THE STRUCTURE OF LEIBNIZ SUPERALGEBRAS ADMITTING A MULTIPLICATIVE BASIS

HELENA ALBUQUERQUE, ELISABETE BARREIRO, ANTONIO J. CALDERÓN, AND JOSÉ M. SÁNCHEZ DELGADO

ABSTRACT. In the literature, most of the descriptions of different classes of Leibniz superalgebras $(\mathfrak{L} = \mathfrak{L}_{\overline{0}} \oplus \mathfrak{L}_{\overline{1}}, [\cdot, \cdot])$ have been made by given the multiplication table on the elements of a graded basis $\mathcal{B} = \{v_k\}_{k \in K}$ of \mathfrak{L} , in such a way that for any $i, j \in K$ we have $[v_i, v_j] = \lambda_{i,j}[v_j, v_i] \in \mathbb{F}v_k$ for some $k \in K$, where \mathbb{F} denotes the base field and $\lambda_{i,j} \in \mathbb{F}$. In order to give a unifying viewpoint of all these classes of algebras we introduce the category of Leibniz superalgebras admitting a multiplicative basis and study its structure. We show that if a Leibniz superalgebra $\mathfrak{L} = \mathfrak{L}_{\overline{0}} \oplus \mathfrak{L}_{\overline{1}}$ admits a multiplicative basis then it is the direct sum $\mathfrak{L} = \bigoplus_{\alpha} \mathcal{I}_{\alpha}$ with any $\mathcal{I}_{\alpha} = \mathcal{I}_{\alpha,\overline{0}} \oplus \mathcal{I}_{\alpha,\overline{1}}$ a well described ideal of \mathfrak{L} admitting a multiplicative basis inherited from \mathcal{B} . Also the \mathcal{B} -simplicity of \mathfrak{L} is characterized in terms of J-connections.

Keywords: Leibniz superalgebra, multiplicative basis, infinite dimension, structure theory.

1. Introduction and previous definitions

Leibniz superalgebras appear as an extension of Leibniz algebras (see [4, 5, 10, 13, 14, 15, 16, 17]), in a similar way than Lie superalgebras generalize Lie algebras, motivated in part for its applications in Physics. The present paper is devoted to the study of the structure of Leibniz superalgebras $\mathfrak L$ admitting a multiplicative basis over a field $\mathbb F$. Since a Leibniz algebra is a particular case of a Leibniz superalgebra (with $\mathfrak L_{\mathbb T}=\{0\}$), this work extends the results exhibited in [6]. We would like to remark that the techniques used in this paper also hold in the infinite-dimensional case over arbitrary fields, being adequate enough to provide us a second Wedderburn-type theorem in this general framework (Theorems 2.1 and 3.1). Moreover, although we make use of the ideal $\mathfrak I$ which is deeply inherent to Leibniz theory, we believe that our approach can be useful for the knowledge of the structure of wider classes of algebras.

Definition 1.1. A *Leibniz superalgebra* $\mathfrak L$ is a $\mathbb Z_2$ -graded algebra $\mathfrak L = \mathfrak L_{\overline 0} \oplus \mathfrak L_{\overline 1}$ over an arbitrary base field $\mathbb F$, with its bilinear product denoted by $[\cdot,\cdot]$, whose homogenous elements $x \in \mathfrak L_{\overline i}, y \in \mathfrak L_{\overline i}, \overline i, \overline j \in \mathbb Z_2$, satisfy

$$[x,y]\in\mathfrak{L}_{\overline{i}+\overline{j}}$$

$$[x,[y,z]]=[[x,y],z]-(-1)^{\overline{jk}}[[x,z],y]\quad \text{(Super Leibniz identity)}$$

The first, second and the fourth authors acknowledge financial assistance by the Centre for Mathematics of the University of Coimbra – UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MCTES and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020. The third and the fourth author are supported by the PCI of the UCA 'Teoría de Lie y Teoría de Espacios de Banach', by the PAI with project numbers FQM298, FQM7156 and by the project of the Spanish Ministerio de Educación y Ciencia MTM2013-41208P. The fourth author acknowledges the Fundação para a Ciência e a Tecnologia for the grant with reference SFRH/BPD/101675/2014.

1

for any homogenous element $z \in \mathfrak{L}_{\overline{k}}, \overline{k} \in \mathbb{Z}_2$.

Remark 1.1. Note that Super Leibniz identity is considered by the *right side* in the sense that the multiplication operators on the right by elements in $\mathfrak{L}_{\overline{0}}$ are derivations on the homogeneous elements, as it is done in the references [4, 5, 10, 13, 17]. However, we could have considered a Super Leibniz identity in which the multiplication operators on the left by elements in $\mathfrak{L}_{\overline{0}}$ would act as derivations on the homogeneous elements, as it is the case in the references [14, 15, 16]. Of course, the development of the present work would have been similar in this case.

Clearly $\mathfrak{L}_{\overline{0}}$ is a Leibniz algebra. Moreover, if the identity $[x,y]=-(-1)^{\overline{ij}}[y,x]$ holds, then Super Leibniz identity becomes Super Jacobi identity and so Leibniz superalgebras generalize also Lie superalgebras, which is of interest in the formalism of mechanics of Nambu [12].

The usual concepts are considered in a graded sense. A subsuperalgebra A of $\mathfrak L$ is a graded subspace $A=A_{\overline 0}\oplus A_{\overline 1}$ satisfying $[A,A]\subset A$. An ideal $\mathcal I$ of $\mathfrak L$ is a graded subspace $\mathcal I=\mathcal I_{\overline 0}\oplus \mathcal I_{\overline 1}$ of $\mathfrak L$ such that

$$[\mathcal{I},\mathfrak{L}]+[\mathfrak{L},\mathcal{I}]\subset\mathcal{I}.$$

The (graded) ideal 3 generated by

$$\{[x,y]+(-1)^{\overline{i}\overline{j}}[y,x]:x\in\mathfrak{L}_{\overline{i}},y\in\mathfrak{L}_{\overline{i}},\overline{i},\overline{j}\in\mathbb{Z}_2\}$$

plays an important role in the theory since it determines the (possible) non-super Lie character of $\mathfrak L$. From definition of ideal $[\mathfrak I,\mathfrak L]\subset\mathfrak I$ and from Super Leibniz identity, it is straightforward to check that this ideal satisfies

$$[\mathfrak{L},\mathfrak{I}] = 0.$$

Here we note that the usual definition of simple superalgebra lacks of interest in the case of Leibniz superalgebras because would imply the ideal $\mathfrak{I}=\mathfrak{L}$ or $\mathfrak{I}=0$, being so \mathfrak{L} an abelian (product zero) or a Lie superalgebra respectively (see Equation (1)). Abdykassymova and Dzhumadil'daev introduced in [1, 2] an adequate definition in the case of Leibniz algebras $(L, [\cdot, \cdot])$ by calling simple to the ones such that its only ideals are $\{0\}$, L and the one generated by the set $\{[x,x]:x\in L\}$. Following this vain, we consider the next definition

Definition 1.2. A Leibniz superalgebra \mathfrak{L} is called *simple* if $[\mathfrak{L},\mathfrak{L}] \neq 0$ and its only (graded) ideals are $\{0\}$, \mathfrak{I} and \mathfrak{L} .

Observe that we can write

$$\mathfrak{L} = \mathfrak{I} \oplus \neg \mathfrak{I}$$

where $\neg \mathfrak{I} = \neg \mathfrak{I}_{\overline{0}} \oplus \neg \mathfrak{I}_{\overline{1}}$ is a linear complement of $\mathfrak{I} = \mathfrak{I}_{\overline{0}} \oplus \mathfrak{I}_{\overline{1}}$ in \mathfrak{L} (here we adapt this notation in order to standardize the one already used in $[\mathfrak{I}, 8, 9]$). Actually $\neg \mathfrak{I}$ is isomorphic as linear space to $\mathfrak{L}/\mathfrak{I}$, the so called corresponding Lie superalgebra of \mathfrak{L} . In general, $\neg \mathfrak{I}$ is not an ideal of \mathfrak{L} from $[\mathfrak{I}, \neg \mathfrak{I}] \subset \mathfrak{I}$. Then the multiplication in \mathfrak{L} is represented in the table

Hence, by taking $\mathcal{B}_{\mathfrak{I}_{\overline{i}}}$ and $\mathcal{B}_{\neg \mathfrak{I}_{\overline{i}}}$ bases of $\mathfrak{I}_{\overline{i}}$ and $\neg \mathfrak{I}_{\overline{i}}$, for $\overline{i} \in \mathbb{Z}_2$, respectively, then

$$\mathcal{B} = (\underbrace{\mathcal{B}_{\mathfrak{I}_{\overline{0}}}\dot{\cup}\mathcal{B}_{\mathfrak{I}_{\overline{1}}}}_{\mathcal{B}_{\mathfrak{I}}})\dot{\cup}(\underbrace{\mathcal{B}_{-\mathfrak{I}_{\overline{0}}}\dot{\cup}\mathcal{B}_{-\mathfrak{I}_{\overline{1}}}}_{\mathcal{B}_{-\mathfrak{I}}})$$

is a basis of £.

