satisfy
[,y] € ’Q‘?Jr;

[, [y, 2]] = [z, y], 2] — (=1)?*[[z,2],y] (Super Leibniz identity)
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for any homogenous element z € £, k € Zs.

Remark 1.1. Note that Super Leibniz identity is considered by the right side in the sense
that the multiplication operators on the right by elements in £5 are derivations on the
homogeneous elements, as it is done in the references [4, 5, 10, 13, 17]. However, we
could have considered a Super Leibniz identity in which the multiplication operators on
the left by elements in £5 would act as derivations on the homogeneous elements, as it is
the case in the references [14, 15, 16]. Of course, the development of the present work
would have been similar in this case.

Clearly £ is a Leibniz algebra. Moreover, if the identity [z,y] = —(—1)"[y, z] holds,
then Super Leibniz identity becomes Super Jacobi identity and so Leibniz superalgebras
generalize also Lie superalgebras, which is of interest in the formalism of mechanics of
Nambu [12].

The usual concepts are considered in a graded sense. A subsuperalgebra A of £ is a
graded subspace A = Ay® Az satisfying [A, A] C A. Anideal T of £is a graded subspace
1 = T5 @ I7 of £ such that

Z, 2]+ [L,Z] C T.

The (graded) ideal J generated by
{[l‘,y} + (_1)E[y7x] SRS Sfay € ‘8]77553 S ZQ}

plays an important role in the theory since it determines the (possible) non-super Lie cha-
racter of £. From definition of ideal [J,£] C J and from Super Leibniz identity, it is
straightforward to check that this ideal satisfies

(1) [£,7] =0.

Here we note that the usual definition of simple superalgebra lacks of interest in the case
of Leibniz superalgebras because would imply the ideal J = £ or J = 0, being so £ an
abelian (product zero) or a Lie superalgebra respectively (see Equation (1)). Abdykassy-
mova and Dzhumadil’daev introduced in [1, 2] an adequate definition in the case of Leibniz
algebras (L, [+, -]) by calling simple to the ones such that its only ideals are {0}, L and the
one generated by the set {[z,z] : * € L}. Following this vain, we consider the next
definition.

Definition 1.2. A Leibniz superalgebra £ is called simple if [£,£] # 0 and its only
(graded) ideals are {0}, J and £.

Observe that we can write

£=T0-0
where —=J = —J5 ® —J7 is a linear complement of J = J5 @ J7 in £ (here we adapt this
notation in order to standardize the one already used in [7, 8, 9]). Actually —J is isomorphic
as linear space to £/7, the so called corresponding Lie superalgebra of £. In general, —J
is not an ideal of £ from [J,—=J] C J. Then the multiplication in £ is represented in the
table

T
J5 10 Js 0 JT
ﬁjﬁ 0 35 S>) —'35 0 J7@-37
Jr | 0 It 0 5
0 0 SV
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Hence, by taking Bj? and Bﬁ’j? bases of J; and -7, fori € Zo, respectively, then
B = (B3,UB5,)U(B-3,UB-5.)
—_—  —
B B_5
is a basis of £.
Definition 1.3. A basis B = {v, ; : k € K, i € Zy} of £ is said to be multiplicative if
forany ki, ks € K, 1,5 € Zy we have [vy,, 7, v, 5] € Fuy 7, for some k € K.

Example 1.1. Consider the 5-dimensional Z,-graded vector space £ = £5 @ £1, over
a base field IF of characteristic different from 2, with basis BjT = {ey,ea}, Bﬁjﬁ =
{tq, up, u }; where the products on these elements are given by:

[Ubvua] = —Uc, [uaaub] = Uc, [uavuc] = —2uq,
[uc7ua] = 2uaa [UC,Ub] = _2ub7 [Ub,uc] = 2ub7
ler, up] = e, [e1,uc] = —e1, [ea,ua] = €1, [ea,uc] = ea,

and where the omitted products are equal to zero. Then £ = £5® L1 becomes a (non-Lie)
Leibniz superalgebra admitting B = B5_UB-5_ as multiplicative basis.

