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Abstract. This paper studies injectivity for continuous maps between T0-

spaces. The new characterizations obtained establish a parallelism between

characterizations of injective monotone maps between ordered sets and of in-
jective continuous maps between T0-spaces.

1. Introduction

Injective T0-spaces were characterized by Dana Scott in 1970 [11] as those T0-
spaces which are continuous lattices with respect to their specialization order. The
corresponding fibrewise problem, that is to characterize the continuous maps which
are injective, has proved to be a difficult task. In [5] it was shown that, as injective
T0-spaces are the retracts of powers of the Sierpinski space, injective continuous
maps between T0-spaces are the retracts of partial products of the Sierpinski space.
Moreover, recently in [2] we characterized them using a fibrewise way-below relation,
showing a way of considering a fibrewise notion of continuous lattice. However, a
direct topological characterization of these maps was still missing. As in many
other problems in topology, an analysis of the corresponding results in the context
of ordered sets may give some guidance towards the solution of the problem, since
the category of finite orders and monotone maps is isomorphic to the category of
finite T0-spaces and continuous maps.

In a category C, an objectX is said to be injective if for every extremal monomor-
phism m : M → Y and every morphism g : M → X there exists an extension g of
g to Y , so that the diagram

M
g //

m

��

X

Y

g

>>

is commutative. A morphism f : X → B is injective if it is an injective object in the
comma category C ↓ B; that is, for every extremal monomorphism m : M → Y ,
h : Y → B, g : M → X making the following diagram

M
g //

m

��

X

f

��
Y

h
// B

commute, there exists an extension g of g to Y over B: gm = g and f g = h.
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We recall that, in the category Ord of ordered sets and monotone maps, an
ordered set is injective if, and only if, it is complete. For monotone maps injectivity
can be characterized as follows.
Theorem A. [12] A monotone map f : X → B is injective in Ord ↓ B if and only
if it satisfies the following conditions:

(I) Xb = f−1(b) is complete, for every b ∈ B;
(II) f is a fibration (that is for every x ∈ X and b ∈ B with f(x) ≤ b {x′ ∈

Xb |x ≤ x′} has a minimum element), and a cofibration (=dual of fibration).

Theorem B. [12] A monotone map f : X → B is injective in Ord ↓ B if and only
if it satisfies the following conditions:

(0) f is convex (that is, for all x, y ∈ X, b ∈ B with x ≤ y and f(x) ≤ b ≤ f(y),
there exists z ∈ Xb such that x ≤ z ≤ y).

(I) Xb = f−1(b) is complete, for every b ∈ B;
(III) f is homogeneous (that is for all b ≤ b′ ∈ B, (xi)i∈I and (x′i)i∈I in Xb and

Xb′ respectively, with xi ≤ x′i for every i,
∨
xi ≤

∨
x′i, with these joins

calculated in the fibres) and cohomogeneous (=dual of homogeneous).

In this paper we present characterizations of injective continuous maps that re-
semble the results of Ord. While the characterization of Theorem 3.8 has no direct
connection to Theorems A and B, Theorems 4.7 and 5.3 are topological instances of
Theorems A and B. Indeed, in topology condition (I) translates into the condition
(1) Xb is a continuous lattice for each b ∈ B, used throughout the paper, while con-
vexity for monotone maps is categorically characterized as exponentiability, used
in our Theorem 5.3. For finite spaces, both conditions (2) and (2′′) coincide with f
being a fibration in the sense of condition (II), while condition (3′) translates into
homogeneity of f . (See also [3], where our focus was on the parallelism between
these conditions.)

Injective continuous maps are part of a weak factorization system as explained in
[1, 2]. They played a crucial role in the development of the theory of lax orthogonal
factorization systems presented in [8], and we hope that the novelty of our approach
sheds new light to the study of these maps.

2. From injective spaces to injective continuous maps

In this section we review existing results that extend to continuous maps well-
known properties of injective T0-spaces.

As it is well-known, a T0-space is injective if and only if it is a retract of a power
of the Sierpinski space S. The fibrewise version of this result, which extends it, can
be found in [5]. It uses the fact that, for every continuous map f : X → B between
T0-spaces, there is an embedding α : X → (

∏
Top(X,S) S)×B defined by πg ·α = g,

for any g ∈ Top(X,S), and πB · α = f .

Theorem 2.1. A continuous map f : X → B between T0-spaces is injective if,
and only if, it is a (fibrewise) retract of πB : (

∏
Top(X,S) S)×B → B, that is there
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exists a retraction r of α making the diagram

X
α

//

f

))

(
∏

Top(X,S) S)×B

πB

uu

r

rr

B

commute.

In [5] there is another characterization of injective continuous maps in Top0

that will be useful in the sequel, and that focuses on exponentiability. In order
to present it we first recall the notions of exponentiable morphism and of partial
product (see [10] and [9] for details).

Definitions 2.2. In a category C with finite limits,

(1) a morphism f : X → B is said to be exponentiable if the pullback-functor
f ×B − : C ↓ B → C ↓ X has a right adjoint;

(2) given a morphism f : X → B and an object Z, the partial product of Z over f
is a pair (pf : P (f, Z)→ B, ev : P (f, Z)×BX → Z) such that, given any other
pair (g : Y → B, e : Y ×BX → Z), there is a unique morphism ẽ : Y → P (f, Z)
making the following diagram commute:

(2.1)

Y ×B X

f̄

��

e

rr
ẽ×B1vv

ḡ

,,Z P (f, Z)×B Xev
oo //

f̂

��

X

f

��

Y

ẽ

vv

g

,,P (f, Z)
pf

// B

From results of [10, 9, 5] it follows that:

Theorem 2.3. Given a continuous map f : X → B in Top0, the following condi-
tions are equivalent:

(i) f is exponentiable;
(ii) the partial product of the Sierpinski space S over f exists.

We denote by O(X) the topology of the topological space X and by Xb the fibre
f−1(b) of the map f : X → B, for every b ∈ B. Here, in the Sierpinski space
S = {0, 1}, {1} is the non-trivial open subset. Recall, from [10] and [5], that the
partial product of S over f : X → B can be described as:

P (f, S) = {(b, U) | b ∈ B, U ∈ O(Xb)}, pf (b,U) = b,

and U ⊆ P (f, S) is open whenever U is saturated, binding, with the finite union
property, where:

– U is saturated if (b, U) ∈ U and U ⊆ V ∈ O(Xb) implies (b, V ) ∈ U;
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– U is binding if, for every open subset W of X, {b ∈ B | (b,Wb) ∈ U} is open in
B;

– U has the finite union property if, for any b ∈ B and any subset Å of O(Xb), if
(b,
⋃
Å) ∈ U then there is a finite subset F ⊆ Å with (b,∪F) ∈ U.

