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Abstract. In this paper we show that the theorem, by Cagliari and Mantovani, stating that in

the category of compact Hausdorff spaces every étale map is exponentiable, can be formulated

in a general category Alg(T ) of Eilenberg-Moore T -algebras, for a monad T , and proved in

case T satisfies the so-called Beck-Chevalley condition. For that, Alg(T ) is embedded in the

(topological) category RelAlg(T ) of relational T -algebras, where a suitable notion of étale

morphism can be studied, it is shown that morphisms between T -algebras are exponentiable in

RelAlg(T ), and, moreover, these exponentials belong to Alg(T ) whenever the morphisms are

étale.

0. Introduction

The existence of “internal function objects” in a category C with finite products, that is the

existence of a right adjoint to the functor ( ) ×X : C → C for a C-object X - calling then X

exponentiable -, is a widely studied problem. It is in general more interesting in topology than

in algebra, since in a pointed category only the zero object is exponentiable. However, there is

an interesting complete characterization of exponentiable objects in varieties by Johnstone [16].

Using monads instead of algebraic theories to study varieties, here we consider exponentiable

morphisms in C, that is, morphisms f : A → B which are exponentiable as objects of the

comma category C ↓ B. Our approach is based on results obtained in topological contexts

(namely from [22, 2, 3, 12]) and makes use of the embedding of the category of T -algebras in the

topological category of relational T -algebras (as introduced by Barr [1], and studied further in

[7, 13, 11]). This way, the characterization of exponentiable continuous maps in the category of

compact Hausdorff spaces as the local homeomorphisms, or étale maps, obtained by Cagliari and

Mantovani in [2], can be formulated in any category of (Eilenberg-Moore) T -algebras – replacing

the ultrafilter monad by a general monad T –, raising the question whether exponentiability in

categories of T -algebras is more interesting at the level of morphisms than at the object level.

This is the starting point of the work presented here.

In this paper we begin to study the exponentiability problem for the ordinary T -algebras

for an arbitrary monad T on the category of sets, assuming, as in [11], that T satisfies the

Beck-Chevalley Condition. After recalling all necessary definitions and results, we show that:

• When f is a perfect map of relational T -algebras, its pseudo-relational exponents are

relational, making it exponentiable in the category of relational T -algebras (Theorem

4.2). The notion of perfect used there, as well as the notion of étale used later, and

related notions of open and proper, is suggested by the topological one as expected (see

Section 2).
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• Every homomorphism of T -algebras is perfect, and therefore exponentiable in the cate-

gory of relational T -algebras (Corollary 4.3).

• When a homomorphism of T -algebras is étale, its (pseudo-)relational exponents are T -

algebras, making it exponentiable in the category of T -algebras (Theorem 5.5).

In the last section we consider several examples of categories of algebras, namely, of compact

Hausdorff spaces, sup-lattices, continuous lattices, monoids, semigroups, and monoid actions. In

particular, we point out that, for a monoidM , although every morphism ofM -sets is (well-known

to be) exponentiable, not every morphism is étale – unless M is a group.

In summary, we show that the exponentiability of étale maps in CompHaus = Alg(U), with

exponentials built as in Top = RelAlg(U), for U the ultrafilter monad, can be generalized

for Alg(T ) in case T satisfies the Beck-Chevalley condition. It remains to be shown whether

the converse is true. The example of M -Set shows that there may be non-étale exponentiable

morphisms in Alg(T ), but in this example the exponentials, that exist both in Alg(T ) and in

RelAlg(T ), are built differently.

The general problems of describing:

(I) exponentiable morphisms of relational T -algebras;

(II) exponentiable morphisms of T -algebras;

(III) exponentiable morphisms of T -algebras with exponents inherited from the category of

relational T -algebras

remain open, but it seems that Proposition 4.1 should be helpful in solving Problem (II) (see

also [12]), while étale maps should provide, in many cases, an answer to Problem (III). Our

results on Problem (II) that do not use relational algebras, which is a work in progress now,

will be published elsewhere. In particular, we will give an easy proof of the fact that a group

homomorphism is exponentiable if and only if it is an isomorphism, and that the same is true

in any semi-abelian category.

Acknowledgment. We thank an anonymous referee for pointing out a missing argument in the

proof of Theorem 2.1.

1. Relational algebras

Given a monad T = (T, η, µ) on Set, we consider the category Alg(T ) of Eilenberg-Moore

T -algebras; recall that an object of Alg(T ) is a pair (X,α), where X is a set and α : TX → X

is a map making the diagram

X
ηX //

1X !!C
CC

CC
CC

C TX

α
��

T 2X
Tαoo

µX

��
X TX

αoo

commute, and a morphism f : (X,α) → (Y, β) is a map f : X → Y with f · α = β · Tf :

TX

α
��

Tf
// TY

β
��

X
f

// Y
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The monad T can be extended to the 2-category Rel of relations (see [1, 8]) as follows: for a