Definition 1.3. A basis $\mathcal{B} = \{v_{k,\overline{i}} : k \in K, \ \overline{i} \in \mathbb{Z}_2\}$ of \mathfrak{L} is said to be *multiplicative* if for any $k_1, k_2 \in K, \overline{i}, \overline{j} \in \mathbb{Z}_2$ we have $[v_{k_1,\overline{i}}, v_{k_2,\overline{i}}] \in \mathbb{F}v_{k,\overline{i}+\overline{j}}$ for some $k \in K$.

Example 1.1. Consider the 5-dimensional \mathbb{Z}_2 -graded vector space $\mathfrak{L}=\mathfrak{L}_{\overline{0}}\oplus\mathfrak{L}_{\overline{1}}$, over a base field \mathbb{F} of characteristic different from 2, with basis $\mathcal{B}_{\mathfrak{I}_{\overline{1}}}=\{e_1,e_2\},\mathcal{B}_{\neg\mathfrak{I}_{\overline{0}}}=\{u_a,u_b,u_c\}$; where the products on these elements are given by:

$$\begin{split} [u_b,u_a] &= -u_c, \quad [u_a,u_b] = u_c, \quad [u_a,u_c] = -2u_a, \\ [u_c,u_a] &= 2u_a, \quad [u_c,u_b] = -2u_b, \quad [u_b,u_c] = 2u_b, \\ [e_1,u_b] &= e_2, \quad [e_1,u_c] = -e_1, \quad [e_2,u_a] = e_1, \quad [e_2,u_c] = e_2, \end{split}$$

and where the omitted products are equal to zero. Then $\mathfrak{L}=\mathfrak{L}_{\overline{0}}\oplus\mathfrak{L}_{\overline{1}}$ becomes a (non-Lie) Leibniz superalgebra admitting $\mathcal{B}=\mathcal{B}_{\mathfrak{I}_{\overline{1}}}\dot{\cup}\mathcal{B}_{\neg\mathfrak{I}_{\overline{0}}}$ as multiplicative basis.

Example 1.2. Let us denote by \mathbb{N}^* the set of non-negative integers. Consider the infinite-dimensional complex \mathbb{Z}_2 -graded vector space $\mathfrak{L}=\mathfrak{L}_{\overline{0}}\oplus\mathfrak{L}_{\overline{1}}$ with basis $\mathcal{B}_{\mathfrak{I}_{\overline{1}}}=\{e_{(n,k)}:n,k\in\mathbb{N}^* \text{ and } k\leq n\}, \mathcal{B}_{\neg\mathfrak{I}_{\overline{0}}}=\{e_{(n,-1)},e_{(n,-2)},e_{(n,-3)}:n\in\mathbb{N}\};$ with the following table of multiplication:

$$\begin{split} [e_{(n,-1)},e_{(n,-3)}] &= 2e_{(n,-1)}, \ [e_{(n,-3)},e_{(n,-1)}] = -2e_{(n,-1)}, \\ [e_{(n,-2)},e_{(n,-3)}] &= -2e_{(n,-2)}, \ [e_{(n,-3)},e_{(n,-2)}] = 2e_{(n,-2)}, \\ [e_{(n,-1)},e_{(n,-2)}] &= e_{(n,-3)}, \ [e_{(n,-2)},e_{(n,-1)}] = -e_{(n,-3)}, \\ [e_{(n,k)},e_{(n,-3)}] &= (n-2k)e_{(n,k)}, \text{ for } 0 \leq k \leq n; \\ [e_{(n,k)},e_{(n,-2)}] &= e_{(n,k+1)}, \text{ for } 0 \leq k \leq n-1; \\ [e_{(n,k)},e_{(n,-1)}] &= k(k-n-1)e_{(n,k-1)}, \text{ for } 1 \leq k \leq n; \end{split}$$

and where the omitted products are equal to zero. Then $\mathfrak{L}=\mathfrak{L}_{\overline{0}}\oplus\mathfrak{L}_{\overline{1}}$ is a (non-Lie) Leibniz superalgebra admitting $\mathcal{B}=\mathcal{B}_{\mathfrak{I}_{\overline{1}}}\dot{\cup}\mathcal{B}_{\neg\mathfrak{I}_{\overline{0}}}$ as multiplicative basis.

Remark 1.2. Observe that if we write

$$\mathcal{B}_{\mathfrak{I}_{\overline{i}}} = \{e_{n,\overline{i}}\}_{n \in I_{\overline{i}}} \text{ and } \mathcal{B}_{\neg \mathfrak{I}_{\overline{i}}} = \{u_{r,\overline{i}}\}_{r \in J_{\overline{i}}}, \text{ for } \overline{i} \in \mathbb{Z}_2.$$

Since \Im is an ideal together with Equation (1) we know that the only possible non-zero products among the elements in \mathcal{B} are:

- $(1) \ \ \text{For} \ n \in I_{\overline{i}}, r \in J_{\overline{j}} \ \text{and} \ \overline{i}, \overline{j} \in \mathbb{Z}_2 \ \text{we have} \ [e_{n,\overline{i}}, u_{r,\overline{j}}] \in \mathbb{F} e_{k,\overline{i}+\overline{j}} \ \text{for some} \ k \in I_{\overline{i}+\overline{j}}.$
- (2) For $r \in J_{\overline{i}}$, $s \in J_{\overline{j}}$ and $\overline{i}, \overline{j} \in \mathbb{Z}_2$ we have either $[u_{r,\overline{i}}, u_{s,\overline{j}}] \in \mathbb{F}u_{l,\overline{i}+\overline{j}}$ for some $l \in J_{\overline{i}+\overline{j}}$ or $[u_{r,\overline{i}}, u_{s,\overline{j}}] \in \mathbb{F}e_{n,\overline{i}+\overline{j}}$ for some $n \in I_{\overline{i}+\overline{j}}$.

Lemma 1.1. Let $(\mathfrak{L}, [\cdot, \cdot])$ be a Leibniz superalgebra over a base field \mathbb{F} of characteristic different to 2. If $\mathcal{B} = \{v_k\}_{k \in K}$ is a graded basis of \mathfrak{L} such that for any $k_1, k_2 \in K$ we have $[v_{k_1}, v_{k_2}] = \lambda_{k_1, k_2} [v_{k_2}, v_{k_1}] \in \mathbb{F}v_k$ for some $k \in K$ and some $\lambda_{k_1, k_2} \in \mathbb{F}$ then \mathfrak{L} admits \mathcal{B} as multiplicative basis.

Proof. By the definition of \mathfrak{I} we see that it is generated as linear space by $\{v_j: j \in J\}$, for some subset J of K. So we can find a basis $\mathcal{B}_{\mathfrak{I}}$ of \mathfrak{I} formed by elements of \mathcal{B} and a basis $\mathcal{B}_{\neg \mathfrak{I}} := \mathcal{B} \setminus \mathcal{B}_{\mathfrak{I}}$ of $\neg \mathfrak{I}$ which make of \mathcal{B} a multiplicative basis. \square

The preceding lemma shows that all commutative (up to a scalar) Leibniz superalgebras admit a multiplicative basis. For instance, this is the case of null-filiforms Leibniz superalgebras, Leibniz superalgebras of maximal nilindex or Leibniz superalgebras with nilindex n+m+1 (see [3, 10, 11]).

The paper is organized as follows. In $\mathfrak{S}2$ inspired by the connections of roots developed for split Leibniz algebras and superalgebras in [7, 8], we introduce similar techniques on the index set of the multiplicative basis \mathcal{B} . Our purpose is to obtain a powerful tool for the study of this class of superalgebras. By making use of these results we see that any Leibniz superalgebra \mathfrak{L} admitting a multiplicative basis is of the form $\mathfrak{L} = \bigoplus_{\alpha} \mathcal{I}_{\alpha}$, where every \mathcal{I}_{α} is a well described ideal having a multiplicative basis inherited from \mathcal{B} . In $\mathfrak{S}3$ the \mathcal{B} -simplicity of these ideals is characterized in terms of the J-connection.

