
GRAY CODES AND LEXICOGRAPHICAL COMBINATORIAL
GENERATION FOR NONNESTING AND SPARSE NONNESTING SET

PARTITIONS

ALESSANDRO CONFLITTI AND RICARDO MAMEDE

Abstract. We present combinatorial Gray codes and explicit designs of efficient algo-
rithms for lexicographical combinatorial generation of the sets of nonnesting and sparse
nonnesting set partitions of length n.

1. Introduction

One of the earliest problem addressed on the topic of combinatorial algorithms was to
efficiently generate elements in a specific combinatorial class in such a way that each item
is generated exactly once, hence producing a listing of all objects in the considered class.
Both for theoretical and practical purposes, in order for such listing to be meaningful
or useful, even for objects of moderate size, combinatorial generation methods must be
extremely efficient, and the order in which objects appear in such list should satisfy some
significant conditions, see e.g. [3, 4, 25, 27, 34, 41, 43, 45, 51].

Specifically, very interesting and widely studied orderings for combinatorial genera-
tion are the lexicographic order and any ordering that gives rise to a Gray code for the
considered combinatorial class.

Some of the advantages of the lexicographic order are that for any combinatorial class
it is easy to define, to visualize and work with, and it is surprisingly useful in a variety
of contexts. For instance, for many combinatorial objects, the fastest known algorithms
for listing, ranking and unranking are with respect to lexicographic order, and many
algorithms that are not overtly lexicographic have anyway some underlying lexicographic
structure, see e.g. [43]

A combinatorial Gray code is any method for generating combinatorial objects such
that successive objects differ in a some pre–specified, usually small, way. For instance,
given a combinatorial class one can define a distance in such class and define a Gray
code as a list of all objects in the considered class such that the distance between two
consecutive objects is 1. Usually this is done associating a binary numeral system to the
combinatorial class and considering the Hamming distance. Such theory of Gray codes
has a vast range of applications in several areas such as hardware and software testing,
thermodynamic, biology and biochemistry; see [3, 45] and the references therein.

There exist results for (lexicographical) combinatorial generation of several classes of
permutations and set partitions, see e.g. [8, 20, 22, 32, 36, 37, 50, 53, 54], but so far there
are no direct, explicit efficient algorithms for the lexicographical combinatorial generation

2000 Mathematics Subject Classification. 05A18, 68R05, 68W99, 94B25.
This work was partially supported by the Centro de Matemática da Universidade de Coimbra (CMUC),

funded by the European Regional Development Fund through the program COMPETE and by the
Portuguese Government through the FCT - Fundação para a Ciência e a Tecnologia under the project
PEst-C/MAT/UI0324/2011.

1

2 ALESSANDRO CONFLITTI AND RICARDO MAMEDE

of noncrossing and nonnesting partitions. Specifically, all known results up to now for
generating (not lexicographically) nonnesting partitions use a generating tree approach
which often involve passing through Young tableaux or lattice paths, see [10] and the
references therein.

Likewise, several results exist on Gray codes for different families of permutations, set
partitions, and Catalan classes of objects such as plane trees, Dyck paths, parallelogram
polyominoes, Catalan permutations, etc., see e.g. [3, 5, 6, 7, 9, 14, 15, 16, 21, 26, 29, 30, 44].
Furthermore, Gray codes for noncrossing partitions have recently been obtained in [19],
but so far nothing is known for nonnesting partitions.

Noncrossing partitions are a class of combinatorial objects widely studied, see e.g. [1,
2, 11, 12, 13, 17, 23, 28, 29, 31, 40, 42, 46], and among other things they have applica-
tions to the theory of free probability, see [35, 47, 48]. In particular, there exist several
bijections between noncrossing and nonnesting partitions, see e.g. [12, 13, 17, 23, 28, 42],
so it is very natural to wonder if all results which hold for noncrossing partitions hold for
nonnesting partitions as well. Unfortunately, nonnesting partitions are much more myste-
rious and intricate, and plenty of results valid for noncrossing partitions do not translate
to nonnesting partitions.

In this paper we present Gray codes for the two classes of nonnesting partitions and
sparse partitions, therefore extending the results for noncrossing partitions given in [19],
and we explicitly design efficient algorithms for lexicographical combinatorial generation
of the two sets of nonnesting and sparse nonnesting set partitions.

2. Preliminaries and notations

A set partition π of [n] := {1, . . . , n}, n ≥ 1, is a collection of nonempty disjoint
subsets B1, . . . , Bn of [n], called blocks, whose union is [n]. We call a pair of integers
(i, j) an arc of a set partition π if i and j occur in the same block and j is the least
element of the block greater than i; the first coordinate i of an arc (i, j) is defined to be
an opener and the second coordinate j is defined to be a closer of the set partition π. For
example, π = ({1, 2, 4}, {3, 5}, {6}) is a set partition of [6] with three blocks B1 = {1, 2, 4},
B2 = {3, 5} and B3 = {6}, and the set of arcs is {(1, 2), (2, 4), (3, 5)}, {1, 2, 3} are the
openers and {2, 4, 5} the closers of π. So it is possible for an integer to be at the same time
both an opener and a closer. The set of all set partitions of [n] will be denoted by P (n).
A partition is said to be in standard form if it is written as π = B1/B2/ · · · /Bt, where the
blocks are listed in ascending order according to their smallest element. Any partition
of [n] can be written in sequential form, that is, as a word π = π1π2 · · · πn of length n
over some alphabet such that πi = πj if and only if i, j lie in the same block. A partition
has many sequential forms, one of them being the canonical sequential form, in which the
alphabet is [n] and where πi = j if πi ∈ Bj, for all j. Such words are known as restricted
growth sequences, see [49], in the combinatorial literature and they are characterized by
the following properties: π1 = 1 and

πi ≤ 1 + max{π1, . . . , πi−1}, for i = 2, . . . , n.