In this case, given any map g : Y → B and any e : Y ×B X → S, it is easy to give
a description of the map ẽ which corresponds to e by the universal property of the
partial product. Indeed, we have that (for details, see Remark 1.4 in [4]):

ẽ(y) =
(
g(y), g(f

−1
(y) ∩ e−1(1))

)
In particular, if g = 1B and e : X → S is the characteristic map of an open set V
of X, then

ẽ(b) = (b,Xb ∩ V )

Proposition 2.4 ([5]). Let f : X → B be a continuous map in Top0.

1. If f is injective, then it is exponentiable.
2. If f is exponentiable, then:

a. the continuous map pf : P (f, S)→ B is injective;
b. there is an embedding ε : X → P (pf ,S) making the diagram commutative:

(2.2) X
ε //

f ��

P (pf ,S)

ppf{{
B

In the diagram, ε(x) = (f(x),Ox), where Ox = {U ∈ O(Xf(x)) |x ∈ U}, and
ppf (b,U) = b.

These results lead to the characterization of injective continuous maps of [5]:

Theorem 2.5. A continuous map between T0-spaces is injective if and only if it
is a (fibrewise) retract of a partial product of S.

From now on we will consider in Top the specialization preorder, which becomes
an order when restricted to Top0, defined, for every pair of points x, y in a topo-
logical space X and continuous maps f, g : X → Y , by:

x ≤ y if x ∈ {y}; f ≤ g if, for all x ∈ X, f(x) ≤ g(x).

3. Continuous lattices suffice

In this section we will use results of [6] to obtain new characterizations of injective
continuous maps. We start by presenting a theorem that subsumes the arguments
used in the proof of Theorem 1.2 of [6].

Proposition 3.1. Given an adjunction F a G : B → A, with unit η and counit
ε, and classes M and N of embeddings in A and B respectively, with F (M) ⊆ N,
then G(B) is M-injective provided that B is N-injective.

Proof. Assume that B is N-injective and let m : A→ A′ belong to M and f : A→
G(B) be any A-morphism. Since F (m) : F (A)→ F (A′) belongs to N, there exists
f : F (A′) → B such that f · F (m) = εB · F (f). Therefore G(f) · ηA′ ·m = f as
claimed. �
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Theorem 3.2. Given a pair of adjunctions < F,G, η, ε > and < G,H, σ, µ >

A

F //

H
//

⊥

⊥
BGoo

and classes M and N of embeddings in A and B, respectively, with F (M) ⊆ N and
G(N) ⊆M, the following conditions are equivalent, for an A-object A with ηA ∈M:

(i) A is M-injective;
(ii) H(A) is N-injective and ηA is a section.

Proof. (i) ⇒ (ii): From Proposition 3.1 it follows that H(A) is N-injective; more-
over, M-injectivity of A, together with ηA ∈ M, gives the desired retraction for
ηA.

(ii) ⇒ (i): Proposition 3.1 assures that GH(A) is M-injective. To show that A
is M-injective, we show that µA : GH(A)→ A is a retraction, using the retraction
ρ : GF (A) → A of ηA: consider the mate ρ̂ : F (A) → H(A) via the second
adjunction and the commutative diagram

(3.1) A
ηA // GF (A)

ρ //

G(ρ̂) %%

A

GH(A)

µA

<<

�

The category PsTop of pseudotopological spaces is cartesian closed (in fact, a
quasi-topos), hence for every pseudotopological space B the functor ΠB : PsTop→

PsTop ↓ B, with ΠB(X) = (X×B πXB−→ B) and ΠB(f) = f×1B , has a right adjoint
S : PsTop ↓ B → PsTop. We recall that, for every f : X → B,

S(f) = {s : B → X continuous | f · s = 1B}.
(For details on this adjunction we refer to [10], while a description of the pseudo-
topology of S(f) can be found in [7].) Since the functor ΠB is the right adjoint to
the forgetful functor Dom : PsTop ↓ B → PsTop, with Dom(f : X → B) = X
and Dom(h) = h, we can apply Theorem 3.2, considering in both PsTop and
PsTop ↓ B the class H of topological embeddings (that is, embeddings between
topological spaces):

(3.2) PsTop ↓ B

Dom //

S
//

⊥

⊥
PsTopΠBoo

Theorem 3.3. Let X and B be topological spaces. A continuous map f : X → B
is H-injective in PsTop if and only if:

(a) the map 〈1X , f〉 : (X, f)→ (X ×B, πXB ) is a section in PsTop ↓ B;
(b) S(f) is H-injective in PsTop.

Proof. We apply Theorem 3.2 to the adjunctions of (3.2) observing that η(X,f) =
〈1X , f〉. �
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Remarks 3.4. 1. If X and B are topological T0-spaces and the continuous map
f : X → B is injective in Top0 ↓ B, then the Theorem says that 〈1X , f〉 is
a section in Top0 ↓ B. Moreover, if S(f) is a topological T0-space, then f is
injective in Top0 ↓ B provided that 〈1X , f〉 is a section and S(f) is a continuous
lattice.

2. When f : X → B is injective in PsTop ↓ B, diagram (3.1) provides a section
of the evaluation map ev : S(f) × B → X over B. Indeed, if ρ : X × B → X
is a retraction of 〈1X , f〉 in PsTop ↓ B, it defines ρ̂ : X → S(f) so that
ev · 〈ρ̂, f〉 = 1X .

In parallel with the pseudotopological space S(f), for a continuous map f : X →
B between T0-spaces we consider the topological space of continuous sections of f

Sec(f) = {s : B → X continuous | f · s = 1X}

endowed with the subspace topology induced by the embedding

Sec(f)
σ //

∏
b∈B

Xb , with σ(s) = (s(b))b∈B .

Lemma 3.5. The identity map ι : S(f)→ Sec(f) is continuous.