2. DECOMPOSITION AS DIRECT SUM OF IDEALS

In what follows $\mathfrak{L}=(\mathfrak{I}_{\overline{0}}\oplus\neg\mathfrak{I}_{\overline{0}})\oplus(\mathfrak{I}_{\overline{1}}\oplus\neg\mathfrak{I}_{\overline{1}})$ denotes a Leibniz superalgebra over a base field \mathbb{F} admitting a multiplicative basis

$$\mathcal{B} = (\mathcal{B}_{\mathfrak{I}_{\overline{0}}} \dot{\cup} \mathcal{B}_{\mathfrak{I}_{\overline{1}}}) \dot{\cup} (\mathcal{B}_{\neg \mathfrak{I}_{\overline{0}}} \dot{\cup} \mathcal{B}_{\neg \mathfrak{I}_{\overline{1}}})$$

where $\mathcal{B}_{\mathfrak{I}_{\overline{i}}}=\{e_{n,\overline{i}}\}_{n\in I_{\overline{i}}}$ and $\mathcal{B}_{\neg\mathfrak{I}_{\overline{i}}}=\{u_{r,\overline{i}}\}_{r\in J_{\overline{i}}},$ for $\overline{i}\in\mathbb{Z}_{2}$, and where, by renaming if necessary, we can suppose $K_{\overline{i}}\cap P_{\overline{j}}=\emptyset$ for any $K,P\in\{I,J\},$ $\overline{i},\overline{j}\in Z_{2}$ and $K_{\overline{i}}\neq P_{\overline{j}}.$ We begin this section by developing connection techniques among the elements in the index sets $I_{\overline{0}}\dot{\cup}I_{\overline{1}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}}$ as the main tool in our study. Now, for each $k\in I_{\overline{0}}\dot{\cup}I_{\overline{1}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}},$ a new assistant variable $\widetilde{k}\notin I_{\overline{0}}\dot{\cup}I_{\overline{1}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}}$ is introduced and we denote by

$$\widetilde{I}_{\overline{i}} := \{\widetilde{n} : n \in I_{\overline{i}}\} \text{ and } \widetilde{J}_{\overline{i}} := \{\widetilde{r} : r \in J_{\overline{i}}\},$$

for $i \in \mathbb{Z}_2$, the sets consisting of all these new symbols. Also, given any $\widetilde{k} \in \widetilde{K}_{\overline{i}}$, $K \in \{I, J\}$, $i \in \mathbb{Z}_2$, we denote

$$\widetilde{(\widetilde{k})} := k$$

Finally, we write by $\mathcal{P}(A)$ the power set of a given set A.

Next, we consider an operation which recover, in some sense, certain multiplicative relations among the elements of the basis \mathcal{B} :

$$\star: (I_{\overline{0}}\dot{\cup} I_{\overline{1}}\dot{\cup} J_{\overline{0}}\dot{\cup} J_{\overline{1}}) \times (I_{\overline{0}}\dot{\cup} I_{\overline{1}}\dot{\cup} J_{\overline{0}}\dot{\cup} J_{\overline{1}}\dot{\cup} \widetilde{I_{\overline{0}}}\dot{\cup} \widetilde{I_{\overline{1}}}\dot{\cup} \widetilde{J_{\overline{0}}}\dot{\cup} \widetilde{J_{\overline{1}}}) \to \mathcal{P}(I_{\overline{0}}\dot{\cup} I_{\overline{1}}\dot{\cup} J_{\overline{0}}\dot{\cup} J_{\overline{1}}),$$
 where for any $\overline{i}, \overline{j} \in \mathbb{Z}_2$ is defined by

• For $n \in I_{\overline{i}}$, $m \in I_{\overline{i}}$,

$$n \star m := \emptyset$$

• For $n \in I_{\overline{i}}$ and $r \in J_{\overline{i}}$,

$$n\star r\left\{\begin{array}{ll}\emptyset, & \text{if } [e_{n,\overline{i}},u_{r,\overline{j}}]=0\\ \{m\}, & \text{if } 0\neq [e_{n,\overline{i}},u_{r,\overline{j}}]\in \mathbb{F} e_{m,\overline{i}+\overline{j}} \text{ with } m\in I_{\overline{i}+\overline{j}}\end{array}\right.$$

• For $n \in I_{\overline{i}}$ and $\widetilde{m} \in \widetilde{I}_{\overline{i}}$,

$$n\star\widetilde{m}:=\{r\in J_{\overline{i}+\overline{j}}:0\neq[e_{m,\overline{j}},u_{r,\overline{i}+\overline{j}}]\in\mathbb{F}e_{n,\overline{i}}\}$$

• For $n \in I_{\overline{i}}$ and $\widetilde{r} \in \widetilde{J}_{\overline{i}}$,

$$n\star\widetilde{r}:=\{s\in J_{\overline{i}+\overline{j}}:0\neq [u_{r,\overline{j}},u_{s,\overline{i}+\overline{j}}]\in \mathbb{F}e_{n,\overline{i}}\}\cup$$

$$\{t \in J_{\overline{i}+\overline{j}}: 0 \neq [u_{t,\overline{i}+\overline{j}}, u_{r,\overline{j}}] \in \mathbb{F}e_{n,\overline{i}}\} \cup \{m \in I_{\overline{i}+\overline{j}}: 0 \neq [e_{m,\overline{i}+\overline{j}}, u_{r,\overline{j}}] \in \mathbb{F}e_{n,\overline{i}}\}.$$

• For $r \in J_{\overline{i}}$, $s \in J_{\overline{i}}$,

$$r\star s := \left\{ \begin{array}{ll} \emptyset, & \text{if } [u_{r,\overline{i}},u_{s,\overline{j}}] = 0 \\ \{t\}, & \text{if } 0 \neq [u_{r,\overline{i}},u_{s,\overline{j}}] \in \mathbb{F}u_{t,\overline{i}+\overline{j}} \\ \{n\}, & \text{if } 0 \neq [u_{r,\overline{i}},u_{s,\overline{j}}] \in \mathbb{F}e_{n,\overline{i}+\overline{j}} \end{array} \right.$$

• For $r \in J_{\overline{i}}$ and $\widetilde{n} \in \widetilde{I}_{\overline{i}}$,

$$r \star \widetilde{n} := \emptyset$$

• For $r \in J_{\overline{i}}$ and $\widetilde{s} \in \widetilde{J}_{\overline{i}}$,

$$r\star \widetilde{s}:=\{t\in J_{\overline{i}+\overline{i}}: 0\neq [u_{t,\overline{i}+\overline{i}},u_{s,\overline{i}}]\in \mathbb{F}u_{r,\overline{i}}\} \cup \{q\in J_{\overline{i}+\overline{i}}: 0\neq [u_{s,\overline{i}},u_{q,\overline{i}+\overline{i}}]\in \mathbb{F}u_{r,\overline{i}}\}.$$

The mapping \star is not still adequate to use in an iterative process necessary for our purposes and so we need to introduce the following one:

$$\phi: \mathcal{P}(I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}}) \times (I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}} \dot{\cup} \widetilde{I_{\overline{0}}} \dot{\cup} \widetilde{I_{\overline{1}}} \dot{\cup} \widetilde{J_{\overline{0}}} \dot{\cup} \widetilde{J_{\overline{1}}})) \to \mathcal{P}(I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}}),$$

as

- $\bullet \ \phi(\emptyset, I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}} \dot{\cup} \widetilde{I_{\overline{0}}} \dot{\cup} \widetilde{I_{\overline{1}}} \dot{\cup} \widetilde{I_{\overline{0}}} \dot{\cup} \widetilde{J_{\overline{0}}} \dot{\cup} \widetilde{J_{\overline{1}}})) := \emptyset,$
- $\bullet \ \ \text{For any} \ \emptyset \neq K \in \mathcal{P}(I_{\overline{0}}\dot{\cup}I_{\overline{1}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}}) \ \text{and} \ a \in I_{\overline{0}}\dot{\cup}I_{\overline{1}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}}\dot{\cup}\widetilde{I_{\overline{0}}}\dot{\cup}\widetilde{I_{\overline{1}}}\dot{\cup}\widetilde{J_{\overline{0}}}\dot{\cup}\widetilde{J_{\overline{1}}},$

$$\phi(K,a) := \bigcup_{k \in K} (k \star a) \cup (a \star k).$$

Lemma 2.1. For any $K \in \mathcal{P}(I_{\overline{0}}\dot{\cup}I_{\overline{1}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}})$ and $a \in I_{\overline{0}}\dot{\cup}I_{\overline{1}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}}\dot{\cup}\widetilde{I_{\overline{0}}}\dot{\cup}\widetilde{I_{\overline{1}}}\dot{\cup}\widetilde{J_{\overline{0}}}\dot{\cup}\widetilde{J_{\overline{1}}})$, (3) $k \in \phi(K, a)$ if and only if $\phi(\{k\}, \tilde{a}) \cap K \neq \emptyset$.

Proof. It is straightforward to observe that for any $k_1, k_2 \in I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}}$ and

$$a \in I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}} \dot{\cup} \widetilde{I_{\overline{0}}} \dot{\cup} \widetilde{I_{\overline{1}}} \dot{\cup} \widetilde{J_{\overline{0}}} \dot{\cup} \widetilde{J_{\overline{1}}}$$

we have $k_2 \in k_1 \star a \cup a \star k_1$ if and only if $k_1 \in k_2 \star \tilde{a}$.