Example 1.2. Let us denote by N* the set of non-negative integers. Consider the infinite-
dimensional complex Zj-graded vector space £ = £5 @ £7 with basis By = {e( 1) :
n,k € N* and k <n}, B-g; = {€mn,~1); €(n,—2), €(n,—3) : 7 € N}; with the following
table of multiplication:

[e(n,—1)) €(n,—3)] = 2€(n,—1)5 [€(n,~3)> €(n,—1)] = —2€(n,—1);
[€(n,~2), €(n,—3)] = —2€(n,—2); [€(n,~3), €(n,—2)] = 2€(n,—2),
[e(n,—1)s €(n,—2)] = €(n,=3), [€(n,~2), €(n,—1)] = —€(n,—3);

[€(n,k)s 6(n,—3)] =(n-— 2k)e(n,k), for0 < k <m;
[e(n,k)a e(n,—2)] = €(n,k+1), for0<k<n-— 17
[e(nk)s €(n,—1)] = k(k —n = 1)eg, k1), for 1 <k <m;
and where the omitted products are equal to zero. Then £ = £5@ £7 is a (non-Lie) Leibniz
superalgebra admitting B = B UB-5 as multiplicative basis.
Remark 1.2. Observe that if we write
sz = {em;}ne[; and Bﬁj7 = {ur,f}TEJ? fori € Zs.

Since J is an ideal together with Equation (1) we know that the only possible non-zero
products among the elements in 5 are:

(1) Forn € I;;r € Jand i, j € Zy we have [e,, 5, u,.7]

(2) Forr € J;, s € Jrand4,j € Zy we have either [u, 7, u, 5] € Fu, ;- for some

L€ Jyzorfu.zu, 5] €Fe for some n € I; -

€ Fek@r; for some k € I;+3.

n,i+j
Lemma 1.1. Let (£,[,]) be a Leibniz superalgebra over a base field F of characteristic
different to 2. If B = {v }rex is a graded basis of £ such that for any ki,ky € K we
have [V, ,Vi,| = Ay ks [Vke» Uk, ] € Fug for some k € K and some Ay, i, € F then £
admits B as multiplicative basis.

Proof. By the definition of J we see that it is generated as linear space by {v; : j € J},
for some subset JJ of K. So we can find a basis By of J formed by elements of B and a
basis B_; := B\ By of =7 which make of 5 a multiplicative basis. O
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The preceding lemma shows that all commutative (up to a scalar) Leibniz superalgebras
admit a multiplicative basis. For instance, this is the case of null-filiforms Leibniz superal-
gebras, Leibniz superalgebras of maximal nilindex or Leibniz superalgebras with nilindex
n—+m+ 1 (see[3, 10, 11]).

The paper is organized as follows. In G2 inspired by the connections of roots developed
for split Leibniz algebras and superalgebras in [7, 8], we introduce similar techniques on
the index set of the multiplicative basis B. Our purpose is to obtain a powerful tool for
the study of this class of superalgebras. By making use of these results we see that any
Leibniz superalgebra £ admitting a multiplicative basis is of the form £ = @, Z,, where
every Z, is a well described ideal having a multiplicative basis inherited from 5. In &3
the B-simplicity of these ideals is characterized in terms of the .J-connection.

2. DECOMPOSITION AS DIRECT SUM OF IDEALS

In what follows £ = (J5 © —J5) @ (J1 © —J7) denotes a Leibniz superalgebra over a
base field F admitting a multiplicative basis

2) B = (By,UB5,)U(B-3,UB-3,)

where By = {en);}ne[7 and By = {un;}re_]?, for i € Zs, and where, by renaming if
necessary, we can suppose K; N P; = () forany K, P € {I,J},i,j € Zs and K; # P;.
We begin this section by developing connection techniques among the elements in the
index sets I5UI7UJ5UJ5 as the main tool in our study. Now, for each k € [zUI;UJ5UJg,
a new assistant variable k ¢ IUI;UJ5U.J5 is introduced and we denote by

L:={n:nel}and J;:={F:reJ}

for ¢ € Za, the sets consisting of all these new symbols. Also, given any ke I?;, K e
{I,J},i € Zs, we denote

(k) :==k.
Finally, we write by P(A) the power set of a given set A.