The latter condition restricts the growth of the letters in the word by requiring πi to be at
most one more than the maximum of the previous letters. Note that each partition has a
unique canonical sequential form: for instance, 12123 is the canonical sequential form, and
13/24/5 is the standard form of the partition π = ({1, 3}, {2, 4}, {5}). In the following,
we shall represent set partitions as words using their (canonical) sequential forms.

3

Given two partitions π, ω of [n], their distance, see [18], is defined as the minimum
number of letters that must be deleted from [n] so that the two residual induced partitions
are identical:

D(π, ω) = min{|Ac| : ∅ ⊂ A ⊆ [n], π|A = ω|A},
where Ac is the complement of A in [n] and π|A is the partition of A induced by π. In other
words, D(π, ω) is equal to the minimum number of letters that must be moved between
blocks of π so that the resulting partition is ω. In particular, D(π, ω) = 1 if the two
partitions differ by taking exactly one element from one block and moving it into another
one, possible creating a singleton, i.e. a block with a single element. When a letter moves
from block Bi to block Bj it may happen that the relative position of the blocks in the
partition are changed; this means that we may have two partitions with distance 1 whose
canonical sequential forms differ in more that one letter. For instance, the partitions
π = 11123 and ω = 12134 have distance 1. Note however that if we represent π as
π = 11134, then between this one and the canonical sequential representation of ω only
one letter is changed. Therefore, two partitions represented in canonical sequential form
have distance 1 if and only if they either differ by a single letter, or there is a sequential
representation for one of them such that this representation and the canonical sequential
form of the other differ by a single letter.

A nonnesting set partition of [n] is a partition of [n] such that if a < b < c < d and
a, d are consecutive elements of a block, then b and c cannot both be contained in some
other block. We denote by NN(n) the set of all nonnesting set partitions of [n], and by
NN(n, k) the set of nonnesting set partitions having exactly k blocks, 1 ≤ k ≤ n. The
number of nonnesting set partitions of [n] is equal to

|NN(n)| = 1

n

(
2n

n− 1

)
,

and the number of nonnesting set partitions of [n] with exactly k blocks is equal to

|NN(n, k)| = 1

n

(
n

k

)(
n

k − 1

)
,

the Catalan and Narayama number, respectively.

We can endow the sets NN(n) and NN(n, k) with a graph structure by declaring two
partitions adjacent if their distance is 1. We use the same notation for the set of nonnesting
partitions and the corresponding graph. A Hamilton path with distance 1 in NN(n) or
NN(n, k) corresponds to an exhaustive sequence of the nonnesting partitions of [n] such
that the distance between two successive partitions is 1, and thus it gives a Gray code for
these objects. If this path is closed then obviously we have a Hamilton cycle.

There are several bijections between noncrossing and nonnesting set partitions (see, for
example [2, 13, 17, 28, 42]), and since in [19] a Gray code for noncrossing partitions is
presented, it is tempting to try employing these bijections in order to obtain a Gray code
for nonnesting partitions. But, as referred in [45], a Gray code for a combinatorial class is
intrinsically bound to the representation of objects in the class, and in the present case,
the Gray code is not preserved under bijection.

3. The Gray codes

One of the oldest and more important tools used to produce a Gray code for general
set partitions of [n] is the recursive algorithm described in [21], which is also one of the

4 ALESSANDRO CONFLITTI AND RICARDO MAMEDE

main ingredient for some of the constructions in [19]. We show that the ideas behind that
recursive algorithm can be used to construct Gray codes for a larger set of partitions,
namely sparse partitions and nonnesting partitions. A set partition of [n] is said to be
sparse, see [33], if for every i ∈ [n−1] the values i and i+1 lie in two distinct blocks. Denote
by SP(n) the set of sparse set partitions of [n]; it is easy to check that the cardinality of
SP(n) is equal to the number of set partitions of [n − 1]. A bijection between these two
sets can be construct as follows (see [11, 24, 39]). Take a set partition π of [n − 1], and
consider each factor of two or more consecutive letters in the canonical sequential form of
π. For each one of these factors, say πiπi+1 · · · πj, replace with n the letters πi+2k+1 for k
such that i + 1 ≤ i + 2k + 1 ≤ j, and adjoin n at the right end side of π. The resulting
partition is clearly in SP(n), and this is a bijection: to reconstruct the original partition
of [n− 1] just remove the n–th letter and replace each other letter n by the letter sitting
on its left.

Let T(n) be one of the sets SP(n) or NN(n) and let π be a partition in T(n). Following
the terminology of [21], by a children of π we mean any partition of [n+ 1] obtained from
π by inserting a letter at the right of the rightmost letter of π such that the resulting
partition is in T(n + 1). We denote by CT(π) the set of all children of π and we remark
that this set is never empty since the child π∗ obtained by adjoining n + 1 on the right
of π, is in CT(π). Moreover, every partition in T(n + 1) has a unique parent in T(n)
obtained by removing the letter in the (n+ 1)-th position.

The following Lemmata are immediate from the definitions, and they are a generaliza-
tion of those presented in [19].