Definition 2.1. Let k and k' be elements in the index set $I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}}$. We say k is connected to k' if either k = k' or there exists a subset

$$\{k_1,k_2,\ldots,k_{n-1},k_n\}\subset I_{\overline{0}}\dot{\cup}I_{\overline{1}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}}\dot{\cup}\widetilde{I}_{\overline{0}}\dot{\cup}\widetilde{I}_{\overline{1}}\dot{\cup}\widetilde{J}_{\overline{0}}\dot{\cup}\widetilde{J}_{\overline{1}}$$

with $n \ge 2$ such that the following conditions hold:

- 1. $k_1 = k$.
- 2. $\phi(\{k_1\}, k_2) \neq \emptyset$, $\phi(\phi(\{k_1\}, k_2), k_3) \neq \emptyset$, \vdots $\phi(\phi(\dots(\phi(\{k_1\}, k_2), \dots), k_{n-2}), k_{n-1}) \neq \emptyset$.

3. $k' \in \phi(\phi(\cdots(\phi(\{k_1\}, k_2), \cdots), k_{n-1}), k_n).$

The subset $\{k_1, k_2, \dots, k_{n-1}, k_n\}$ is called a *connection* from k to k'.

Proposition 2.1. The relation \sim in $I_{\overline{0}}\dot{\cup}I_{\overline{1}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}}$, defined by $k\sim k'$ if and only if k is connected to k', is an equivalence relation.

Proof. By definition $k \sim k$, that is, the relation \sim is reflexive. Let us see the symmetric character of \sim : If $k \sim k'$ with $k \neq k'$ then there exists a connection

$$\{k_1, k_2, \dots, k_{n-1}, k_n\}$$

from k to k' satisfying Definition 2.1. Let us show that the set

$$\{k', \widetilde{k}_n, \widetilde{k}_{n-1}, \dots, \widetilde{k}_3, \widetilde{k}_2\}$$

gives rise to a connection from k' to k. Indeed, by taking

$$K := \phi(\cdots(\phi(\{k_1\}, k_2), \cdots), k_{n-1})$$

we can apply the relation given by (3) to the expression

$$k' \in \phi(K, k_n)$$

to get

$$\phi(\{k'\}, \widetilde{k}_n) \cap K \neq \emptyset$$

and so

$$\phi(\{k'\}, \widetilde{k}_n) \neq \emptyset.$$

By taking

$$h \in \phi(\{k'\}, \widetilde{k}_n) \cap K$$
,

then

$$h \in K = \phi(\cdots(\phi(\{k_1\}, k_2), \cdots), k_{n-1}),$$

by the relation given by (3) we get

$$\phi(\lbrace h \rbrace, \widetilde{k}_{n-1}) \cap \phi(\cdots(\phi(\lbrace k_1 \rbrace, k_2), \cdots), k_{n-2}) \neq \emptyset,$$

but $h \in \phi(\{k'\}, \widetilde{k}_n)$, therefore $\{h\} \subset \phi(\{k'\}, \widetilde{k}_n)$ and consequently

$$\phi(\phi(\lbrace k'\rbrace, \widetilde{k}_n), \widetilde{k}_{n-1}) \cap \phi(\cdots(\phi(\lbrace k_1\rbrace, k_2), \cdots), k_{n-2}) \neq \emptyset.$$

By iterating this process we get

$$\phi(\phi(\cdots(\phi(\{k'\},\widetilde{k}_n),\cdots),\widetilde{k}_{n-r+1}),\widetilde{k}_{n-r})\cap$$

$$\phi(\phi(\cdots(\phi(\{k_1\},k_2),\cdots),k_{n-r-2}),k_{n-r-1})\neq\emptyset$$

for $0 \le r \le n-3$. Observe that this relation in the case r=n-3 reads as

$$\phi(\phi(\cdots(\phi(\lbrace k'\rbrace,\widetilde{k}_n),\cdots),\widetilde{k}_4),\widetilde{k}_3)\cap\phi(\lbrace k_1\rbrace,k_2)\neq\emptyset.$$

Since $k_1 = k$, if we write $\widetilde{K} := \phi(\phi(\cdots(\phi(\{\widetilde{k'}\}, \widetilde{k}_n), \cdots), \widetilde{k}_4), \widetilde{k}_3)$, the previous observation allows us to assert $\phi(\{k\}, k_2) \cap \widetilde{K} \neq \emptyset$. Hence the relation (3) applies to get

$$k \in \phi(\phi(\cdots(\phi(\lbrace k'\rbrace,\widetilde{k}_n),\cdots),\widetilde{k}_3),\widetilde{k}_2)$$

and concludes \sim is symmetric.

Finally, let us verify the transitive character of \sim . Suppose $k \sim k'$ and $k' \sim k''$. If k = k' or k' = k'' it is trivial, so suppose $k \neq k'$ and $k' \neq k''$ and write $\{k_1, \ldots, k_n\}$ for a connection from k to k' and $\{k'_1, \ldots, k'_m\}$ for a connection from k' to k''. Then we clearly see that $\{k_1, \ldots, k_n, k'_2, \ldots, k'_m\}$ is a connection from k' to k''. We have shown the connection relation is an equivalence relation.

By the above proposition we can consider the next quotient set on the index set $I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}}$,

$$(I_{\overline{0}}\dot{\cup}I_{\overline{1}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}})/\sim = \{[k]: k\in I_{\overline{0}}\dot{\cup}I_{\overline{1}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}}\},$$

becoming [k] the set of elements in $I_0 \dot{\cup} I_1 \dot{\cup} J_0 \dot{\cup} J_1$ which are connected to k.

Our next goal in this section is to associate an ideal $\mathcal{I}_{[k]}$ of \mathfrak{L} to any [k]. Fix $k \in I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}}$, we start by defining the linear subspaces $\mathfrak{I}_{[k]} = \mathfrak{I}_{[k],\overline{0}} \oplus \mathfrak{I}_{[k],\overline{1}} \subset \mathfrak{I}$ and $\neg \mathfrak{I}_{[k]} = \neg \mathfrak{I}_{[k],\overline{0}} \oplus \neg \mathfrak{I}_{[k],\overline{1}} \subset \neg \mathfrak{I}$ as follows

$$\mathfrak{I}_{[k],\bar{i}}:=\bigoplus_{l\in[k]\cap I_{\overline{i}}}\mathbb{F}e_{l,\overline{i}}\subset\mathfrak{I}_{\overline{i}},$$

$$\neg \Im_{[k],\overline{i}} := \bigoplus_{h \in [k] \cap J_{\overline{i}}} \mathbb{F} u_{h,\overline{i}} \subset \neg \Im_{\overline{i}}$$

for any $\bar{i} \in \mathbb{Z}_2$. Finally, we denote by $\mathcal{I}_{[k]}$ the direct sum of the two subspaces above, that is,

$$\mathcal{I}_{[k]} := (\mathfrak{I}_{[k],\overline{0}} \oplus \mathfrak{I}_{[k],\overline{1}}) \oplus (\neg \mathfrak{I}_{[k],\overline{0}} \oplus \neg \mathfrak{I}_{[k],\overline{1}})$$

Definition 2.2. Let \mathcal{L} be a Leibniz superalgebra admitting a multiplicative basis \mathcal{B} . A subsuperalgebra $A \subset \mathcal{L}$ admits a multiplicative basis \mathcal{B}_A inherited from \mathcal{B} if \mathcal{B}_A is a multiplicative basis of A satisfying $\mathcal{B}_A \subset \mathcal{B}$.

Proposition 2.2. For any $k \in I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}}$, the linear subspace $\mathcal{I}_{[k]}$ is an ideal of \mathfrak{L} admitting a multiplicative basis inherited from the one of \mathfrak{L} .