Proof. For any b ∈ B, the evaluation map ev : S(f)×B → X maps S(f)×{b} into
Xb, so that its restriction and corestriction

S(f)
evb // Xb , with evb(s) = s(b),

is continuous. Then, from the equality

( S(f)
evb // Xb ) = ( S(f)

ι // Sec(f)
σ //

∏
b∈B

Xb
πb // Xb ), b ∈ B,

and the fact that σ is an embedding and πb are product projections, it follows that
ι is continuous. �

Proposition 3.6. If f : X → B is injective in Top0 ↓ B, then:

1. For each b ∈ B, Xb is a continuous lattice.
2. For any set of continuous sections of f , its pointwise supremum is continuous.

Proof. 1. Injective maps are pullback-stable, hence Xb → 1 is injective in Top0 ↓ 1,
which is equivalent to injectivity of Xb in Top0, that is Xb is a continuous lattice.

2. Since each fibre Xb is a continuous lattice, the product
∏
b∈B

Xb is a continuous

lattice. Given a set S ⊆ Sec(f), the map š : B → X which assigns to each b ∈ B
the join

∨
{s(b) | s ∈ S} in Xb is a section of f . To show that š is continuous, we

consider the spaces S0 = S ] {0}, with the topology generated by {{s, 0}, s ∈ S},
and S1 = S ] {0, 1}, with the topology generated by {{s, 0, 1}, {0}, s ∈ S}. In
Z = B × S0 and Y = B × S1 we consider the topologies generated by U × W ,
U ⊆ B, W ⊆ Sn, n = 0, 1, such that either both are open or W = {0}. The
inclusion ζ : Z → Y is a topological embedding. We consider now maps h : Z → X
and k : Y → B, with h(b, s) = s(b) for every s ∈ S, h(b, 0) =

∨
s(b), and k the
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projection over B. The following diagram

Z
h //

ζ

��

X

f

��
Y

k
// B

is commutative, k is continuous since the topology on Y is finer than the product
topology, and h is also continuous as we show next. For any open subset U of X,

h−1(U) = {(b, s) | s(b) ∈ U} ∪ {(b, 0) |
∨
s(b) ∈ U}

=
⋃
s∈S

(s−1(U)× {s, 0}) ∪ ({b |
∨
s(b) ∈ U} × {0})

(because U is upwards-closed), hence h−1(U) is open in Z. Injectivity of f guaran-
tees the existence of a continuous map d : Y → X such that f · d = k and d · ζ = h.
Now it is easy to check that š is the composition of the continuous maps

B ∼= B × {1} // Y
d // X

hence it is continuous as claimed. In fact, for any b ∈ B and s ∈ S, in Y (b, s) ≤
(b, 1) ≤ (b, 0) for all s ∈ S, and so, from

s(b) = d(b, s) ≤ d(b, 1) ≤ d(b, 0) =
∨
s(b) = š(b)

we conclude that d(b, 1) =
∨
s(b).

This way we obtain that Sec(f) is closed under suprema in
∏
b∈B

Xb. �

If the fibres of f : X → B are non-empty continuous lattices, we can define the
maximum section s and the minimum section s by s(b) =

∨
Xb and s(b) =

∧
Xb,

with join and meet calculated in the fibre Xb. (When necessary to stress that they
are sections of f , we will use sf and sf .)

Proposition 3.7. Let f : X → B be a continuous surjective map in Top0 such
that its fibres are continuous lattices. Then:

1. f is open if and only if the maximum section of f is continuous;
2. f is closed if and only if the minimum section of f is continuous.

Proof. 1. If U ⊆ X is open, hence upwards-closed, then it is easy to check that
s−1(U) = f(U), and the result follows.

The proof of 2. is analogous, arguing with closed subsets instead of open ones.
�

From the previous proposition we can conclude immediately that every injective
continuous map is closed. That it is also open is a consequence of condition (2) of
next theorem.

Theorem 3.8. A continuous map f : X → B is injective in Top0 ↓ B if and only
if it satisfies the following conditions.

(1) For any b ∈ B, Xb is a continuous lattice.
(2) The morphism 〈1X , f〉 : (X, f)→ (X ×B, πB) is a section over B.
(3) Sec(f) is a continuous lattice.
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Proof. We have already seen that conditions (1)-(3) are necessary for the injectivity
of f . Using Theorem 3.2, to conclude that f is injective when such conditions hold,
it is enough to prove that Sec(f) is the object S(f) of sections of f in PsTop, which
follows from Lemma 3.5 once we have shown that the identity map ι′ : Sec(f) →
S(f) is continuous, or, equivalently, that the evaluation map e : Sec(f)×B → X is
continuous. Let (t, y) ∈ Sec(f)×B and U be an open subset of X with x = e(t, y) =
t(y) ∈ U . Since t =

∨
{s | s � t} in Sec(f), and then also t(y) =

∨
{s(y) | s(y) �

t(y)} in Xy, there exists s � t such that s(y) ∈ U . Therefore ∅ 6= s(B) ∩ U is
an open subset of s(B), and then its image under f is an open subset of B, since
f is an open map (in fact a homeomorphism when restricted to s(B) ∩ U). Now,

V := ↑↑s × f(s(B) ∩ U) is open in Sec(f) × B, (t, y) ∈ V and e(V ) ⊆ U since, for
any s′ � s and any b = f(x′) with x′ ∈ U and x′ = s(b′) for some b′ ∈ B,

e(s′, b) = s′(b) = s′(f(x′)) ≤ s(f(x′)) = s(f(s(b′))) = s(b′) = x′ ∈ U
and U is upwards-closed. �

The arguments used prove in fact the following

Corollary 3.9. If f : X → B is injective in Top0 ↓ B, then S(f) and Sec(f) are
isomorphic, yielding a (co)restriction of the functor S : PsTop ↓ B → PsTop to
S : Inj(Top0 ↓ B)→ Inj(Top0) ∼= ContLat.

4. From injective monotone maps to injective continuous maps

Our next goal is to obtain a characterization that avoids Condition (2) of The-
orem 3.8, so that it uses only the ‘internal’ properties of f : X → B. First we
present some auxiliary results.

Proposition 4.1. Let f : X → B be a continuous map between T0-spaces. Then,
for the following conditions, (2)⇒ (2′)⇒ (2′′).

(2) The morphism 〈1X , f〉 : (X, f)→ (X ×B, πB) is a section over B.
(2′) For each x ∈ X and b ∈ B with f(x) ≤ b, there exists xb ∈ Xb such that

x ≤ xb and, for any net (xλ)λ in Xb, if (xλ)λ converges to x then (xλ)λ
also converges to xb.