Lemma 3.1. The distance between two children of the same partition is 1.

Lemma 3.2. If the distance between two partitions π and ω of [n] is 1, then the same
holds for the partitions π∗ and ω∗.

These two Lemmata show that all siblings of a partition of T(n) induce a complete
subgraph of T(n + 1), and that the sets CT(π) and CT(ω), of siblings of two adjacent
partitions π, ω ∈ T(n), are linked by at least a pair of adjacent partitions. In fact
something stronger is true, since the following Lemma assures the existence of at least
one more pair of adjacent partitions linking the two sets.

Lemma 3.3. If the distance between partitions π, ω ∈ T(n) is 1, then there exist children
π̂ 6= π∗ of π and ω̂ 6= ω∗ of ω such that their distance is also 1.

Proof. There exist sequential representations of π and ω, not necessarily both in canonical
sequential form, such that π = π1 · · · πn and ω = ω1 · · ·ωn, with π` = ω`, for all ` 6= i,
and πi 6= ωi for some i ∈ [n]. If T(n) = NN(n), consider the partitions π̂ = π1 · · · πnπn
and ω̂ = ω1 · · ·ωnπn. If i 6= n then πn = ωn and therefore π̂ and ω̂ are nonnesting with
distance 1. On the other hand, if i = n then we must have πn−1 = ωn−1, and again this
implies that π̂ and ω̂ are nonnesting and have distance 1.

Consider now the case T(n) = SP(n). If i 6= n − 1, consider the partitions π̂ =
π1 · · · πnπn−1 and ω̂ = ω1 · · ·ωnπn−1, and if i = n − 1 consider π̂ = π1 · · · πnπn−2 and
ω̂ = ω1 · · ·ωnπn−2. In both cases the partitions π̂ and ω̂ are sparse and their distance is
1. �

We give now a recursive construction of a Gray code with distance 1 for the set T(n).
The construction is trivial for n = 1, 2 and such a Gray code for SP(3) and NN(3) is
presented in Figures 3.1 and 3.2, respectively.

5

L3 L4 L5

121 1213 12134
12132
12131

1212 12121
12123

123 1232 12324
12321
12323

1231 12313
12312
12314

1234 12345
12343
12342
12341

Figure 3.1. Gray codes for SP(n), n = 3, 4, 5

L3 L4 L5

111 1112 11123 12334 12223
1111 11122 12333 12222

121 1211 11121 12343 12232
1212 11111 12342 12234
1213 11112 12344 12233

123 1233 12113 12345 11233
1234 12111 12341 11234
1231 12121 12311 11232
1232 12122 12312 11231

122 1222 12123 12313 11211
1223 12133 12314 11213

112 1123 12131 12324 11212
1121 12132 12322 11222
1122 12134 12323 11223

Figure 3.2. Gray codes for NN(n), n = 3, 4, 5, where the columns are
read top to bottom, and left to right.

Suppose, inductively, that we know the list Ln, the Gray code sequence of all partitions
in T(n) with distance 1, for some n ≥ 3. Construct the list Ln+1 as follows: take the first
partition π in Ln and list all its children, starting with π∗ and ending with a partition
π̂ adjacent to some child ω̂ 6= ω∗ of the second partition ω in Ln. Go to ω̂ and then list
the remaining children of ω ending with ω∗. From here the process repeats itself, starting
with the next partition in Ln, until we get to the last partition in Ln.

Theorem 3.4. The list Ln is a Gray code with distance 1 for the partitions in T (n), for
n ≥ 3.

6 ALESSANDRO CONFLITTI AND RICARDO MAMEDE

Proof. Note that Ln is a list of all partitions in T(n), since every partition in this set has a
parent in T(n−1) and we start the induction with the list L3 given in Figures 3.1 and 3.2,
which are the complete list of sparse and nonnesting partitions of [3], respectively. Given
two consecutive partitions in Ln two cases can happen: either they are siblings or they are
children from adjacent partitions in Ln−1. In the first case Lemma 3.1 assures that their
distance is 1, and in the second case their construction and the fact that the distance is
1 are guaranteed by Lemmata 3.2 and 3.3. �

The above construction can be rearranged in order to give Hamilton cycles for SP(n)
and NN(n). We start with the set of sparse partitions of [n], for which we need to specify
some special partitions.

Definition 3.5. For n ≥ 4 and ` ∈ [n − 2], let γn, δn and ηn` be the following sparse
partitions, written in canonical sequential form: γn = 12 · · ·n, δn = 12134 · · · (n− 1) and
ηn` = 12 · · · (n− 1)`.

Note that the distance between the partitions γn and δn, and between γn and ηn` is 1.
Also, we have (γn)∗ = γn+1, (δn)∗ = δn+1 and (ηn`)∗ = 12 · · · (n− 1)`n. The next Lemma
highlights the connections between the children of γn and ηn` .

Lemma 3.6. There are n − 1 pairs of partitions γ̂ and η̂ with distance 1, where γ̂ is a
child of γn and η̂ is a child of ηn` , for some ` ∈ [n− 2].

Proof. The children of γn are the partitions

ηn+1
j = 12 · · ·nj, for j ∈ [n− 1] and (γn)∗ = 12 · · ·n(n+ 1),

and the children of ηn` are

12 · · · (n− 1)`j, for j ∈ [n] \ {`}.
Therefore, we can consider the pair (γn)∗ and (ηn`)∗ = 12 · · · (n − 1)`n of children of
γn and ηn` , and also the pairs γ̂ and η̂, where γ̂ = 12 · · ·nj and 12 · · · (n − 1)`j, for all
j ∈ [n] \ {`, n}, all of which have distance 1. �

To construct a Hamilton cycle in SP(n) we need to consider the parity of SP(n − 1).
Note that SP(3) is just the cycle 123, 121 with distance 1.