Proof. We can write

$$[\mathcal{I}_{[k]},\mathfrak{L}] = [\mathfrak{I}_{[k]} \oplus \neg \mathfrak{I}_{[k]}, (\bigoplus_{n \in I_{\overline{0}}} \mathbb{F}e_{n,\overline{0}}) \oplus (\bigoplus_{m \in I_{\overline{1}}} \mathbb{F}e_{m,\overline{1}}) \oplus (\bigoplus_{r \in J_{\overline{0}}} \mathbb{F}u_{r,\overline{0}}) \oplus (\bigoplus_{s \in J_{\overline{1}}} \mathbb{F}u_{s,\overline{1}})].$$

In case $[e_{l,\overline{i}},u_{r,\overline{j}}] \neq 0$ for some $l \in [k] \cap I_{\overline{i}}, r \in J_{\overline{j}}$ and $\overline{i},\overline{j} \in \mathbb{Z}_2$, we have $0 \neq [e_{l,\overline{i}},u_{r,\overline{j}}] \in \mathbb{F}e_{p,\overline{i+j}}$ with $p \in I_{\overline{i}+\overline{j}}$ and so $p \in \phi(\{l\},r) = l \star r$, therefore the connection $\{l,r\}$ gives us $l \sim p$, so $p \in [k]$ and then $0 \neq [e_{l,\overline{i}},u_{r,\overline{j}}] \in \mathfrak{I}_{[k]}$. Hence we get

$$[\mathfrak{I}_{[k]}, (\bigoplus_{r \in J_{\overline{0}}} \mathbb{F}u_{r,\overline{0}}) \oplus (\bigoplus_{s \in J_{\overline{1}}} \mathbb{F}u_{s,\overline{1}})] \subset \mathfrak{I}_{[k]} \subset \mathcal{I}_{[k]}.$$

In a similar way we have $[\neg \mathfrak{I}_{[k]}, (\bigoplus_{r \in J_{\overline{0}}} \mathbb{F}u_{r,\overline{0}}) \oplus (\bigoplus_{s \in J_{\overline{1}}} \mathbb{F}u_{s,\overline{1}})] \subset \mathcal{I}_{[k]}$ and taking into account Equation (1) we conclude

$$[\mathcal{I}_{[k]},\mathfrak{L}]\subset\mathcal{I}_{[k]}.$$

On the other hand,

$$[\mathfrak{L},\mathcal{I}_{[k]}] = [(\bigoplus_{n \in I_{\overline{0}}} \mathbb{F}e_{n,\overline{0}}) \oplus (\bigoplus_{m \in I_{\overline{1}}} \mathbb{F}e_{m,\overline{1}}) \oplus (\bigoplus_{r \in J_{\overline{0}}} \mathbb{F}u_{r,\overline{0}}) \oplus (\bigoplus_{s \in J_{\overline{1}}} \mathbb{F}u_{s,\overline{1}}), \mathfrak{I}_{[k]} \oplus \neg \mathfrak{I}_{[k]}]$$

and in case $0 \neq [e_{n,\overline{i}},u_{h,\overline{j}}]$ for some $n \in I_{\overline{i}}, h \in [k] \cap J_{\overline{j}}$ and $\overline{i},\overline{j} \in \mathbb{Z}_2$ we have $[e_{n,\overline{i}},u_{h,\overline{j}}] \in \mathbb{F}e_{p,\overline{i}+\overline{j}}$ with $p \in I_{\overline{i}+\overline{j}}$. Then $p \in \phi(\{h\},n) = h \star n$ and we see that the connection $\{h,n\}$ gives us $h \sim p$ and so $[(\bigoplus_{n \in I_{\overline{0}}} \mathbb{F}e_{n,\overline{0}}) \oplus (\bigoplus_{m \in I_{\overline{1}}} \mathbb{F}e_{m,\overline{1}}), \neg \mathfrak{I}_{[k]}] \subset \mathfrak{I}_{[k]} \subset \mathcal{I}_{[k]}$. In a similar way

$$[(\bigoplus_{r\in J_{\overline{0}}}\mathbb{F}u_{r,\overline{0}})\oplus (\bigoplus_{s\in J_{\overline{1}}}\mathbb{F}u_{s,\overline{1}}),\neg \Im_{[k]}]\subset \mathcal{I}_{[k]}$$

and by Equation (1) then

$$[\mathfrak{L},\mathcal{I}_{[k]}]\subset\mathcal{I}_{[k]}.$$

Hence $\mathcal{I}_{[k]}$ is an ideal of \mathfrak{L} .

Finally, observe that the set

$$\begin{split} \mathcal{B}_{\mathcal{I}_{[k]}} := \{e_{n,\overline{0}} : n \in [k] \cap I_{\overline{0}}\} \dot{\cup} \{e_{m,\overline{1}} : m \in [k] \cap I_{\overline{1}}\} \dot{\cup} \\ \{u_{r,\overline{0}} : r \in [k] \cap J_{\overline{0}}\} \dot{\cup} \{u_{s,\overline{1}} : s \in [k] \cap J_{\overline{1}}\} \end{split}$$

is a multiplicative basis of $\mathcal{I}_{[k]}$ satisfying $\mathcal{B}_{\mathcal{I}_{[k]}} \subset \mathcal{B}$. Hence we see that $\mathcal{I}_{[k]}$ admits a multiplicative basis inherited from the one of \mathfrak{L} .

Corollary 2.1. If \mathfrak{L} is simple, then there exists a connection between any couple of elements in the index set $I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}}$.

Proof. The simplicity of $\mathfrak L$ implies $[\mathfrak L,\mathfrak L] \neq 0$ and so $\neg \mathfrak I \neq \emptyset$, then at least there exists $r_0 \in J_{\mathbf i}, \bar i \in \mathbb Z_2$, such that $\{u_{r_0,\bar i}\} \subset \mathcal B_{\neg \mathfrak I_{\bar i}}$. Applying Proposition 2.2, $\mathcal I_{[r_0]}$ is an ideal and by its construction $\mathcal I_{[r_0]} \not\subset \mathfrak I$, therefore $\mathcal I_{[r_0]} = \mathfrak L$ being then $[r_0] = I_{\overline 0} \dot \cup I_{\overline 1} \dot \cup J_{\overline 0} \dot \cup J_{\overline 1}$. That is, any couple of elements in $I_{\overline 0} \dot \cup I_{\overline 1} \dot \cup J_{\overline 0} \dot \cup J_{\overline 1}$ are connected.

Theorem 2.1. A Leibniz superalgebra \mathfrak{L} admitting a multiplicative basis decomposes as the direct sum

$$\mathfrak{L} = \bigoplus_{[k] \in (I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}})/\sim} \mathcal{I}_{[k]},$$

where any $\mathcal{I}_{[k]} = \mathfrak{I}_{[k]} \oplus \neg \mathfrak{I}_{[k]}$ is one of the ideals, admitting a multiplicative basis inherited from the one of \mathfrak{L} , given in Proposition 2.2.

Proof. Since we can write $\mathfrak{L} = \mathfrak{I} \oplus \neg \mathfrak{I}$ and

$$\mathfrak{I} = \bigoplus_{[k] \in (I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}})/\sim} \mathfrak{I}_{[k]}, \quad \neg \mathfrak{I} = \bigoplus_{[k] \in (I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}})/\sim} \neg \mathfrak{I}_{[k]}.$$

From $\mathcal{I}_{[k]} = \mathfrak{I}_{[k]} \oplus \neg \mathfrak{I}_{[k]}$ by definition, we clearly have

$$\mathfrak{L} = \bigoplus_{[k] \in (I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}})/\sim} \mathcal{I}_{[k]}.$$

Example 2.1. Consider the Leibniz superalgebra $\mathfrak{L} = \mathfrak{L}_{\overline{0}} \oplus \mathfrak{L}_{\overline{1}}$ presented in Example 1.1. We have $I_{\overline{1}} = \{1,2\}$ and $J_{\overline{0}} = \{a,b,c\}$. From the multiplication table of \mathfrak{L} it is not difficult to write the operation \star in a concrete way. For instance, we have

$$\begin{array}{l} 1 \star c = 2 \star a = \{1\} \\ 1 \star b = 2 \star c = \{2\} \end{array} \qquad \begin{array}{l} a \star b = b \star a = \{c\} \\ a \star c = c \star a = \{a\} \end{array}$$

Then, we can also obtain an explicit expression of the mapping

$$\phi: \mathcal{P}(I_{\overline{0}}\dot{\cup}I_{\overline{0}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}}) \times (I_{\overline{0}}\dot{\cup}I_{\overline{0}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}}\dot{\cup}\widetilde{I}_{\overline{0}}\dot{\cup}\widetilde{I}_{\overline{0}}\dot{\cup}\widetilde{J}_{\overline{0}}\dot{\cup}\widetilde{J}_{\overline{1}}) \longrightarrow \mathcal{P}(I_{\overline{0}}\dot{\cup}I_{\overline{0}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}}).$$

Observe that the connection $\{1,b\}$ gives $1 \sim 2$, with the connection $\{a,b\}$ we have $a \sim c$ and considering $\{b,a\}$ we obtain $b \sim c$. Since $1 \star \tilde{2} = \{b\}$ we get $1 \sim b$ and therefore $(I_{\overline{0}} \dot{\cup} I_{\overline{0}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}})/\sim = \{[1]\}$ where $[1] = \{1,2,a,b,c\}$. By Theorem 2.1 we see that $\mathfrak{L} = \mathcal{I}_{[1]}$, where $\mathcal{I}_{[1]}$ is an ideal of \mathfrak{L} with a unique (multiplicative) basis $\{1,2,a,b,c\}$. In fact, since \mathfrak{L} is a simple (non-Lie) Leibniz superalgebra, by Corollary 2.2 all elements in $I_{\overline{0}} \dot{\cup} I_{\overline{1}} \dot{\cup} J_{\overline{0}} \dot{\cup} J_{\overline{1}}$ are connected and we just have one ideal.