(2′′) For x ∈ X and b ∈ B with f(x) ≤ b, {x′ ∈ Xb|x ≤ x′} has minimum
element xb.

Proof. (2) ⇒ (2′): Let ρ : X × B → X be a continuous retraction of 〈1X , f〉 over
B. For x ∈ X and b ∈ B with f(x) ≤ b, let xb := ρ(x, b). Then x = ρ(x, f(x)) ≤
ρ(x, b) = xb. Given a net (xλ)λ in Xb with xλ → x, xλ = ρ(xλ, f(xλ)) = ρ(xλ, b)→
ρ(x, b) = xb.

(2′)⇒ (2′′): Let x′ be in Xb with x′ ≥ x. Applying condition (2′) to the constant
net x′, we get that such a net x′ converges also to xb, which means x′ ≥ xb. �

Proposition 4.2. If f : X → B is injective in Top0 ↓ B, then:

(3′) for any directed set Λ and any I-indexed family of nets ((xiλ)λ∈Λ)i∈I , if
(xiλ)λ converges to xi, f(xiλ) = bλ and f(xi) = b, then (

∨
i x

i
λ)λ converges

to
∨
i x

i.

Proof. Given ((xiλ)λ)i∈I as in (3′), define the topological spaces Λ∞ = Λ ] {∞},
with basic open sets {λ} and ↑ λ ∪ {∞}, for λ ∈ Λ, and I0 = I ] {0}, with
the topology generated by {i, 0}, i ∈ I, as in the proof of Proposition 3.6. Let
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Y = Λ∞ × I0 and Z = Y \ {(∞, 0)}. The maps h : Z → X, with h(λ, i) = xiλ,
h(∞, i) = xi and h(λ, 0) =

∨
i x

i
λ, and k : Y → B, with k(λ, i) = k(λ, 0) = bλ and

k(∞, i) = k(∞, 0) = b, are continuous and make the following diagram

Z
h //

ζ

��

X

f

��
Y

k // B

commute, where ζ is the inclusion. Hence, there exists a diagonal d : Y → X with

f · d = k and d · ζ = h. Since d is continuous and (λ, 0)
λ
// (∞, 0) ≥ (∞, i), we

have

d(λ, 0) =
∨
i x

i
λ λ

// d(∞, 0) = x ≥ d(∞, i) = xi.

Hence x ≥
∨
i x

i and then
∨
i x

i
λ λ

// ∨
i x

i as claimed. �

Proposition 4.3. Let f : X → B be a continuous map between T0-spaces. Then
condition (3′) of Proposition 4.2 implies:

(3′′) Given a net (xλ)λ in X, if (f(xλ))λ converges to b ∈ B, then limxλ ∩Xb

has a top element xΛ.

Proof. We consider Λ∞ as in the proof of Proposition 4.2 and the inclusion β of its
(discrete) subspace Λ. We define h : Λ → X by h(λ) = xλ, and k : Λ∞ → B by
k(λ) = f(xλ) and k(∞) = b. The maps h and k are continuous, f · h = k · β and
so there is a diagonal d : Λ∞ → X which gives a limit point d(∞) of (xλ)λ in the
fibre Xb. Now, to see that limxλ ∩ Xb has a top element, we apply condition (3′)
of Proposition 4.2 to I := limxλ ∩ Xb, x

i
λ := xλ and xi := i for every i ∈ I. �

Proposition 4.4. If ζ : (X, f) → (Z, g) is an embedding in Top0 ↓ B, with
f : X → B injective in Top0 ↓ B, then ζ has a largest continuous retraction
r : Z → X over B.

Proof. By injectivity of f , the set

R := {r | r is a continuous retraction of ζ in Top0 ↓ B}

is non-empty. We consider the topological space R0 = R ] {0} as before (that is,
with basic open sets {r, 0}, r ∈ R, so that r ≤ 0 in the specialization order), and

the embedding ζ0 : Z̃ = (Z ×R) ∪ (X × {0})→ Z ×R0. We define h : Z̃ → X by
h(z, r) = r(z) and h(x, 0) = x, for x ∈ X, z ∈ Z and r ∈ R, which is easily checked
to be continuous. Since the diagram

Z̃
h //

ζ0

��

X

f

��
Z ×R0

g·πR0 // B

is commutative, injectivity of f : X → B guarantees the existence of a continuous
map h : Z ×R0 → X such that h · ζ0 = h and f · h = g · πR0 . The continuous map
r : Z → X with r(z) = h(z, 0) is the required retraction: r(ζ(x)) = h(x, 0) = x, and,
moreover, since r ≤ 0 for each r ∈ R, one has r(z) = h(z, r) ≤ h(z, 0) = r(z). �
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Remark 4.5. If f : X → B is injective in Top0 ↓ B, Proposition 4.4 says,
in particular, that 〈1X , f〉 : X → X × B has a largest continuous retraction r :
X × B → B over B. Note that, according to Proposition 4.1 and its proof, for all
x ∈ X and b ∈ B with f(x) ≤ b, r(x, b) = xb for xb as in condition (2′).

Proposition 4.6. Let f : X → B be a continuous map between T0-spaces satisfying

(1) Xb is a continuous lattice.
(2′′) For x ∈ X and b ∈ B with f(x) ≤ b, {x′ ∈ Xb|x ≤ x′} has minimum element

xb.

Then the largest continuous retraction rb : X → Xb of the inclusion of Xb in X
given by Proposition 4.4 is defined by

rb(x) = inf{x′ ∈ Xb |x ≤ x′} =

{
xb if f(x) ≤ b,
maxXb otherwise.

Proof. Let x ∈ X with f(x) ≤ b: then x ≤ xb and rb(x) ≤ rb(xb) = xb. The map
r : {x} ∪ Xb → Xb with r(x) = xb and the identity otherwise is continuous. By
the injectivity of Xb, we can extend r to X, obtaining a retraction r̃ : X → Xb,
with xb = r̃(x) ≤ rb(x). Consequently, xb = rb(x). If f(x) � b, there exists
in B an open neighbourhood of f(x) not containing b and then x is open in the
induced topology on {x} ∪Xb. As a consequence, the map r : {x} ∪Xb → Xb with
r(x) = xb = maxXb and the identity otherwise is continuous (any open set in Xb

contains xb). The result follows as in the previous case. �

Theorem 4.7. A continuous map f : X → B is injective in Top0 ↓ B if and only
if it satisfies the following conditions:

(1) For each b ∈ B, Xb is a continuous lattice;
(2′) For each x ∈ X and b ∈ B with f(x) ≤ b, there exists xb ∈ Xb such that

x ≤ xb and, for any net (xλ)λ in Xb, if (xλ)λ converges to x then (xλ)λ
also converges to xb.