Theorem 3.7. For n ≥ 4 the graph SP (n) has a Hamilton cycle with distance 1, where
γn is adjacent to δn and ηn` , for some ` ∈ [n− 2].

Proof. The proof is by induction on n ≥ 4. The case n = 4 is displayed in Figure 3.1.
Assume the result for n ≥ 4 and let

Sn = γn, δn, π, . . . , ω, ηn`

be a Hamilton cycle in the graph SP(n), for some ` ∈ [n − 2]. Start the Hamilton cycle
Sn+1 in SP(n + 1) with the child (γn)∗ of γn, and then go to (δn)∗. Go through all the
remaining children of δn (the order does not matter because each one has distance 1 from
all others, see Lemma 3.1; the important point is only to choose wisely the first and the

last child to visit) ending with a partition δ̂n adjacent to some child π̂ 6= π∗ of π. Next,
follow the construction given for Ln till we get to ω∗.

If the number of elements of Sn is odd, then ω∗ is the first child in CSP(n)(ω) to be
linked. As before, go through all the remaining elements of this set (again, the order does
not matter because each one has distance 1 from all others, see Lemma 3.1, so it is just

7

important to choose correctly the first and the last child to visit) ending with a partition
ω̂ adjacent to some child η̂ = 12 · · · (n− 1)`j of ηn` , for some j ∈ [n] \ {`, n}. Go through
the remaining siblings of η̂ ending on 12 · · · (n − 1)`k, for some k ∈ [n] \ {`, j, n}. By
Lemma 3.6, this partition exists and can be linked to the child 12 · · ·nk of γn.

Go through all the remaining children of γn (again, the order does not matter because
each one has distance 1 from all others, see Lemma 3.1, so it is important only to choose
correctly the first and the last child to visit) ending with (γn)∗ to close the cycle.

Otherwise, if Sn has an even number of elements, follow the construction for the even
case till we get to partition ω∗, which is now the last child of ω to be inserted in the cycle
Sn+1. Next, go to (ηn`)∗ and go through all the remaining children of ηn` (in any order since
each one has distance 1 from all others, see Lemma 3.1; the only important point is the
choose wisely the first and the last child to visit) ending with some η̂ = 12 · · · (n− 1)`k,
for some k ∈ [n− 1] \ {`}. Again Lemma 3.6 guarantees that this is feasible and that this
partition can be followed by the child 12 · · ·nk of γn. Go through the remaining children
of γn, ending on (γn)∗ to close the cycle.

As in the proof of Theorem 3.2, it is easy to check that in both cases the cycle Cn+1

contains all partitions in NN(n + 1) and that the distance between any two consecutive
partitions is 1. �

Consider next the problem of constructing a Hamilton cycle for the set of nonnesting
partitions of [n]. In order to solve it, we need to consider the parity of the cardinality of
set NN(n− 1), and two special partitions.

Definition 3.8. For n ≥ 3, define the partitions λn = 1n and νn = 121n−2.

The partitions λn and νn are nonnesting and their children are

CNN(n)(λ
n) = {λn+1, (λn)∗} and CNN(n)(ν

3) = {1211, 1212, 1213},
with CNN(n)(ν

n) = {νn+1, (νn)∗} for n > 4. Note also that

CNN(n)((λ
n−1)∗) = {1n−123, 1n−122, 1n−121}.

Theorem 3.9. For n ≥ 3 there exists a Hamilton cycle with distance 1 in NN(n), where
λn is adjacent to νn and (λn−1)∗.

Proof. The construction is done by induction on n ≥ 3, following closely the construction
of Ln. The case n = 3 is shown in Figure 3.2. Assume that the result holds for n ≥ 3 and
let

Cn = λn, νn, π, . . . , ω, (λn−1)∗

be a Hamilton cycle with distance 1 in NN(n). We can now construct the Hamilton cycle
Cn+1, which depends on the parity of the number of elements of NN(n).

If |NN(n)| is even, start the cycle with the child λn+1 of λn. The next partition in Cn+1

is νn+1 followed by its only sibling (νn)∗. From here go to π∗ and follow the construction
given for Ln till we get to ω∗. The condition of being even guarantees that this partition is
the first child of C(ω) in the list Cn+1. Go through all the remaining children of C(ω) (the
order does not matter because each one has distance 1 from all others, see Lemma 3.1;
only it is crucial to choose correctly the first and the last child to visit) ending with a
partition adjacent to one of the two children of (λn−1)∗, other than ((λn−1)∗)∗. Go to the
next child in the set C((λn−1)∗) \ {((λn−1)∗)∗} and then to ((λn−1)∗)∗. Next, go to (λn)∗

and finally to λn+1, thus completing the Hamilton cycle.

8 ALESSANDRO CONFLITTI AND RICARDO MAMEDE

If |NN(n)| is odd follow the construction of the even case from λn+1 till the partition
ω∗. Now, the odd condition guarantees that this is the last child of C(ω) in the list. Next,
place the children ((λn−1)∗)∗, 1n−121, 1n−122 of C(νn), by this order, and then go to (λn)∗

followed by λn+1 to complete the cycle.