Example 2.2. Let $\mathfrak{L} = \mathfrak{L}_{\overline{0}} \oplus \mathfrak{L}_{\overline{1}}$ be the Leibniz superalgebra considered in Example 1.2. We have $I = \{(n,k) : n \in \mathbb{N}, 0 \le k \le n\}$ and $J = \{(n,-1),(n,-2),(n,-3) : n \in \mathbb{N}\}$. From the multiplication table of \mathfrak{L} it is not difficult to express the operation \star completely. For instance, we have

$$(n,k) \star (n,-3) = \{(n,k)\} \quad k \in I$$

$$(n,k) \star (n,-2) = \{(n,k+1)\} \quad k \in \{0,\ldots,n-1\}$$

$$(n,k) \star (n,-1) = \{(n,k-1)\} \quad k \in \{1,\ldots,n\}$$

$$(n,-1) \star (n,-2) = (n,-2) \star (n,-1) = \{(n,-3)\}$$

$$(n,-1) \star (n,-3) = (n,-3) \star (n,-1) = \{(n,-1)\}$$

$$(n,-2) \star (n,-3) = (n,-3) \star (n,-2) = \{(n,-2)\}$$

From here, we can also obtain an explicit expression of the mapping

$$\phi: \mathcal{P}(I_{\overline{0}}\dot{\cup}I_{\overline{0}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}}) \times (I_{\overline{0}}\dot{\cup}I_{\overline{0}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}}\dot{\cup}\widetilde{I}_{\overline{0}}\dot{\cup}\widetilde{I}_{\overline{0}}\dot{\cup}\widetilde{J}_{\overline{0}}\dot{\cup}\widetilde{J}_{\overline{1}}) \longrightarrow \mathcal{P}(I_{\overline{0}}\dot{\cup}I_{\overline{0}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}}).$$

Observe that the connection $\{(n,-1),(n,-2)\}$ gives $(n,-1)\sim(n,-3)$, with the connection $\{(n,-2),(n,-2)\}$ we get $(n,-2)\sim(n,-3)$, the connection $\{(n,k+1),(n,k)\}$ let us assert $(n,k+1)\sim(n,-2)$ and considering the connection $\{(n,k-1),(n,k)\}$ we have $(n,k-1)\sim(n,-1)$, for $k\in\{0,\ldots,n-1\}$ and $k\in\{1,\ldots,n\}$, respectively. Hence,

$$(I_{\overline{0}}\dot{\cup}I_{\overline{1}}\dot{\cup}J_{\overline{0}}\dot{\cup}J_{\overline{1}})/\sim = \{[(n,0)]: n \in \mathbb{N}\}$$

where any

$$[(n,0)] = \{(n,k) : 0 \le k \le n\} \cup \{(n,-1),(n,-2),(n,-3)\}$$

and so Theorem 2.1 allows us to assert

$$\mathfrak{L} = \bigoplus_{n \in \mathbb{N}} \mathcal{I}_{[(n,0)]}$$

being any $\mathcal{I}_{[(n,0)]} = \mathcal{I}_{[(n,0)],\overline{0}} \oplus \mathcal{I}_{[(n,0)],\overline{1}}$, with $\mathcal{I}_{[(n,0)],\overline{0}} = \operatorname{span}\{e_{(n,-1)},e_{(n,-2)},e_{(n,-3)}\}$ and $\mathcal{I}_{[(n,0)],\overline{1}} = \operatorname{span}\{e_{(n,k)}: 0 \leq k \leq n\}$, an ideal admitting a (multiplicative) basis inherited from the one of \mathfrak{L} .

3. The \mathcal{B} -simple components

In this section our target is to characterize the minimality of the ideals which give rise to the decomposition of $\mathfrak L$ in Theorem 2.1, in terms of connectivity properties in the index set $I_0\dot\cup I_1\dot\cup J_0\dot\cup J_1$. Taking into account Definition 1.2 we introduce the next concept in a natural way.

Definition 3.1. A Leibniz superalgebra $\mathfrak L$ admitting a multiplicative basis $\mathcal B$ is called $\mathcal B$ -simple if $[\mathfrak L,\mathfrak L]\neq 0$ and its only ideals admitting a multiplicative basis inherited from $\mathcal B$ are $\{0\},\mathfrak I$ and $\mathfrak L$.

As in the previous section, $\mathcal{L}=(\mathfrak{I}_{\overline{0}}\oplus\neg\mathfrak{I}_{\overline{0}})\oplus(\mathfrak{I}_{\overline{1}}\oplus\neg\mathfrak{I}_{\overline{1}})$ denotes a Leibniz superalgebra over an arbitrary base field \mathbb{F} and of arbitrary dimension, admitting a multiplicative basis $\mathcal{B}=(\mathcal{B}_{\mathfrak{I}_{\overline{0}}}\dot{\cup}\mathcal{B}_{\mathfrak{I}_{\overline{1}}})\dot{\cup}(\mathcal{B}_{\neg\mathfrak{I}_{\overline{0}}}\dot{\cup}\mathcal{B}_{\neg\mathfrak{I}_{\overline{1}}})$ where $\mathcal{B}_{\mathfrak{I}_{\overline{i}}}=\{e_{n,\overline{i}}\}_{n\in I_{\overline{i}}}$ and $\mathcal{B}_{\neg\mathfrak{I}_{\overline{i}}}=\{u_{r,\overline{i}}\}_{r\in J_{\overline{i}}},$ for $\overline{i}\in\mathbb{Z}_2$, and where $K_{\overline{i}}\cap P_{\overline{j}}=\emptyset$ for any $K,P\in\{I,J\},\overline{i},\overline{j}\in\mathbb{Z}_2$ and $K_{\overline{i}}\neq P_{\overline{j}}.$

We have the opportunity of restricting the connectivity relation to the set $I_{\overline{0}} \dot{\cup} I_{\overline{1}}$ and to the set $J_{\overline{0}} \dot{\cup} J_{\overline{1}}$ by just allowing that the connections are formed by elements in $J_{\overline{0}} \dot{\cup} J_{\overline{1}} \dot{\cup} \widetilde{J}_{\overline{0}} \dot{\cup} \widetilde{J}_{\overline{1}}$. Then we say two indexes of $\Upsilon_{\overline{0}} \dot{\cup} \Upsilon_{\overline{1}}$, where either $\Upsilon \in \{I, J\}$, are J-connected.

Definition 3.2. Let k and k' be two elements in $\Upsilon_{\overline{0}} \dot{\cup} \Upsilon_{\overline{1}}$ with either $\Upsilon = I$ or $\Upsilon = J$. We say k is J-connected to k' and we denote by $k \sim_J k'$, if either k = k' or there exists a connection $\{r_1, r_2, \ldots, r_n\}$ from k to k' (in the sense of Definition 2.1) such that

$$r_2, \ldots, r_n \in J_{\overline{0}} \dot{\cup} J_{\overline{1}} \dot{\cup} \widetilde{J_{\overline{0}}} \dot{\cup} \widetilde{J_{\overline{1}}}.$$

We also say the set $\{r_1, r_2, \dots, r_n\}$ is a *J-connection* from k to k'.

We observe that it is straightforward to verify the arguments in Proposition 2.1 allow us to assert that the relation \sim_J is an equivalence relation in $I_{\overline{0}} \dot{\cup} I_{\overline{1}}$ and in $J_{\overline{0}} \dot{\cup} J_{\overline{1}}$. Therefore

$$(\Upsilon_{\overline{0}}\dot{\cup}\Upsilon_{\overline{1}})/\sim_J = \{[k]_J : k \in \Upsilon_{\overline{0}}\dot{\cup}\Upsilon_{\overline{1}}\}$$

becoming $[k]_J$ the set of elements in $\Upsilon_{\overline{0}} \dot{\cup} \Upsilon_{\overline{1}}$ which are J-connected to k, with either $\Upsilon = I$ or $\Upsilon = J$.

Let us introduce the notion of \star -multiplicativity in the framework of Leibniz superalgebras with multiplicative bases, in a similar way to the ones of closed-multiplicativity for split Leibniz algebras, split Leibniz superalgebras and graded Leibniz algebras (see [7, 8, 9] for these notions and examples). From now on, for any $\widetilde{j} \in \widetilde{J}_{\overline{i}}$, $i \in \mathbb{Z}_2$, we denote $u_{\widetilde{i}} = 0$.