(3′′) Given a net (xλ)λ in X, if (f(xλ))λ converges to b ∈ B, then limxλ ∩Xb

has a top element xΛ.
(4) For each x ∈ X and U open neighbourhood of x, there exists a continuous

section s of f and an open neighbourhood W of f(x) such that †s(W ) =
{x′|f(x′) ∈W,x′ ≥ s(f(x′))} is a neighbourhood of x contained in U .

Proof. Let f : X → B be injective in Top0 ↓ B. Theorem 3.8 and Propositions
4.1, 4.3 and 4.4 guarantee that (1), (2′) and (3′′) are valid. It remains to show (4).
Let x0 ∈ X and U be an open neighbourhood of x0. Since U ∩ Xf(x0) is open in
Xf(x0) and x0 =

∨
{x ∈ Xf(x0) |x � x0}, there exists x̃ ∈ U ∩ Xf(x0) such that

x̃ � x0. Let ρ : X × B → X be a retraction of 〈1X , f〉, let ρ̂ : X → S(f) be its
mate, and denote the section ρ̂(x̃) : B → X of f by s̃. By definition, s̃(f(x̃)) = x̃.
We will show that W := f(s̃(B) ∩ U) is the required open neighbourhood of f(x0):

− W is an open subset of B (as shown in the proof of Theorem 3.8).
− †s̃(W ) ⊂ U , since U is upwards-closed on each fibre.
− To show that †s̃(W ) is a neighbourhood of x0, we recall from Remark 3.4.2 that
ρ induces an embedding 〈ρ̂, f〉 : X → S(f) × B. Since S(f) is a continuous

lattice, ↑↑s̃ is an open subset of S(f). Then V := ↑↑s̃ ×W is an open subset of
S(f)×B. Moreover:
− (ρ̂(x0), f(x0)) ∈ V , since x̃ � x0 implies ρ̂(x̃) = s̃ � ρ̂(x0) and f(x0) ∈ W ,

and
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− 〈ρ̂, f〉−1(V ) ⊆ †s̃(W ), since if, for x ∈ X, ρ̂(x) � s̃ and f(x) ∈ f(s̃(B) ∩
U), then f(x) = f(x′) with x′ = s̃(f(x′)) ∈ U ; then x = ρ̂(x)(f(x)) ≥
ρ̂(x′)(f(x)) = x′ = s̃(f(x′)) and f(x′) ∈ f(s̃(B) ∩ U) = W .

To prove the converse, we assume that the conditions (1)-(4) are satisfied, and
show that f : X → B is a retraction of πB :

∏
b∈B Xb × B → B; since the latter

map is injective, according to Corollary 1.6 of [5] because
∏
b∈B Xb is a continuous

lattice by (1), we can conclude that f is injective. For any x ∈ X and b ∈ B, let
xb = rb(x) as defined in Proposition 4.6. Consider the map ν : X →

∏
b∈B Xb ×B

defined by ν(x) = ((xb)b∈B , f(x)).

− ν is continuous: πB · ν = f is continuous and, for π′b :
∏
b∈B Xb × B → Xb,

π′b · ν is the largest retraction rb of the embedding Xb → X as constructed in
Proposition 4.6, for every b ∈ B, hence continuous.

− ν has a retraction r :
∏
b∈B Xb ×B → X: for each (s, b) ∈

∏
b∈B Xb ×B, define

r(s, b) =
∧
{xΛ | (xλ)λ∈Λ in s(B) with f(xλ)→ b}

(where xΛ is as in condition (3′′)). First we observe that r(s, b) ≤ s(b) since
among the (xλ)λ we may consider the constant net s(b). Secondly, r is contin-
uous: given (s0, b0) ∈

∏
b∈B Xb × B and an open neighbourhood U of x0 :=

r(s0, b0), let s and W be as in (4), and V := int(†s(W )) ⊆ U with x0 ∈ V .
Consider the subspace A = {b|b ∈ f(V ), s0(b) /∈ V } of B. We want to show
that b0 is not in the closure cl(A) of A. Suppose b0 ∈ cl(A): then there exists a
net (bλ)λ in A with bλ → b0. From (3′′), it follows that limxλ := s0(bλ) ∩Xb0

has a top element xΛ ≥ r(s0, b0) = x0, by definition of r. This means that
xλ → x0, hence there is a tail contained in V , neighbourhood of x0. But this is
impossible since any xλ /∈ V . Hence, b0 /∈ cl(A) and we can take in B an open
neighbourhood O of b0 with O ∩A = ∅.

Now Vb, defined by V ∩Xb in case b ∈ f(V )∩O and Xb otherwise, is an open

subset of Xb. Since f is open by (4), Ṽ :=
∏
b∈B Vb × (f(V ) ∩ O) is an open

subset of
∏
b∈B Xb ×B such that:

(a) (s0, b0) ∈ Ṽ , since for any b, s0(b) ∈ Vb and b0 = f(x0) ∈ f(V ) ∩O.
(b) r(Ṽ ) ⊆ U : if (t, c) ∈ Ṽ , then t(b) ∈ V and c ∈ f(V ) ∩O. So, given any net

(bλ)λ in f(V ) ∩ O with bλ → c, the net xλ := t(bλ) ∈ Vbλ ⊆ †s(W ), hence
xλ ≥ s(bλ) and s(bλ) → s(c), thanks to the continuity of s. Therefore
also xλ → s(c). By definition of r, r(t, c) ≥ s(c), then, since c ∈ W ,
r(t, c) ∈ †s(W ) ⊂ U.