As in the proof of Theorem 3.2, it is easy to check that in both cases the cycle Cn+1

contains all partitions in NN(n + 1) and that the distance between any two consecutive
partitions is 1. �

4. Lexicographical combinatorial generation

Usually the study of set partitions of [n] having a specific property, e.g. being non-
crossing , nonnesting, sparse, etc., is refined by considering all such partitions which have
exactly k blocks. In this sections we consider arcs instead of blocks, investigating nonnest-
ing and sparse nonnesting partitions of [n] which have exactly k arcs, since in this way all
results are much easier to state and prove. However we remark that we can safely choose
arcs instead of blocks without losing in generality because of the following result.

Proposition 4.1. Consider π ∈ P (n), where n ≥ 1 is an integer, and let block (π) be
the set of its blocks and arc (π) be the set of its arcs; then the equality

block (π) + # arc (π) = n

holds.

Proof. By definition, ∑
B∈block(π)

#B = n,

and obviously in any B ∈ block (π) there are exactly #B−1 arcs of π, viz. B contributes
to arc (π) with #B − 1 arcs. For any B ∈ block (π) let arcB (π) be the set of arcs in π
which are inside the block B; then by definition of arc we have

arc (π) =
∑

B∈block(π)

arcB (π) ,

therefore

n =
∑

B∈block(π)

#B =
∑

B∈block(π)

(1 + # arcB (π))

= # block (π) +
∑

B∈block(π)

arcB (π) = # block (π) + # arc (π) .

�

Hence defining SNN (n) to be the set of sparse nonnesting partitions of [n], NN (n, k)
and SNN (n, k) to be the sets of nonnesting, respectively sparse nonnesting, partitions of
[n] with exactly k blocks, and NN [n, k] and SNN [n, k] to be the sets of nonnesting, respec-
tively sparse nonnesting, partitions of [n] with exactly k arcs, we get the two following set
equality: NN [n, k] = NN (n, n− k) and SNN [n, k] = SNN (n, n− k), for k = 0, . . . , n−1.

Now we present a characterization of the set of nonnesting partitions which, albeit very
simple to prove, will demonstrate itself to be the key ingredient in designing an efficient
algorithm for the combinatorial generation of such set.

9

Lemma 4.2. Let n ≥ 2 be an integer number and π a set partition of [n] with
(o1, c1) , . . . , (ok, ck) the couples of all its openers and corresponding closers, i.e. all the
arcs of π.

Then the two following statements are equivalent:

(1) π ∈ NN (n),
(2) if o1 < . . . < ok then c1 < . . . < ck.

Proof. Obviously without loss of generality up the a rearrangement we can always suppose
that o1 < . . . < ok. From the definition it is straightforward that there is a nesting if and
only if ci ≥ cj for i < j. �

In general, given π ∈ P (n) there is no univocal natural ordering of the arcs because it
depends whether openers or closers are considered: for instance, if π = {{1, 4}, {2, 3}},
then (1, 4), (2, 3) is the natural arrangement according to openers, but according to closers
the natural one is (2, 3), (1, 4). However, because of the previous Lemma, we see that there
is no such ambiguity when π ∈ NN (n).

Given π ∈ NN (n), let (o1, c1) , . . . , (ok, ck) be all its arcs ordered according to openers
(or closers, because of Lemma 4.2), i.e. if i < j then oi < oj; obviously we can univocally
represent π with the data structure Arch (π) given by the following integer sequence: if
π has no arcs, i.e. π = {{1}, . . . , {n}}, the partitions made by all singleton blocks, then
Arch (π) := (∅), whereas if π admits some arcs then Arch (π) := (o1, c1, . . . , ok, ck).

On the other hand, given an integer n ≥ 1 and an integer sequence S = (a1, . . . , a2k)
for some 1 ≤ k ≤ n− 1 such that

1 ≤ a2t−1 < a2t ≤ n for all t = 1, . . . , k

a2t−1 < a2t+1 for all t = 1, . . . , k − 1

a2t < a2(t+1) for all t = 1, . . . , k − 1

we can univocally associate them a partition π ∈ NN [n, k], since clearly S = Arch (π).

We explicitly present now an algorithm which generates NN [n, k] and SNN [n, k] start-
ing from NN [n, k − 1] and SNN [n, k − 1], respectively.
In order to show the extremely close similarities between the generation of these two sets,
NN [n, k] and SNN [n, k], we consider a flag variable b such that

b =

{
0 if we are generating NN [n, k] from NN [n, k − 1]

1 if we are generating SNN [n, k] from SNN [n, k − 1]

therefore we can just present a unified design of such algorithm.

Algorithm 4.3 (Gen(n, k, b)).
If k = 0 then Output: π such that Arch (π) = (∅);

else

Begin

Input: π1, . . . , πt, output of Gen(n, k − 1, b) in the order in which they are gen-
erated;

For i := 1 to t do

Begin

If k = 1 then

10 ALESSANDRO CONFLITTI AND RICARDO MAMEDE

Begin

loi := 0;

lci := 1;

End

else /∗ i.e. If k ≥ 2 ∗/
Begin

loi := largest opener of πi;

/∗ i.e. loi := ok−1, the 2k − 3 coordinate in Arch (πi) ∗/
lci := largest closer of πi;

/∗ i.e. lci := ck−1, the 2 (k − 1) coordinate in Arch (πi) ∗/
End

For o := loi + 1 to n− 1 do

Begin

for c := max{o+ 1 + b, lci + 1} to n do Output: π such that Arch (π) =
(Arch (πi) , o, c);

End

End

End

Before proving the validity of this algorithm we describe one important property.
This algorithm endows NN [n, k], and therefore all its subsets, like for instance
SNN [n, k], with a total order �, denoted as the lexicographical order, given by the order
of output generation. This order is the following:

π � τ if and only if Arch (π) ≤ Arch (τ) lexicographically.