Definition 3.3. A Leibniz superalgebra $\mathcal{L}=\mathfrak{I}\oplus\neg\mathfrak{I}$ admits a \star -multiplicative basis $\mathcal{B}=\{v_{k,\overline{i}}: k\in K,\ \overline{i}\in\mathbb{Z}_2\}$, which decomposes as in Equation (2), if it is multiplicative and for any $k,r\in I_{\overline{0}}\dot\cup I_{\overline{1}}\dot\cup J_{\overline{0}}\dot\cup J_{\overline{1}}\cup J_{\overline{0}}\dot\cup J_{\overline{0}}\dot\cup \widetilde{J_{\overline{0}}}\dot\cup \widetilde{J_{\overline{0}}}\dot\cup \widetilde{J_{\overline{0}}}\cup \widetilde{J_{\overline{1}}}$ such that $k\in r\star a$, then $v_{k,\overline{i}}\in [v_{r,\overline{j}},\mathfrak{L}_{\overline{i}+\overline{j}}]$.

Proposition 3.1. Suppose $\mathfrak L$ admits a \star -multiplicative basis $\mathcal B$. If $J_{\overline 0}\dot\cup J_{\overline 1}$ has all of their elements J-connected, then any nonzero ideal $\mathcal I\subset \mathfrak L$ with a multiplicative basis inherited from $\mathcal B$ such that $\mathcal I\not\subset \mathfrak I$ satisfies $\mathcal I=\mathfrak L$.

Proof. Since $\mathcal{I} \not\subset \mathfrak{I}$ we can take some $r_0 \in J_{\overline{i}_0}$ such that

$$0 \neq u_{r_0, \bar{i}_0} \in \mathcal{I}.$$

for certain $\bar{i}_0 \in \mathbb{Z}_2$. We know that $J_{\overline{0}} \dot{\cup} J_{\overline{1}}$ has all of their elements J-connected. If $J_{\overline{0}} \dot{\cup} J_{\overline{1}} = \{r_0\}$ trivially $\neg \mathfrak{I} \subset \mathcal{I}$. If $|J_{\overline{0}} \dot{\cup} J_{\overline{1}}| > 1$ we take $s \in J_{\overline{j}}$ (with $\overline{j} \in \mathbb{Z}_2$) different from r_0 , being then $0 \neq \mathbb{F}u_{s,\overline{j}}$, we can consider a J-connection

(5)
$$\{r_0, r_2, \dots, r_n\} \subset J_{\overline{0}} \dot{\cup} J_{\overline{1}} \dot{\cup} \widetilde{J_{\overline{0}}} \dot{\cup} \widetilde{J_{\overline{1}}}$$

from r_0 to s.

We know that

$$\phi(\{r_0\}, r_2) \neq \emptyset$$

and so we can take $a_1 \in \phi(\{r_0\}, r_2) = r_0 \star r_2$. Now, taking into account Equation (4) and the \star -multiplicativity of \mathcal{B} we get, if $a_1 \in J_{\overline{i_0} + \overline{i}}$

$$0 \neq u_{a_1,\overline{i}_0+\overline{j}} \in \mathbb{F}[u_{r_0,\overline{i}_0},u_{l_2,\overline{j}}] \subset \mathcal{I}$$

or, if $a_1 \in I_{\overline{i_0} + \overline{j}}$

$$0 \neq e_{a_1,\overline{i}_0 + \overline{j}} \in \mathbb{F}[u_{r_0,\overline{i}_0}, u_{l_2,\overline{j}}] \subset \mathcal{I}$$

for $l_2 = \{r_2, \widetilde{r}_2\} \cap J_{\overline{j}}$ and $\overline{j} \in \mathbb{Z}_2$.

Since $s\in J_{\overline{0}}\dot{\cup}J_{\overline{1}}$, necessarily $\phi(\{r_0\},r_2)\cap(J_{\overline{0}}\dot{\cup}J_{\overline{1}})\neq\emptyset$ and we have

(6)
$$0 \neq \bigoplus_{r \in \phi(\{r_0\}, r_2) \cap J_{\bar{i}}} \mathbb{F}u_{r, \bar{i}} \subset \mathcal{I}.$$

for any $\bar{i} \in \mathbb{Z}_2$. Since

$$\phi(\phi(\{r_0\}, r_2), r_3) \neq \emptyset$$

we can argue as above, taking into account Equation (6), to get

$$0 \neq \bigoplus_{r \in \phi(\phi(\{r_0\}, r_2), r_3) \cap J_{\overline{i}}} \mathbb{F}u_{r, \overline{i}} \subset \mathcal{I}$$

for $\bar{i} \in \mathbb{Z}_2$. By reiterating this process with the *J*-connection (5) we obtain

$$0 \neq \bigoplus_{r \in \phi(\phi(\cdots(\phi(r_0, r_2), \cdots), r_{n-1}), r_n) \cap J_{\overline{i}}} \mathbb{F}u_{r, \overline{i}} \subset \mathcal{I}.$$

Since $s\in\phi(\phi(\cdots(\phi(r_0,r_2),\cdots),r_{n-1}),r_n)\cap J_{\overline{j}}$ we conclude $u_{s,\overline{j}}\in\mathcal{I}$ for all $s\in J_{\overline{j}}\setminus\{r_0\}$ and $\overline{j}\in\mathbb{Z}_2$ and so

$$\neg \Im = \bigoplus_{p \in J_{\overline{0}}, q \in J_{\overline{1}}} (\mathbb{F}u_{p,\overline{0}} \oplus \mathbb{F}u_{q,\overline{1}}) \subset \mathcal{I}.$$

Considering $\mathfrak{I}\subset [\mathfrak{I},\neg\mathfrak{I}]+[\neg\mathfrak{I},\neg\mathfrak{I}]$ by \star -multiplicativity, Equation (7) allows us to assert

$$\mathfrak{I}\subset\mathcal{I}.$$

Finally, since $\mathfrak{L} = \mathfrak{I} \oplus \neg \mathfrak{I}$, Equations (7) and (8) give us $\mathcal{I} = \mathfrak{L}$.

Proposition 3.2. Suppose $\mathfrak L$ admits a \star -multiplicative basis $\mathcal B$. If $I_{\overline 0}\dot\cup I_{\overline 1}$ has all of its elements J-connected, then any nonzero ideal $\mathcal I\subset \mathfrak L$ with a multiplicative basis inherited from $\mathcal B$ such that $\mathcal I\subset \mathfrak I$ satisfies $\mathcal I=\mathfrak I$.

Proof. Taking into account $\mathcal{I} \subset \mathfrak{I}$ we can fix a some $n_0 \in I_{\overline{i}_0}$ satisfying

$$0 \neq e_{n_0,\overline{i}_0} \in \mathcal{I}$$

for certain $\bar{i}_0 \in \mathbb{Z}_2$. Since $I_{\bar{0}} \dot{\cup} I_{\bar{1}}$ has all of its elements J-connected, we can argue from n_0 with the \star -multiplicativity of \mathcal{B} as it is done in Proposition 3.1 from r_0 to get $\mathfrak{I} \subset \mathcal{I}$ and then $\mathcal{I} = \mathfrak{I}$.

Theorem 3.1. Suppose $\mathfrak L$ admits a \star -multiplicative basis $\mathcal B$. Then $\mathfrak L$ is $\mathcal B$ -simple if and only if $I_{\overline 0}\dot\cup I_{\overline 1}$ and $J_{\overline 0}\dot\cup J_{\overline 1}$ have respectively all of their elements J-connected.

Proof. Suppose $\mathfrak L$ is $\mathcal B$ -simple. We take $n\in I_{\overline 0}\dot\cup I_{\overline 1}$ and we observe that the linear space $\bigoplus_{m\in I_{\overline 0}\cap [n]_J, l\in I_{\overline 1}\cap [n]_J} (\mathbb F e_{m,\overline 0}\oplus \mathbb F e_{l,\overline 1})$ is an ideal of $\mathfrak L$ with a multiplicative basis inherited from $\mathcal B$. Indeed, we have trivially

$$\begin{split} \left[\mathfrak{L}, \bigoplus_{m \in I_{\overline{0}} \cap [n]_{J}, l \in I_{\overline{1}} \cap [n]_{J}} (\mathbb{F}e_{m, \overline{0}} \oplus \mathbb{F}e_{l, \overline{1}}) \right] + \left[\bigoplus_{m \in I_{\overline{0}} \cap [n]_{J}, l \in I_{\overline{1}} \cap [n]_{J}} (\mathbb{F}e_{m, \overline{0}} \oplus \mathbb{F}e_{l, \overline{1}}), \mathfrak{I} \right] \subset \\ \subset \left[\mathfrak{L}, \mathfrak{I} \right] = 0. \end{split}$$