Finally, r · ν = 1X : Indeed, if we denote by sx : B → X the (not necessarily
continuous) section of f with sx(b) = xb, then r · ν(x) = sx(f(x)) = x. To
check the equality we consider any net (xλ)λ in sx(B), that is, xλ = xf(xλ), with
f(xλ) → f(x), and we need to show that xλ → x. Let Λ′ = {λ ∈ Λ | f(xλ) ≥
f(x)} and Λ′′ = Λ \ Λ′. If λ ∈ Λ′, then xλ = xf(xλ), and if λ ∈ Λ′′ then
xλ = maxXf(xλ) by definition of xb. To show the convergence of (xλ)λ∈Λ it
is enough to show that, in case Λ′ and/or Λ′′ define subnets, (xλ)λ∈Λ′ and/or
(xλ)λ∈Λ′′ converge to x. For λ ∈ Λ′, xλ = xf(xλ) ≥ x by definition of xf(xλ),
hence xλ → x. Now, let λ ∈ Λ′′. Since f is open by (4), its largest section s is
continuous. Hence, for λ ∈ Λ′′, xλ = s(f(xλ))→ s(f(x)) ≥ x, and so xλ → x.

�
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5. Injectivity via exponentiability

Here we characterize injective continuous maps using exponentiability. Recall
from Proposition 2.4 that, if f : X → B is exponentiable in Top0 ↓ B, then f is
embeddable in a partial product over S:

X
ε //

f   

P

p
��

B

with P = P (pf ,S), and p = ppf injective.

This embedding ε : X → P is given by: ε(x) = (f(x), {U open in f−1(f(x))|x ∈
U}).

Lemma 5.1. Let f : X → B be an exponentiable map and b ∈ B such that

(1) Xb is a continuous lattice;
(2′′) for x ∈ X and b ∈ B with f(x) ≤ b, {x′ ∈ Xb|x ≤ x′} has minimum

element xb.

Then ε(xb) = ε(x)b = min {t ∈ Pb|ε(xb) ≤ t}.

Proof. Consider f(x) ≤ b. We have to prove that ε(xb) is the minimum element
ε(x)b of {t ∈ Pb|ε(xb) ≤ t} in Pb, which exists by Theorem 3.8 and Proposition 4.1,
since p is injective.

By definition xb ≥ x, so that by continuity ε(xb) ≥ ε(x)b. Suppose now ε(xb) 6=
ε(x)b := (b,U). As a consequence there exists a W open in Xb s.t. xb ∈ W and
W /∈ U.

Consider the maximal retraction rb : X → Xb of Proposition 4.6 and the open
set r−1(W ) = W . Since rb(x) = xb, we get x ∈W.

Let χW : X → S be the characteristic map of W . In correspondence to χW there
exists, by the universal property of the partial product P (f, S), a continuous map
χ̃W : B → P (f, S)

X
χW

ss

f

��

��
S P (f, S)×B X

f̂

��

ev
oo // X

f

��

B
χ̃W

yy

1B

��
P (f, S)

pf
// B

with χ̃W (b′) = (b′, Xb′ ∩W ), for any b′ ∈ B.
Consider now the subspace {f(x), b} of B, homeomorphic to the Sierpinski space

S, and its inclusion γ in B. Let α : {f(x), b} → P be the continuous map given by
α(f(x)) = ε(x) and α(b) = ε(x)b. Corresponding to α and the pullback of γ = pα
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along pf :

pf
−1{f(x), b}

α

vv
pf

��

γ̄

&&
S P ×B P (f, S)

p̂f

��

ẽ
oo // P (f, S)

pf

��

{f(x), b}
α

vv

γ

''
P

p
// B

there exists a continuous map α : pf
−1{f(x), b} → P ×B P (f, S) with

α(f(x), A) = (ε(x), A) and α(b, A) = (ε(x)b, A).

Consequently the map β := ev · α : pf
−1{f(x), b} → S is such that

β(f(x), A) = 1 ⇔ x ∈ A and β(b, A) = 1 ⇔ A ∈ U.

β−1(1) is an open subset D ⊆ pf
−1{f(x), b}, and then there is an open set D′ of

P (f, S) with D′ ∩ pf−1{f(x), b} = D.

Now, since x ∈ Xf(x) ∩ W , this means that β(f(x), Xf(x) ∩ W ) = 1, i.e.

(f(x), Xf(x) ∩W ) ∈ D, so that χ̃W (f(x)) = (f(x), Xf(x) ∩W ) ∈ D′ and f(x) ∈
χ̃W
−1

(D′).

On the other hand, since W /∈ U, β(b,W ) = 0 and then χ̃W (b) = (b,Xb ∩W =

W ) /∈ D′. This means that b /∈ χ̃W
−1

(D′) and this is impossible, given that
f(x) ≤ b. �

Lemma 5.2. Let f : X → B be an exponentiable map and b ∈ B such that

(1) Xb is a continuous lattice.
(3′′) Given a net (xλ)λ∈Λ in X, if f(xλ) 6= b converges to b ∈ B, then xλ has a

maximum limit point xΛ in Xb.

Then ε(xΛ) is the maximum limit point in Pb of the net ε(xλ).

Proof. As a consequence of the injectivity of p, we know that the net ε(xλ) has a
maximum limit point ε(xλ)Λ = (b,U) in Pb. By continuity of ε, we get ε(xΛ) ≤
ε(xλ)Λ. Suppose they are different. This means there is a W ∈ U, with xΛ /∈
W . Consider the topological space Λ∞ = Λ ] {∞}, with basic open sets {λ}
and ↑ λ ∪ {∞}. Define the continuous map h : Λ∞ → P as h(λ) = ε(xλ) and
h(∞) = (b,U). By the universal property of the pullback, corresponding to h there
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exists a continuous map h̄ : Λ∞ ×B P (f, S)→ P ×B P (f, S)

Λ∞ ×B P (f, S)

h̄

vv
pf

��

''
S P ×B P (f, S)

p̂f

��

ev
oo // P (f, S)

pf

��

Λ∞

h

uu

ph

''
P

p
// B

with

h(λ, f(xλ), A) = (ε(xλ), A) and h(∞, b, A) = (ε(xλ)Λ, A).

If we define e := evh, we get

e(λ, f(xλ), A) = 1 ⇔ xλ ∈ A and e(∞, b, A) = 1 ⇔ A ∈ U.

Since W ∈ U, then (∞, b,W ) ∈ e−1(1), so that there exists a base open neighbor-
hood (↑ λ̄∩{∞}×O)∪(Λ∞×BP (f, S)) ⊂ e−1(1), with λ̄ ∈ Λ and O an open set of
P (f, S). Hence, (b,W ) ∈ O and for any λ ≥ λ̄ and any Uλ ∈ Oλ = O ∩ p−1

f (f(xλ)),

e(λ, f(xλ), Uλ) = 1, which means xλ ∈ Uλ.
Since W is open in Xb, then there exists a W ′ open in X with W ′∩f−1(b) = W .