Proposition 4.4. For all integers 0 ≤ k ≤ n − 1, b = 0, respectively b = 1, the al-
gorithm Gen(n, k, b) combinatorially generates NN [n, k], respectively SNN [n, k], in the
lexicographical order.

Furthermore, Gen(n, k, b) has optimal computational complexity.

Proof. Consider first the case b = 0; we have to show that all and only π ∈ NN [n, k] are
generated, that each such partition is generated exactly once, and that this generation is
in lexicographical order. If k = 0 then this is obvious since there is only one partition in
π ∈ NN [n, 0], namely π such that Arch (π) = (∅).

If k > 0 then given π ∈ NN [n, k] consider Arch (π) := (o1, c1, . . . , ok, ck); because of
Lemma 4.2, (o1, c1, . . . , ok−1, ck−1) equals Arch (π′) for some π′ ∈ NN [n, k − 1], and since
in our algorithm we consider all such π′ and all possible ways to add the last arc (ok, ck)
in π we are clearly generating all π ∈ NN [n, k], and nothing else, since we are adding
to a nonnesting partition only one arc whose closer is larger than all others. Moreover,
it is clear that we cannot generate twice the same partition π ∈ NN [n, k] because given
π′ ∈ NN [n, k − 1] the last arc (ok, ck) that we are adding in order to obtain π is always
“greater” (according to both openers and closers) of all arcs in π′.

Finally, this generation is in lexicographical order. In fact, consider two partitions π and
τ such that τ is generated (immediately) after π, and the corresponding arrays Arch (π) =

11

(o1 (π) , c1 (π) , . . . , ok (π) , ck (π)) and Arch (τ) = (o1 (τ) , c1 (τ) , . . . , ok (τ) , ck (τ)). By in-
duction (o1 (π) , c1 (π) , . . . , ok−1 (π) , ck−1 (π)) ≤ (o1 (τ) , c1 (τ) , . . . , ok−1 (τ) , ck−1 (τ)) lex-
icographically, and if the equality holds then (ok (π) , ck (π)) ≤ (ok (τ) , ck (τ)) lexicograph-
ically, because of the design of the two for loops.

If b = 1 all the above reasonings apply, and the only thing one has to check is that the
generated partitions are actually sparse, i.e. the distance between every opener and its
corresponding closer is at least 2, but this is true because of induction for the first k − 1
arcs and the flag variable set to 1 in the internal for loop for the last arc.

Lastly, Gen(n, k, b) has optimal computational complexity because it is clearly a linear
output–sensitive combinatorial generation algorithm, see [38]. �

It is known that # SP (n+ 1) = #P (n), see e.g. [24, 39, 52], and combining the main
result of [11] with one of the known bijections linking noncrossing and nonnesting par-
titions, we get that # NN (n, k) = # SNN (n+ 1, k), but the resulting bijection which
exhibits such equality is extremely complicated and “ugly”.

Using Algorithm Gen(n, k, b) we show the equality # NN [n, k] = # SNN [n+ 1, k] for
all integers n ≥ 1 and 0 ≤ k ≤ n − 1, and we explicitly exhibit a bijection between the
two sets which is extremely easy to present and compute.

In fact, the two algorithms Gen(n, k, 0) and Gen(n+1, k, 1) give a (possibly partial) in-
jective map Φ between NN [n, k] and SNN [n+ 1, k], matching the i–th generated partition
of Gen(n, k, 0) with the i–th generated partition of Gen(n+ 1, k, 1).

From an analysis of the two algorithms we see that actually Φ has an extremely simple
and nice form, and it is indeed a bijection. In fact, if k = 0 then obviously # NN [n, 0] =
SNN [n+ 1, 0] = 1, so everything is trivial, whereas if k ≥ 1 for any π ∈ NN [n, k]
consider Arch (π) = (o1, c1, . . . , ok, ck); then Φ (π) is such that
Arch (Φ (π)) = (o1, c1 + 1, . . . , ok, ck + 1).

We conclude this section with some instances of partitions generated by running
Gen(n, k, b). For the sake of conciseness and lucidity of exposition, we consider

Algorithm 4.5 (GenTot(n, b)).
For k := 0 to n− 1 do Gen(n, k, b).

and present the output of GenTot(4, 0) and GenTot(5, 1) in the correct order of gener-
ation, representing partitions both according their blocks and using Arch notation.

Example 4.6.