Next, we consider an operation which recover, in some sense, certain multiplicative
relations among the elements of the basis B:

x : (GUIRUIGUTE) % (IGUIRUJUJ OO0 TG UTr) — PIGULUJ0T),
where for any 7, j € Zs is defined by
e Forne I;;m¢c [;,
nxm:=10
e Forn € I;andr € J;,

n*r{ 0 iffe, 5, u,5] =0

{m}, if 0 7é [6715, Ur,ﬂ S F@mj_,'_; withm &€ I;-l-j

e Forn € Iy and m € f;-,

n+xm:={r e Ji5:0# [emj, “r,€+§] € Fen,;}
e Forn € I;and7 € jj,

nxr:={s¢€ Ji5:0# [UT,}US}{JJ] € Fe, ;}U

{t S J2+3 :0 7é [Ut7g+3, ur&] S Fem;} U {m S I;_,'_j :0 7é [em,g_g, UTJ] S Fenvg}.
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e Forre J;, s € J,

@7 lf [ur,{’ ’U,SJ] = 0
rxsi=¢ {th, if0#[u,;u,5] €Fu, 7,5
{n}, if0#[u,;u,5] €Fe, 75

° ForrGJgandﬁEIN;,

e Forr € J;ands € j;,
rxsi={t€J;,5:0#[u;,5u.5 €Fu;tU{qg€ J5:0# [u,5,u,7,5 € Fu,;}.
The mapping « is not still adequate to use in an iterative process necessary for our purposes
and so we need to introduce the following one:
¢ P(I;ULUTUT;) x (IULUJUIOL0E0T5007)) = P(IULUJ0T7),
as
° ¢(@, IGUITUJSUJTU,%UEUJﬁLJJT)) = @,
e For any 1) # K e P(IﬁUITUJﬁUJT) and a € I@UITUJﬁLJJTUI@UITUJaUJT,
o(K,a) = U (kxa)U (axk).
keK
Lemma 2.1. Forany K € P(I;UI:0J50.07) and a € ;00505000507
(3) k € ¢(K,a) ifand only if p({k},a) N K # 0.
Proof. It s straightforward to observe that for any k1, ko € I[gUI{UJ5UJ7 and
a € IULUJGUJ; OO TR0,
we have ks € k1 xaU ax ky if and only if k1 € kg % a. O

Definition 2.1. Let k and &’ be elements in the index set IfU;UJzUJy. We say k is
connected to k' if either k = k' or there exists a subset

{k1, ks kn1, kn} C IGUIRUJU OO0 T 007
with n > 2 such that the following conditions hold:
1. ky = k.

2. ¢({k1}, ko) # 0,

d(Pp({kr}, ko), k3) # 0,

(6 (6({k1 1 ko), ) 2, 1) £ 0.
3. k/ S ¢(¢( o (d)({kl}v k2)7 o )7 knfl)a kn)

The subset {k1, ko, ..., kn_1, Kk, } is called a connection from k to k.

Proposition 2.1. The relation ~ in IgUI{UJ3UJy, defined by k ~ k' if and only if k is
connected to k', is an equivalence relation.
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Proof. By definition k ~ k, that is, the relation ~ is reflexive. Let us see the symmetric
character of ~: If k ~ k/ with k # &’ then there exists a connection

{k1,kay .. kn_1,kn}
from k to k&’ satisfying Definition 2.1. Let us show that the set
{k/a ETH En—lv s 7%37 %2}
gives rise to a connection from &’ to k. Indeed, by taking

K= 0(-- (o({k1}, ka), - -), kn1)

we can apply the relation given by (3) to the expression

K € ¢(K, k)

to get

Sk}, k) VK # 0
and so

O({k'} bn) # 0.

By taking

heo({k'}, k) N K,
then

he K= (b( o (¢({kl}7 k2)a e )a kn71)7
by the relation given by (3) we get
O({h} Fn-1) 00 (6({k1}, ko), ), ko) # 0,
but h € ¢({k'}, ky), therefore {h} C ¢({k}, k) and consequently

S(OUK Y, kn) k1) N d(- - (({k1} k2), - ) knesz) # 0.