Consider now the closure C in X of the set {xλ, xΛ} and T = W ′ \ C. Let us
observe that Xb ∩ C =↓ xΛ, since any f(xλ) 6= b. Consequently X ∩ T = W. Take
now the characteristic map χT : X → S. By the exponentiability of f we get the
following diagram:

X
χT

ss

f

��

��
S P (f, S)×B X

f̂

��

ev
oo // X

f

��

B
χ̃T

yy

1B

��
P (f, S)

pf
// B

with χ̃T (b′) = (b′, Xb′ ∩ T ), for any b′ ∈ B. In particular χ̃T (b) = (b,Xb ∩ T =

W ) ∈ O, so that b ∈ χ̃T−1
(O), which is an open set of B. But for any λ ≥ λ̄, if

χ̃T (f(xλ)) = (f(xλ), Xf(xλ) ∩ T ) ∈ Oλ, xλ should be in T and this is not, since

in T there are no xλ. As a conclusion, there is a tail f(xλ) /∈ χ̃−1
T (O) and this is

impossible, since f(xλ) converges to b. �

Theorem 5.3. f : X → B is injective in Top0/B if and only if

(0) f is exponentiable and open.
(1) For each b ∈ B, Xb is a continuous lattice.
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(2′′) For x ∈ X and b ∈ B with f(x) ≤ b, {x′ ∈ Xb|x ≤ x′} has minimum
element xb.

(3′′) Given a net (xλ)λ∈Λ in X, if f(xλ) converges to b ∈ B, then xλ has a
maximum limit point xΛ in Xb.

Proof. All the above conditions are satisfied if f is injective.
Suppose now that all the conditions are satisfied. Since condition (1) implies

that Πb∈BXb is a continuous lattice, it is enough to show that f can be obtained
as a retraction of the injective map πB : Πb∈BXb ×B → B.

We split the proof in several steps, showing that:

(a) ε : X → P can be corestricted to P̌ = P \ sp(B).

(b) The restriction p̌ : P̌ → B of p is injective.
(c) The retraction rP̌ : Πb∈BP̌b ×B → P̌ given in Theorem 4.7, which exists since

p̌ is injective, can be restricted via εb to Πb∈BXb × B, yielding a continuous
retraction rX : Πb∈BXb ×B → X of πB over f .

(a) ε : X → P can be corestricted to P̌ = P \ sp(B): The maximum section
sp : B → P of p is defined by sp(b) = (b,

∨
Pb), and

∨
Pb = O(Xb). Therefore

sp(B) does not meet ε(X) = {(f(x), {U ∈ O(f(x)) |x ∈ U})}.

(b) The restriction p̌ : P̌ → B of p is injective:
P0 = {(b, ∅) | b ∈ B} is a closed subset of P (f, S): Let A = P (f, S) \ P0 =

{(b, U) | b ∈ B, U ∈ O(X) \ ∅}. Then A is open since, for each b ∈ B, Ab is clearly
saturated and has the finite union property; A is binding because f is open: for
each U ∈ O(X), {b |U ∩Xb 6= ∅} = f(U) ∈ O(B).

Now we consider the map

e : P ×B P (f, S) −→ S

(b,U, U) 7−→
{

0 if U = ∅
ev(b,U, U) if U 6= ∅

which is continuous, because e−1(0) = p̄−1(P0)∪ev−1(0) is closed. By the universal
property of the partial product, there exists a unique continuous map ẽ : P → P
such that p · ẽ = p and ev · (ẽ×B 1) = e:

P ×B P (f, S)

p̂f

��

e

ss
ẽ×B1vv

p̄

++
S P ×B P (f, S)

ev
oo p̄ //

p̂f

��

P (f, S)

pf

��

P

ẽ
vv

p

,,P
p

// B

By construction, if (b,U) ∈ P̌ , then ∅ 6∈ U, so that e coincides with ev when
restricted to P̌ ×B P (f, S). Therefore the restriction of ẽ to P̌ is the identity. More-

over, for any (b,U) ∈ P , ẽ(b,U) = (b, Ũ) must belong to P̌ , otherwise ev(b, Ũ, ∅) =
1 6= e(b,U, ∅) = 0. Hence the corestriction of ẽ to P̌ gives a retraction of P into P̌ ,
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and therefore p̌ is injective. Notice that ε can be considered as an embedding of X
into P̌ and that ε sends the maximal section of f into the maximal section of p̌.

(c) Πb∈BXb is a continuous lattice which can be embedded via the restrictions εb of
ε to each fiber of b, in Πb∈BP̌b. We observe that every εb preserves the maximum
element on each fiber.

So we can consider the following diagram:

X
νX //

ε

��

Πb∈BXb ×B

Πεb×idB

��
P̌

νP̌
// Πb∈BP̌b ×B

where νX and νP̌ are defined as in Theorem 4.7 respectively for f and p̌:

νX(x) = ((xb)b∈B , f(x)), with xb = xb if b ≥ f(x) and xb = maxXb,
otherwise
νP̌ (t) = ((tb)b∈B , p̌(t)), with tb = tb if b ≥ p̌(t) and tb = maxP̌b otherwise

Since ε, νP̌ are embeddings, νX (which is continuous by the proof of Theorem 4.7,
since therein just conditions (1) and (2′′) are used) is an embedding itself. The
diagram is commutative thanks to Lemma 5.1.

Consider the retraction rP̌ : Πb∈BP̌b×B → P̌ of νP̌ given in Theorem 4.7, which
is continuous since p̌ is injective:

rP̌ (σ, b) =
∧
{tΛ | (tλ)λ∈Λ in σ(B) with p̌(tλ)→ b}

(where tΛ is as defined in Proposition 4.3).
We now consider the corresponding retraction rX : Πb∈BXb × B → X for f ,

defined as:

rX(s, b) =
∧
{xΛ | (xλ)λ∈Λ in s(B) with f(xλ)→ b}

(where xΛ is as in condition (3′′)). We want to prove that such rX is continuous.
To this aim it is sufficient to prove that rP̌ (Πεb × idB) = εrX . We will do it in two
steps.

(c1) First, given (s, b) ∈ Πb∈BXb × B, where s is a (not necessarily continuous)
section s : B → X of f and b ∈ B, we will prove that the set A = {xΛ|xλ ∈
s(B), f(xλ)→ b} has a minimum x̃ in Xb, so that we will have that rX(s, b) =∧
A =min A = x̃.