12 ALESSANDRO CONFLITTI AND RICARDO MAMEDE

Output of GenTot(4, 0) Output of GenTot(5, 1)

Block notation Arch

{{1},{2},{3},{4}} (∅)
{{1,2},{3},{4}} (1, 2)
{{1,3},{2},{4}} (1, 3)
{{1,4},{2},{3}} (1, 4)
{{1},{2,3},{4}} (2, 3)
{{1},{2,4},{3}} (2, 4)
{{1},{2},{3,4}} (3, 4)
{{1,2,3},{4}} (1, 2, 2, 3)
{{1,2,4},{3}} (1, 2, 2, 4)
{{1,2},{3,4}} (1, 2, 3, 4)
{{1,3},{2,4}} (1, 3, 2, 4)
{{1,3,4},{2}} (1, 3, 3, 4)
{{1},{2,3,4}} (2, 3, 3, 4)
{{1,2,3,4}} (1, 2, 2, 3, 3, 4)

Block notation Arch

{{1},{2},{3},{4},{5}} (∅)
{{1,3},{2},{4},{5}} (1, 3)
{{1,4},{2},{3},{5}} (1, 4)
{{1,5},{2},{3},{4}} (1, 5)
{{1},{2,4},{3},{5}} (2, 4)
{{1},{2,5},{3},{4}} (2, 5)
{{1},{2},{3,5},{4}} (3, 5)
{{1,3},{2,4},{5}} (1, 3, 2, 4)
{{1,3},{2,5},{4}} (1, 3, 2, 5)
{{1,3,5},{2},{4}} (1, 3, 3, 5)
{{1,4},{2,5},{3}} (1, 4, 2, 5)
{{1,4},{2},{3,5}} (1, 4, 3, 5)
{{1},{2,4},{3,5}} (2, 4, 3, 5)
{{1,3,5},{2,4}} (1, 3, 2, 4, 3, 5)

5. Open problems

The notion of nonnesting set partition exists in all classical reflection groups, see e.g. [2,
12, 13, 40], so it is quite natural to ask for a generalization of our results to Weyl groups
of type B and D.

Open problem 5.1. Obtain Gray codes and efficient combinatorial generation algorithms
for the sets of nonnesting partitions in Weyl groups of type B and D.

To the best of our knowledge, so far the only results in this direction are the design of
Gray codes for set partitions in classical Weyl groups, see [14, 26], but nothing at all is
known when the nonnesting condition is added.

References

[1] D. Armstrong, ‘Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups’, Mem.
Amer. Math. Soc. 202 (2009), no. 949.

[2] C. A. Athanasiadis, ‘On noncrossing and nonnesting partitions for classical reflection groups’,
Electron. J. Comb. 5 (1998), Research Paper 42, 16pp (electronic).

[3] S. Bacchelli, E. Barcucci, E. Grazzini and E. Pergola, ‘Exhaustive generation of combinatorial
objects by ECO’, Acta Inform. 40 (2004), 585–602.

[4] E. Barcucci , A. Del Lungo, E. Pergola and R. Pinzani, ‘ECO: a methodology for the enumeration
of combinatorial objects’, J. Differ. Equations Appl. 5 (1999), 435-490.

[5] J.–L. Baril, ‘Gray code for permutations with a fixed number of cycles’, Discrete Math. 307 (2007),
1559-1571.

[6] J.–L. Baril, ‘More restrictive Gray codes for some classes of pattern avoiding permutations’, In-
form. Process. Lett. 109 (2009), 799-804.

[7] J.–L. Baril and V. Vajnovszki, ‘Gray code for derangements’, Discrete Appl. Math. 140 (2004),
207-221.

13

[8] B. Bauslaugh and F. Ruskey, ‘Generating alternating permutations lexicographically’, BIT 30
(1990), 17-26.

[9] A. Bernini, I. Fanti and E. Grazzini, ‘An exhaustive generation algorithm for Catalan objects and
others’, Pure Math. Appl. (PU.M.A.) 17 (2006), 39-53.

[10] S. Burrill, S. Elizalde, M. Mishna and L. Yen, ‘A generating tree approach to k–nonnesting par-
titions and permutations’, preprint, available at http://front.math.ucdavis.edu/1108.5615

[11] W. Y. Chen, E. Y. Deng and R. R. X. Du, ‘Reduction of m–regular noncrossing partitions’,
European J. Combin. 26 (2005), 237-243.

[12] A. Conflitti and R. Mamede, ‘Bijecções entre partições que não cruzam e partições que não en-
caixam’, Bol. Soc. Port. Mat. Número Especial, Actas do Encontro Nacional da SPM, Leiria 2010,
20–27.

[13] A. Conflitti and R. Mamede, ‘On noncrossing and nonnesting partitions of type D’, Ann. Comb.
15 (2011), 637–654.

[14] J. H. Conway, N. J. A. Sloane and A. R. Wilks, ‘Gray codes for reflection groups’, Graphs Combin.
5 (1989), 315-325.

[15] W. M. B. Dukes, M. F. Flanagan, T. Mansour and V. Vajnovszki, ‘Combinatorial Gray codes for
classes of pattern avoiding permutations’, Theoret. Comput. Sci. 396 (2008), 35-49.

[16] G. Ehrlich, ‘Loopless algorithms for generating permutations, combinations, and other combina-
torial configurations’, J. Assoc. Comput. Mach. 20 (1973), 500-513.

[17] A. Fink and B. I. Giraldo, ‘Bijections between noncrossing and nonnesting partitions for classical
reflection groups, Port. Math. 67 (2010), 369-401.

[18] D. Gusfield. ‘Partition-distance: a problem and class of perfect graphs arising in clustering’, In-
form. Process. Lett. 82 (2002), 159–164.

[19] C. Huemer, F. Hurtado, M. Noy and E. Omaña–Pulido, ‘Gray codes for non–crossing partitions
and dissections of a convex polygon’, Discrete Appl. Math. 157 (2009), 1509–1520.

[20] A. Itai, ‘Generating permutations and combinations in lexicographical order’ J. Braz. Comp. Soc.
7 (2001), 65–68.