By iterating this process we get
¢(¢( o (¢({k/}7gn)v T )’En—r-‘rl)j‘;n—r)m
¢(¢( t (¢({k1}a kQ)a T )7 knfr72)a knfrfl) 7é 0

for 0 < r < n — 3. Observe that this relation in the case r = n — 3 reads as

G(B( - (DK Y kn), -+ )y ka) Kz) N d({k1 }, k) # 0.

Since ki = k, if we write K := ¢(¢(- - (¢({k'}, kn),- ), ka), k3), the previous obser-
vation allows us to assert ¢({k}, ko) N K # ). Hence the relation (3) applies to get

k€ o(d(- b4k}, kn), ), ks), k2)

and concludes ~ is symmetric.

Finally, let us verify the transitive character of ~. Suppose k ~ k' and k' ~ k. If
k =k or k' = k" itis trivial, so suppose k # k’ and k' # k" and write {k1,...,kn}
for a connection from k to k" and {k'+, ...,k ,,, } for a connection from &’ to k. Then we
clearly see that {kq,...,kn, k2, ..., k', } is a connection from &’ to k”. We have shown
the connection relation is an equivalence relation. (]
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By the above proposition we can consider the next quotient set on the index set I5UI;U.J5U T,
(IﬁUITUJEUJT)/ ~= {[k?] ke IaUITUJbUJT},
becoming [k] the set of elements in I5UI7U.J5UJy which are connected to k.

Our next goal in this section is to associate an ideal Zy,) of £ to any [k]. Fix k €
I;UIRUJ5UJg, we start by defining the linear subspaces J[k] = Tk @ Jpy7 € Jand
—G[k] = "J,0 © JIp,1 € T as follows

k]7 @ Fe“CJ

le[k]NI;
ﬂj[k]J = @ Fuhj C _‘j{
helklNJ;
for any i € Z,. Finally, we denote by T} the direct sum of the two subspaces above, that
is,
iy o= Opy 5 © Iy, 1) © ("I 5 © T 1)
Definition 2.2. Let £ be a Leibniz superalgebra admitting a multiplicative basis B. A

subsuperalgebra A C £ admits a multiplicative basis B4 inherited from B if B4 is a
multiplicative basis of A satisfying B4 C B.

Proposition 2.2. For any k € IjUI;UJ3UJy, the linear subspace Iy, is an ideal of £
admitting a multiplicative basis inherited from the one of £.

Proof. We can write

[I[k]v 2} = [j[k] & _‘j[k]’ (@ Fen,ﬁ) D ( @ Fem,T) D (@ Fur,ﬁ) D (@ Fusi)}

n€lg melT reJy s€JT
Incase [e; 7, u,7] # Oforsomel € [k|N[;,r € J;andi,j € Zy, wehave 0 # [e; 5,u, 5] €
Fe, 775 withp € I; s and sop € (b({l} r) = I x r, therefore the connection {l, r} gives
us !~ p,sop € [k] and then 0 # [e; 7,u, 5] € J[k]. Hence we get
Ok, (6D Fu,5) & (EP Fu,1)] € Iy € Ly
reJy seJt

In a similar way we have [—~J, (@rng Fu,5) © (e Fu,1)] C Zjx) and taking into
account Equation (1) we conclude

[I[k], ,2] C I[k].
On the other hand,
nEIO mely reJy s€J1

and in case 0 # e, ;,u, 7] for some n € L,h € [k N J;and i,j € Zy we have
le, 7 up 3] € Fe, ;.5 withp € ;5. Then p € ¢({h},n) = h*n and we see that
the connection {h, n} givesus h ~ p and o) [(Q}nel0 Fe, 5) ® (Q}melT Fe,, 1), ~Jm] C
Ik C Zjgy- In a similar way

[(@ Fu @ Fu ﬂJ[k] C I[k]

reJy seJT
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and by Equation (1) then
[£7I[k]] C I[k.].
Hence Z[) is an ideal of £.
Finally, observe that the set
Bz, ={e,5:n€klNnL}U{e,, 1:m € [k]NIF}U

{“r}ﬁ cr e k]n Jﬁ}U{us,T cs € klnJ7}
is a multiplicative basis of Zjy) satisfying Bz, C B. Hence we see that Z;) admits a
multiplicative basis inherited from the one of £. t

Corollary 2.1. If £ is simple, then there exists a connection between any couple of ele-
ments in the index set I5JI7UJ5U .