(c2) Since p̌ is injective, p̌ shares the same properties with f and then by (c1) also
rP̌ (εs, b)=min {ε(x)Λ | ε(xλ)λ∈Λ in εs(B) with f(xλ) → b}. By Lemma 5.2,
ε(x)Λ = ε(xΛ) and this implies that

rP̌ (Πεb×idB)(s, b) = rP̌ (εs, b) = min{ε(xΛ) | ε(xλ)λ∈Λ in εs(B) with f(xλ)→ b} =: t̃.

Since x̃ ≤ xΛ, ε(x̃) ≤ ε(xΛ), for any Λ, then ε(x̃) ≤ t̃. But x̃ = xΛ̃ for some

Λ̃, so that

rP̌ (Πεb × idB)(s, b) = t̃ = ε(x̃) = εrX(s, b)

rX is then a retraction of f over B of the injective map πB : Πb∈BXb×B → B,
and then f is injective.
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(c1) We start by proving that A is directed in the inverse order of Xb. Let xΛ1
, xΛ2

∈
A, maximum limit points respectively of (xλ1), (xλ2).

Consider the directed set Λ1×Λ2×N (N natural numbers with the natural order)
and define the net h : Λ1 × Λ2 × N→ X as

h(λ1, λ2, 2n) = xλ1
, h(λ1, λ2, 2n+ 1) = xλ2

.

We prove that xΛ1
∧xΛ2

is the maximum limit point of h in Xb. Indeed, given any
open set W with xΛ1

∧xΛ2
∈W , since W ∩Xb is upward closed, xΛ1

∈W, xΛ2
∈W .

Then there exist λ̄1 and λ̄2 such that for any λ1 ≥ λ̄1 and λ2 ≥ λ̄2, xλ1
, xλ2

∈ W
and so the tail of h given by (λ̄1, λ̄2, 1) is in W . This means that h → xΛ1 ∧ xΛ2 .
Let now y be another limit point of h in Xb; if Vy is open with y ∈ Vy, there is a

tail of h starting from (λ̃1, λ̃2, ñ) in Vy. For any λ1 ≥ λ̃1, h(λ1, λ̃2, 2ñ) = xλ1
∈ Vy

and for any λ2 ≥ λ̃2, h(λ̃1, λ2, 2ñ+ 1) = xλ2
∈ Vy, so that

xλ1
→ y xλ2

→ y ⇒ y ≤ xΛ1
∧ xΛ2

Now we want to prove the existence of a net in s(B) converging to
∧
A =: x̃.

First of all, for any a ∈ A, fix a net (xλa)Λa which has a as maximum limit point.
Consider now the product D = Πa∈AΛa ×A directed by the product order. Let

h : D → X be the net given by

h(d) = h((λa)a∈A, ā)) = xλā .

The net fh converges to b: for any open neighbourhood U of b, f−1(U) is a neigh-
bourhood of each a ∈ A, so that, for any a ∈ A, there is (λ̄a) s.t. if λa ≥ (λ̄a),
xλa ∈ f−1(U). Then, for any ã ∈ A, the tail of fh given by ((λ̄a)a∈A, ã) is such
that for any λa ≥ (λ̄a) and any ā ≥ ã,

fh((λa)a, ā) = f(xλā) ∈ U

so that fh converges to b and consequently h has a maximum limit point y ∈ A in
Xb.

We want to prove that y ≤ a for any a ∈ A, so that y = x̃. For this, it is
sufficient to show that, for any a,

xλa → y, which is equivalent to proving that ε(xλa)→ ε(y),

being ε an embedding.
Let us take an open neighbourhood W of ε(y). By Theorem 4.7 (4), there

exists a continuous section σ : B → P̌ of p̌ : P̌ → B and a neighbourhood Z of
p̌(ε(y)) = b, such that †σ(Z) = {t|p̌(t) ∈ Z, t ≥ σ(p̌(t))} is a neighbourhood of ε(y)
with †σ(Z) ⊆W .

Since εh converges to ε(y), there exists d̃ = ((λ̃a)a∈A, ã) such that for any d =

((λa)a∈A, ā) ≥ d̃, ε(h(d)) = ε(xλā) ∈ †σ(Z).

Now, for any ā ≥ ã and any λā ≥ λ̃ā, we can define d̄ = ((λ̄a)a∈A, ā) with

λ̄a = λ̃a for any a 6= ā and λ̄ā = λā. Then

ε(h(d̄)) = ε(xλā) ∈ †σ(Z)

Then, for any ā ≥ ã, this tail of ε(xλa) is a net, say (tλ̄)λ̄∈Λ̄ā in P̌ with :

• P̌ (tλ̄)→ b
• tλ̄ ∈ †σ(Z)
• tλ̄ = ε(xλā) and then its maximum limit point is ε(ā)
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This will be sufficient to prove that

tλ̄ → σ(b)

and consequently we will have that σ(b) ≤ ε(ā), for any ā ≥ ã.
Let V be an open neighbourhood of σ(b), then V ∩ σ(Z) = V ′ is an open

neighbourhood of σ(b) in σ(B), and p̌(V ′) is an open neighbourhood of b. Since

p̌(tλ̄) → b, there exists λ̂ ∈ Λ̄ā such that, for any λ̄ ≥ λ̂, p̌(tλ̄) ∈ p̌(V ′) ⊆ Z.
tλ̄ ∈ †σ(Z), so tλ̄ ≥ σ(p̌(tλ̄)), that is tλ̄ ∈ †V ′ = †σ(p̌(V ′)) ⊆ V , since V is open
(hence upward closed on each fiber). We can conclude that tλ̄ → σ(b) and then, as
already noticed, σ(b) ≤ ε(ā), for any ā ≥ ã.

Consider now a ∈ A, a � ã; A is directed, hence there is ā ∈ A with ā ≥ ã and
ā ≥ a, which means ā ≤ a in Xb. By the argument above, we have that σ(b) ≤ ε(ā)
and then σ(b) ≤ ε(a) in P̌b. It follows that σ(b) ≤ ε(a), for any a ∈ A. Then, given
any neighbourhood W of ε(y), ε(a) ∈ W , for any a ∈ A and in the specialization
of P̌b this means that ε(y) ≤ ε(a), hence y ≤ a, for any a ∈ A.

Finally, we can conclude that y = minA =
∧
A = x̃. �
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