[21] R. Kaye, ‘A Gray code for set partitions’, Information Processing Lett. 5 (1976), 171–173.
[22] R. Kemp, ‘Generating words lexicographically: an average-case analysis’, Acta Inform. 35 (1998),

17-89.
[23] J. S. Kim, ‘New interpretations for noncrossing partitions of classical types’, J. Combin. Theory

Ser. A 118 (2011), 1168-1189.
[24] M. Klazar, ‘Counting set systems by weight’, Electron. J. Comb. 12 (2005), Research Paper 11,

8pp (electronic).
[25] D. E. Knuth, The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1,

Addison–Wesley Professional, 2011
[26] J. Korsh and S. Lipschutz, ‘Gray code and loopless algorithm for the reflection group Dn’, Pure

Math. Appl. (PU.M.A.) 17 (2006), 135-146.
[27] D. L. Kreher and D. R. Stinson, Combinatorial Algorithms: Generation, Enumeration, and Search,

CRC Press Series on Discrete Mathematics and Its Applications, CRC Press, Boca Raton, Florida,
1998.

[28] R. Mamede, ‘A bijection between noncrossing and nonnesting partitions of types A, B and C’,
Contrib. Discrete Math. 6 (2011), 70–90.

[29] T. Mansour, Combinatorics of set partitions, Discrete Mathematics and its Applications (Boca
Raton), CRC Press, Boca Raton, FL, 2013.

[30] T. Mansour and G. Nassar, ‘Gray codes, loopless algorithm and partitions’, J. Math. Model.
Algorithms 7 (2008), 291-310.

[31] J. McCammond, ‘Noncrossing partitions in surprising locations’, Amer. Math. Monthly 113
(2006), 598-610.

[32] M. E. Nebel, ‘On the lexicographical generation of compressed codes’, Inform. Process. Lett. 104
(2007), 95-100.

[33] J. Němeček and M. Klazar, ‘A bijection between nonnegative words and sparse abba–free parti-
tions’, Discrete Math. 265 (2003), 411-416.

[34] A. Nijenhuis and H. W. Wilf, Combinatorial algorithms, 2nd edition, Academic Press, New York–
London, 1978.

[35] A. Nica and R. Speicher, Lectures on the combinatorics of free probability, London Mathematical
Society Lecture Note Series 335, Cambridge University Press, Cambridge 2006.

14 ALESSANDRO CONFLITTI AND RICARDO MAMEDE

[36] R. J. Ord-Smith, ‘Algorithms: Algorithm 323: Generation of permutations in lexicographic order’,
Comm. ACM 11 (1968), 117.

[37] M. Poneti and V. Vajnovszki, ‘Generating restricted classes of involutions, Bell and Stirling per-
mutations’, European J. Combin. 31 (2010), 553-564.

[38] F. P. Preparata and M. I. Shamos, Computational geometry. An introduction, Springer–Verlag,
New York, 1985.

[39] H. Prodinger, ‘On the number of Fibonacci partitions of a set’, Fibonacci Quart. 19 (1981), 463-
465.

[40] V. Reiner, ‘Non–crossing partitions for classical reflection groups’, Discrete Math. 177 (1997),
195–222.

[41] E. M. Reingold, J. Nievergelt and N. Deo, Combinatorial algorithms: theory and practice, Prentice–
Hall, Inc., Englewood Cliffs, N.J., 1977.

[42] M. Rubey and C. Stump, ‘Crossing and nestings in set partitions of classical types’, Electron. J.
Comb. 17 (2010), Research Paper 120, 19pp (electronic).

[43] F. Ruskey, Combinatorial Generation, available on
http://www.1stworks.com/ref/RuskeyCombGen.pdf

[44] F. Ruskey and C. Savage, ‘Gray codes for set partitions and restricted growth tails’, Australas. J.
Combin. 10 (1994), 85-96.

[45] C. Savage, ‘A survey of combinatorial Gray codes’, SIAM Rev. 39 (1997), 605-629.
[46] R. Simion, ‘Noncrossing partitions’, in Formal power series and algebraic combinatorics (Vienna,

1997), Discrete Math. 217 (2000), 367–409.
[47] R. Speicher, ‘Free probability theory and non-crossing partitions’, Sém. Lothar. Combin. 39 (1997),

Art. B39c, 38 pp. (electronic).
[48] R. Speicher, ‘Combinatorial theory of the free product with amalgamation and operator–valued

free probability theory’, Mem. Amer. Math. Soc. 132 (1998).
[49] D. Stanton and D. White, Constructive Combinatorics, Springer–Verlag, New York 1986.
[50] V. Vajnovszki, ‘Generating involutions, derangements, and relatives by ECO’, Discrete Math.

Theor. Comput. Sci. 12 (2010), 109-122.
[51] H. S. Wilf, Combinatorial algorithms: an update, CBMS-NSF Regional Conference Series in Ap-

plied Mathematics 55, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1989.

[52] W. Yang, ‘Bell numbers and k–trees’, Discrete Math. 156 (1996), 247-252.
[53] S. Zaks, ‘Lexicographic generation of ordered trees’, Theoret. Comput. Sci. 10 (1980), 63-82.
[54] S. Zaks and D. Richards, ‘Generating trees and other combinatorial objects lexicographically’,

SIAM J. Comput. 8 (1979), 73-81.

CMUC, Centre for Mathematics, University of Coimbra, Apartado 3008, 3001–454
Coimbra, Portugal

E-mail address: {conflitt,mamede}@mat.uc.pt