Proof. The simplicity of £ implies [£, £] # 0 and so =J # 0, then at least there exists
ro € Ji,i € Zs, such that {u,, 7} C B-y.. Applying Proposition 2.2, I, is an ideal and
by its construction Zj,.; ¢ J, therefore Z;,,,) = £ being then [ro] = I[;UI{UJ5UJy. That
is, any couple of elements in I5UI7U.J5UJy are connected. O

Theorem 2.1. A Leibniz superalgebra £ admitting a multiplicative basis decomposes as

the direct sum
L= @ ik
[k]€ (IgUITUJ5U 1)/ ~
where any L) = Jpi,) © Ty, is one of the ideals, admitting a multiplicative basis inherited

from the one of £, given in Proposition 2.2.

Proof. Since we can write £ = J & —J and
J= P Iy, 3= B Tk
[kl€(IgUITUJ5UTT) /~ (k] €(IgUITUTGUTT) /~
From Zj3; = T3 & —J|x) by definition, we clearly have
(k)€ (IsUITU T ) /~
O

Example 2.1. Consider the Leibniz superalgebra £ = £5 @ L1 presented in Example
1.1. We have It = {1,2} and J5 = {a,b, c}. From the multiplication table of £ it is not
difficult to write the operation x in a concrete way. For instance, we have

lxc=2%a={1} axb=bxa={c}

1xb=2xc={2} axc=cxa={a}
Then, we can also obtain an explicit expression of the mapping

¢« P(IgUI;UJ50J5) X (IgUI 05U 70T IUT5007) — P(IUI0J50T7).

Observe that the connection {1,b} gives 1 ~ 2, with the connection {a,b} we have a ~ ¢
and considering {b,a} we obtain b ~ c. Since 1 x2 = {b} we get 1 ~ b and there-
fore (IgUI;UJ5UJg)/ ~= {[1]} where [1] = {1,2,a,b,c}. By Theorem 2.1 we see that
£ = Iy, where Iy is an ideal of £ with a unique (multiplicative) basis {1,2, a, b, c}. In
fact, since £ is a simple (non-Lie) Leibniz superalgebra, by Corollary 2.2 all elements in
I;UI;UJ5UJg are connected and we just have one ideal.
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Example 2.2. Let £ = £5 @ £7 be the Leibniz superalgebra considered in Example 1.2.
We have I = {(n,k) :n € N,0 <k <n}and J = {(n,-1),(n,—2),(n,—3) : n € N}.
From the multiplication table of £ it is not difficult to express the operation x completely.
For instance, we have

(nk—1)} ke{l,....n}

(n,~2) + (n, 1) = {(n, ~3)}
= (n,=3)  (n,—1) = {(n, ~1)}
) = (m,~3) x (n, ~2) = {(n, ~2)}

From here, we can also obtain an explicit expression of the mapping

¢ : P(IGUIUJ5005) x (IgUIU 50U UL UT0T5007) — P(IUI0050.05).

n, k) * 3)={
n,k)*x(n,—2)={(n,k+1)} ke{0,...,n—1}
n, k) x 1) ={

Observe that the connection {(n, —1), (n, —2)} gives (n, —1) ~ (n, —3), with the connec-
tion {(n, —2), (n, —2)} we get (n, —2) ~ (n, —3), the connection {(n, k + 1), (n,k)} let
us assert (n, k+1) ~ (n, —2) and considering the connection {(n, k—1), (n, k) } we have
(n,k—1) ~ (n,—1), fork € {0,...,n—1} and k € {1,...,n}, respectively. Hence,
(IGUI;UJgUJ7)/ ~={[(n,0)] : n € N}
where any
[(n,0)] = {(n,k) : 0 < k <n}U{(n,—1),(n,-2),(n, -3)}

and so Theorem 2.1 allows us to assert

£ =P Loy

neN
being any Lj(n,0)] = Zi(n,0),0 D Zi(n,00,7 With Zy(,00,0 = span{e(n, 1), €(n,~2)» €(n,—3) }
and I[(n,O)],T = span{e(n)k) : 0 < k < n}, an ideal admitting a (multiplicative) basis
inherited from the one of £.