We only need to prove

$$\Big[\bigoplus_{m\in I_{\overline{0}}\cap [n]_J, l\in I_{\overline{1}}\cap [n]_J} (\mathbb{F}e_{m,\overline{0}}\oplus \mathbb{F}e_{l,\overline{1}}), u_{r,\overline{0}}\oplus u_{s,\overline{1}}\Big] \subset \bigoplus_{m\in I_{\overline{0}}\cap [n]_J, l\in I_{\overline{1}}\cap [n]_J} (\mathbb{F}e_{m,\overline{0}}\oplus \mathbb{F}e_{l,\overline{1}})$$

for any $r\in J_{\overline{0}},\,s\in J_{\overline{1}}.$ In fact, given any $e_{n_0,\overline{i}_0}\in\bigoplus_{m\in I_{\overline{0}}\cap [n]_J,l\in I_{\overline{1}}\cap [n]_J}(\mathbb{F}e_{m,\overline{0}}\oplus\mathbb{F}e_{l,\overline{1}})$ such that $0\neq [e_{n_0,\overline{i}_0},u_{t,\overline{j}}]=e_{p,\overline{i}_0+\overline{j}},$ for $u_{t,\overline{j}}\in\{u_{r,\overline{0}},u_{s,\overline{1}}\}$ and some $p\in I_{\overline{i}_0+\overline{j}}.$ We

have $p \in n_0 \star t$ and so $\{n_0, t\}$ is a *J*-connection meaning that $n_0 \sim_J p$. By the symmetry $p \sim_J n_0$ and by transitivity of $p \sim_J n_0 \sim_J n$, and we get

$$e_{p,\overline{i}_0+\overline{j}}\in\bigoplus_{m\in I_{\overline{0}}\cap[n]_J,l\in I_{\overline{1}}\cap[n]_J}(\mathbb{F}e_{m,\overline{0}}\oplus\mathbb{F}e_{l,\overline{1}}).$$

Hence $[e_{n_0,\overline{i}_0},u_{t,\overline{j}}]\subset\bigoplus_{m\in I_{\overline{0}}\cap[n]_J,l\in I_{\overline{1}}\cap[n]_J}(\mathbb{F}e_{m,\overline{0}}\oplus\mathbb{F}e_{l,\overline{1}})$ as desired. We conclude

$$\bigoplus_{m \in I_{\overline{0}} \cap [n]_J, l \in I_{\overline{1}} \cap [n]_J} (\mathbb{F}e_{m,\overline{0}} \oplus \mathbb{F}e_{l,\overline{1}})$$

is an ideal of $\mathfrak L$ endowed with a multiplicative basis inherited from $\mathcal B$ (trivial by construction) and so, by $\mathcal B$ -simplicity, necessarily $\bigoplus_{m\in I_{\overline 0}\cap [n]_J, l\in I_{\overline 1}\cap [n]_J} (\mathbb F e_{m,\overline 0}\oplus \mathbb F e_{l,\overline 1})=\mathfrak I$ and

consequently any couple of indexes in I are J-connected. Consider now any $r \in J$ and the linear subspace

$$\mathfrak{I} \oplus \bigoplus_{s \in J_{\overline{0}} \cap [r]_J, t \in J_{\overline{1}} \cap [r]_J} (\mathbb{F}u_{s,\overline{0}} \oplus \mathbb{F}u_{t,\overline{1}}).$$

Using a similar argument to the above one we see this linear subspace is actually an ideal of \mathfrak{L} which admits a multiplicative basis inherited from \mathcal{B} . From \mathcal{B} -simplicity,

$$\mathfrak{I} \oplus \bigoplus_{s \in J_{\overline{0}} \cap [r]_J, t \in J_{\overline{1}} \cap [r]_J} (\mathbb{F}u_{s,\overline{0}} \oplus \mathbb{F}u_{t,\overline{1}}) = \mathfrak{L}$$

which implies in particular

$$\mathfrak{I} \oplus \bigoplus_{s \in J_{\overline{0}} \cap [r]_J, t \in J_{\overline{1}} \cap [r]_J} (\mathbb{F}u_{s,\overline{0}} \oplus \mathbb{F}u_{t,\overline{1}}) = \mathfrak{I} \oplus \bigoplus_{r \in J_{\overline{0}}, q \in J_{\overline{1}}} (\mathbb{F}u_{r,\overline{0}} \oplus \mathbb{F}u_{q,\overline{1}})$$

and so we get any couple of indexes in J are also J-connected.

Conversely, consider \mathcal{I} a nonzero ideal of \mathfrak{L} admitting a multiplicative basis inherited by the one of \mathfrak{L} . We have two possibilities for \mathcal{I} , either $\mathcal{I} \not\subset \mathfrak{I}$ or $\mathcal{I} \subset \mathfrak{I}$. In the first one, Proposition 3.1 gives us $\mathcal{I} = \mathfrak{L}$, while in the second one Proposition 3.2 shows $\mathcal{I} = \mathfrak{I}$. Therefore in both cases \mathfrak{L} is \mathcal{B} -simple.

REFERENCES

- [1] Abdykassymova, S.: Simple Leibniz algebras of rank 1 in the characteristic p. Ph. D. thesis, Almaty State University, (2001).
- [2] Abdykassymova, S., Dzhumaldil'daev, A.: Leibniz algebras in characteristic *p.* C. R. Acad. Sci. Paris Sr. I Math. 332, no. 12, 1047–1052, (2001).
- [3] Albeverio, S., Ayupov S., Omirov, B.A.: On nilpotent and simple Leibniz algebras Comm. Algebra, 33 (1), 159–172, (2005)
- [4] Albeverio, S., Khudoyberdiyev, A.Kh., Omirov, B.A.: On the classification of complex Leibniz superalgebras with characteristic sequence $(n-1,1|m_1,\ldots,m_k)$ and nilindex n+m. J. Algebra Appl. 8, no. 4, 461-475, (2009).
- [5] Ayupov, Sh.A., Khudoyberdiyev, A.Kh., Omirov, B.A.: The classification of filiform Leibniz superalgebras of nilindex n+m. Acta Math. Sin. (Engl. Ser.) 25, no. 2, 171-190, (2009).
- [6] Calderón, A.J.: Leibniz algebras admitting a multiplicative basis. Bull. Malaysian Math. Soc. In press.
- [7] Calderón, A.J. and Sánchez, J.M.: Split Leibniz algebras. Linear Algebra Appl. 436, no. 6, 1648–1660, (2012).
- [8] Calderón, A.J. and Sánchez, J.M.: On split Leibniz superalgebras. Linear Algebra Appl. 438, 4709–4725, (2013).
- [9] Calderón, A.J. and Sánchez, J.M.: On the structure of graded Leibniz algebras. Algebra Colloquium. 22, no. 1, 83–96, (2015).

- [10] Camacho, L.M., Gómez, J.R., Navarro, R.M., Omirov, B.A.: Classification of some nilpotent class of Leibniz superalgebras. Acta Math. Sin. (Engl. Ser.) 26, no. 5, 799-816, (2010).
- [11] Camacho, L.M., Gómez, J.R., Khudoyberdiyev, A., Omirov, Bakhrom A.: On the description of Leibniz superalgebras of nilindex n+m. Forum Math. 24, no. 4, 809–826, (2012).
- [12] Daletskii, Y.I., Takhtajan, L.A.: Leibniz and Lie algebras structures for Nambu algebra. Lett. Math. Physics 39, no. 2, 127–141, (1997).
- [13] Gómez, J.R., Khudoyberdiyev, A.Kh., Omirov, B.A.: The classification of Leibniz superalgebras of nilindex $n+m\ (m\neq 0)$. J. Algebra 324, no. 10, 2786-2803, (2010).
- [14] Hu, N., Liu, D., Zhu, L.: Leibniz superalgebras and central extensions. J. Algebra Appl. 5, no. 6, 765-780, (2006).
- [15] Hu, N., Liu, D., Zhu, L.: Universal central extensions of the matrix Leibniz superalgebras sl(m, n, A). Comm. Algebra 35, no. 6, 1814-1823, (2007).
- [16] Hu, N., Liu, D., Zhu, L.: Leibniz superalgebras graded by finite root systems. (English summary) Operads and universal algebra. Pure Appl. Math. Theoret. Phys., 9, 51–68, (2012).
- [17] Khudoyberdiyev, A.Kh.: Some remarks on nilpotent Leibniz superalgebras. Uzbek. Mat. Zh. no. 4, 143-150, (2009).

E-mail address: lena@mat.uc.pt

CMUC, DEPARTAMENTO DE MATEMÁTICA., UNIVERSIDADE DE COIMBRA, APARTADO 3008, 3001-454 COIMBRA, PORTUGAL.

E-mail address: mefb@mat.uc.pt

CMUC, DEPARTAMENTO DE MATEMÁTICA., UNIVERSIDADE DE COIMBRA, APARTADO 3008, 3001-454 COIMBRA, PORTUGAL.

E-mail address: ajesus.calderon@uca.es

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DE CÁDIZ., CAMPUS DE PUERTO REAL, 11510, PUERTO REAL, CÁDIZ, ESPAÑA.

E-mail address: txema.sanchez@uca.es

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES, UNIVERSITY OF CÁDIZ, CAMPUS DE PUERTO REAL, 11510, PUERTO REAL, CÁDIZ, SPAIN.