3. THE B-SIMPLE COMPONENTS

In this section our target is to characterize the minimality of the ideals which give rise
to the decomposition of £ in Theorem 2.1, in terms of connectivity properties in the index
set I5UI;U.J5UJg. Taking into account Definition 1.2 we introduce the next concept in a
natural way.

Definition 3.1. A Leibniz superalgebra £ admitting a multiplicative basis B is called B-
simple if [£, £] # 0 and its only ideals admitting a multiplicative basis inherited from B
are {0},7 and £.

As in the previous section, £ = (J5®—J5) @ (J;@®—J7) denotes a Leibniz superalgebra
over an arbitrary base field ' and of arbitrary dimension, admitting a multiplicative basis
B = (By;UB5,)U(B-5,UB-5;) where By. = {e, ;}ner, and Bos. = {u,3}res, for
i € Zs, and where K3 N P = 0 forany K, P € {I,J},1,j € Zy and K; # P;.

We have the opportunity of restricting the connectivity relation to the set I5UI7 and to

the set J5U.J7 by just allowing that the connections are formed by elements in J5U JTU(/]%UE.
Then we say two indexes of TaUTT, where either Y € {I, J}, are J-connected.
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Definition 3.2. Let k and &’ be two elements in YUY with either Y = T or T = J. We
say k is J-connected to k' and we denote by k ~; K/, if either k = &’ or there exists a
connection {ry,rs,...,7,} from k to &k’ (in the sense of Definition 2.1) such that

Tay. oyt € JgUJRUJSOTT
We also say the set {r1,7a,...,7,} is a J-connection from k to k.

We observe that it is straightforward to verify the arguments in Proposition 2.1 allow us to
assert that the relation ~ ; is an equivalence relation in J5UI7 and in J3UJ5. Therefore

(YgUY1)/ ~u={[k]s : k € T5UT T}

becoming [k]; the set of elements in YUYt which are J-connected to k, with either
T=ITorY =J.

Let us introduce the notion of x-multiplicativity in the framework of Leibniz superal-
gebras with multiplicative bases, in a similar way to the ones of closed-multiplicativity
for split Leibniz algebras, split Leibniz superalgebras and graded Leibniz algebras (see
[7, 8, 9] for these notions and examples). From now on, for anyf S j;-, 1 € Zo, we denote

’U,EZO.

Definition 3.3. A Leibniz superalgebra £ = J @ —J admits a x-multiplicative basis B =
{p:: k€K, i € Zs}, which decomposes as in Equation (2), if it is multiplicative and
for any k, r € IgULUJg0Jr and a € IgOLUJG0JUIOIGUT5 Ut such that k € 7 * a,
then Ui S [’UTJ, £;+5]

Proposition 3.1. Suppose £ admits a x-multiplicative basis BB. If JgUJg has all of their
elements J-connected, then any nonzero ideal T C £ with a multiplicative basis inherited

from B such that T ¢ J satisfies T = £.

Proof. Since T ¢ J we can take some g € J;  such that
4 0#u, - €T.

70,20
for certain i9 € Zo. We know that J5UJ7 has all of their elements .J-connected. If
JoUJp = {ro} trivially =3 C Z. If [J5UJ7| > 1 we take s € J; (with J € Zy) dif-

ferent from 7, being then 0 # Fu, 7, we can consider a J-connection

(5) {ro,r2,...,mn} C JgUJTUj%Uj];
from r to s.
We know that

(b({?“o}, TQ) 7é 0
and so we can take ay € ¢({ro},r2) = rox 2. Now, taking into account Equation (4) and
the x-multiplicativity of B we get, if a1 € J; >
0 75 Uy io+7 € ]F[uTOEo’ ulz;ﬂ cz
or, if a1 € Izo+3
0 7& €a1,50+7 € IF[u”‘o,;o’ ulzj] cz
for Iy = {TQ,FQ} N J; andj € Zo.
Since s € J5UJg, necessarily ¢({ro}, r2) N (J5UJ7) # 0 and we have

(6) 0 # P FuicT

re¢({ro},r2)NJ;
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for any 7 € Z,. Since
P(p({ro},r2),r3) # 0

we can argue as above, taking into account Equation (6), to get
0 # b Fu,; CT
rep(¢({ro},r2),r3)NJ;
for 7 € Zo. By reiterating this process with the J-connection (5) we obtain
0 # . Fu,; C T.
r€P((--(p(ro,r2), ), rn—1),rn)NJ7

Since s € ¢(A(- -+ (¢(ro,72), ), "n—1),7) N J7 we conclude u 5 € T for all s €
J5\ {ro} and j € Zy and so

(7) I= P Fu,5®Fu,;)CT.

peJg,q€Jy
Considering J C [J, =J] + [~J, =J] by x-multiplicativity, Equation (7) allows us to assert
(3) JCI.
Finally, since £ = J @ —J, Equations (7) and (8) give us Z = £. ([l
Proposition 3.2. Suppose £ admits a x-multiplicative basis B. If IgUI7 has all of its

elements J-connected, then any nonzero ideal T C £ with a multiplicative basis inherited
from B such that T C J satisfies T = 7.

Proof. Taking into account Z C J we can fix a some ng € I; satisfying
0 75 €050 el

for certain 79 € Z,. Since IaUIT has all of its elements J-connected, we can argue from
ngo with the x-multiplicativity of B as it is done in Proposition 3.1 from r to get J C 7
andthen Z = 7. U

Theorem 3.1. Suppose £ admits a x-multiplicative basis B. Then £ is B-simple if and
only if IgUI; and J5UJ7 have respectively all of their elements J-connected.

Proof. Suppose £ is B-simple. We take n € I5UI7 and we observe that the linear space

(Fe,,, 5 @ Fe, 1) is an ideal of £ with a multiplicative basis inherited
méelgN[n]s,lelyNin] s
from B. Indeed, we have trivially

E D (Fe,,5 ®Fe,7)| + | D (Fe,,,5 ®Fe,7),3]

méelgN[n]s,lelyNin] s melgn[n]s,lelyN[n] s
C[£,7]=0.
We only need to prove
D (Fe,, 5 ®Fe 1), u,5@ Us,T} - . (Fe,,5 @ Fe 1)
méelzN[n],lelyNin] s melgn[n]y,lelyN[n] s

for any r € Jg, s € Jy. In fact, given any e € éh (Fe,, 5 @ Fe; 1)
meIgn[n) s, l€lN[n] s ’ ’

for u, 5 € {u,5,u 7} and some p € [; .

n0,%0

such that 0 # [eno,g()’ut,ﬂ = Cpio+s we
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have p € ng * ¢ and so {ng, t} is a J-connection meaning that ny ~; p. By the symmetry
p ~j ng and by transitivity of p ~; ng ~ s n, and we get

epjo*%j € @ (Fem,ﬁ D Felj)'
méelgN(n]s,lelyN[n] s

Hence [e | C ) (Fe,, 5 ® Fe, 1) as desired. We conclude

melgnin]s,lelyN[n] s

S, (Fe,,,5 & Fe,7)

melgn[n]y,lelyN[n] s

noio? Ut,j

is an ideal of £ endowed with a multiplicative basis inherited from B (trivial by construc-

tion) and so, by B-simplicity, necessarily &b (Fe,,5 © Fe; 1) = J and
melgN[n]s,lelyN[n] s

consequently any couple of indexes in [ are .J-connected. Consider now any r € J and

the linear subspace

Jo @ (Fu, g © Fu, 7).

seJgN[r]s,teJrN[r]s
Using a similar argument to the above one we see this linear subspace is actually an ideal
of £ which admits a multiplicative basis inherited from 3. From B-simplicity,

I P (Fu,5 @ Fu, 1) = £

s€JgN[r]y teJrN[r],

which implies in particular

I b (Fu,5 ®Fu, 1) =T P (Fu,5&Fu,7)

s€JgN[r]s teJn[r], reJg,q€Jy
and so we get any couple of indexes in .J are also J-connected.

Conversely, consider Z a nonzero ideal of £ admitting a multiplicative basis inherited
by the one of £. We have two possibilities for Z, either Z ¢ J or Z C 7. In the first one,
Proposition 3.1 gives us Z = £, while in the second one Proposition 3.2 shows Z = J.
Therefore in both cases £ is B-simple. (]
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