relation r : X−→7 Y , with r = r2 · r◦1,

R
r1

~~~~
~~
~~
~~ r2

��@
@@

@@
@@

@

X �r // Y

where r1, r2 are the projections and r◦1 is the opposite relation of r1, let Tr = Tr2 · (Tr1)◦.
Then T : Rel → Rel is an op-lax functor, and η : IdRel → T and µ : T

2 → T become op-lax

natural transformations: for relations r : X−→7 Y and s : Y−→7 Z, T (s · r) ≤ T (s) · T (r), and
eY · r ≤ T (r) · eX , mY · TT (r) ≤ T (r) ·mX . The functor T : Rel → Rel is a lax – hence a strict

– functor if and only if T : Set → Set satisfies the Beck-Chevalley condition (BC), that is T

preserves weak pullbacks (that is, (BC)-squares: see [7, 8]). This implies, in particular, that T

preserves pullbacks along monomorphisms, that is, T is taut (see [21]).

Throughout we assume that T : Set → Set has (BC) and that the natural transformation

µ : TT → T satisfies (BC), meaning that, for every map f : X → Y , the naturality diagram

T 2X
µX //

T 2f
��

TX

Tf
��

T 2Y
µY // TY

is a (BC)-square. We recall that these assumptions mean precisely that T : Rel → Rel is a

strict functor and that µ : T
2 → T is a strict natural transformation. We also assume that T is

non-trivial, or, equivalently, T is faithful, or, equivalently, the natural transformation η : Id → T

is pointwise monic (see [17] for details).

As already studied by Barr [1] and studied later by Clementino, Hofmann and Tholen [7, 13,

11, 8, 9] and others, one can relax the conditions above, defining a relational T -algebra (also

called lax T -algebra, or (T,2)-category) as a pair (X, a), where a : TX−→7 X is a relation such

that 1X ≤ a · ηX and a · Ta ≤ a · µX , that is

X
ηX //

1X !!C
CC

CC
CC

C TX
≤ _a

��

T 2X

≤

�Taoo

µX

��
X TX�aoo

Morphisms f : (X, a) → (Y, b) between relational T -algebras are maps f : X → Y with f · a ≤
b · Tf :

(A) TX

_a
��

Tf
// TY

≤ _ b
��

X
f

// Y

We will denote the category of relational T -algebras by RelAlg(T ). Given a relational T -algebra

a : TX−→7 X, for x ∈ TX and x ∈ X, we will write x → x whenever x a x. Using this notation, a

relation a : TX−→7 X is a relational T -algebra if

(a) (∀x ∈ X) ηX(x) → x,

(b) (∀X ∈ T 2X) (∀x ∈ TX) (∀x ∈ X) X → x and x → x ⇒ µX(X) → x

(here X → x means X (Ta) x); a map f : X → Y is a morphism between the relational T -algebras

(X, a) and (Y, b) if
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(c) (∀x ∈ TX) (∀x ∈ X) x → x ⇒ Tf(x) → f(x).

We remark that Alg(T ) is fully embedded in RelAlg(T ), since the inequality of diagram

(A) becomes an equality whenever a and b are maps. Morphisms in RelAlg(T ) will be called

simply homomorphisms, unless we want to identify those between T -algebras, calling them then

algebraic homomorphisms.

We will make use also of a category containing RelAlg(T ) as a full subcategory. A relation

a : TX−→7 X is said to be a pseudo-relational T -algebra (also called lax reflexive T -algebra, or a

(T,2)-graph) if ηX(x) → x, that is:

X
ηX //

1X !!D
DD

DD
DD

D TX
≤ _ a

��
X

A morphism f : (X, a) → (Y, b) between pseudo-relational T -algebras is a map f : X → Y

satisfying the inequality of diagram (A). Pseudo-relational T -algebras and their morphisms

form the category PsRelAlg(T ). The full embeddings

Alg(T ) ↪→ RelAlg(T ) ↪→ PsRelAlg(T ).

have left adjoints; moreover, while Alg(T ) is monadic over Set, RelAlg(T ) and PsRelAlg(T )

are topological categories over Set (see [7] for details). In particular, the forgetful functor

Alg(T ) → Set creates limits, while RelAlg(T ) → Set and PsRelAlg(T ) → Set preserve

limits and colimits.

2. Étale homomorphisms

In case T is the ultrafilter monad, that is the monad induced by the adjunction

Set
Set( ,2)

//
⊥ Boolop

Bool( ,2)
oo

that assigns to each set X its set TX of ultrafilters, T -algebras are compact Hausdorff spaces

(as shown by Manes [19]), relational T -algebras are topological spaces, homomorphisms between

relational T -algebras are continuous maps (as shown by Barr [1]), and pseudo-relational algebras

are pseudotopological spaces. This is the example that guides our approach to étale algebraic

homomorphisms. It was shown in [6] that if a continuous map f : X → Y is étale, then, for each

x ∈ X and each ultrafilter y with y → f(x), there exists a unique ultrafilter x ∈ X such that

x → x and Tf(x) = y:

X

f

��

x
_

��

//____ x_

��
Y y // f(x);

In [10] a continuous map with this property is called a discrete fibration, and it is shown that there

are discrete fibrations which are not étale, and that étale maps are exactly the pullback-stable

discrete fibrations.

Based on this example, a morphism f : (X, a) → (Y, b) between relational T -algebras will be

said to be a discrete fibration if for every x ∈ X and y ∈ TY with y → f(x) in Y , there exists a

unique x ∈ TX with x → x and Tf(x) = y. In particular, if f : (X,α) → (Y, β) is an algebraic
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homomorphism, then f is a discrete fibration if and only if the diagram

TX

α
��

Tf
// TY

β
��

X
f

// Y

is a pullback. A pullback-stable discrete fibration in RelAlg(T ) will be called étale. We remark

that pullback stability of discrete fibrations along monomorphisms follows directly from (BC) of

T .

Theorem 2.1. If f : (X,α) → (Y, β) is an algebraic discrete fibration, then the following

assertions are equivalent:

(i) f is étale;

(ii) f is a pullback-stable discrete fibration in Alg(T );

(iii) for any algebraic homomorphism g : (Z, γ) → (Y, β), the pullback

(B) X ×Y Z
π2 //

π1

��

Z

g

��
X

f
// Y

of f along g is preserved by T ;

(iv) for any map g : Z → Y , the pullback (B) of f along g is preserved by T .

Proof. (i) ⇒ (ii) is trivial.

(ii) ⇔ (iii): In the commutative diagram

(C) T (X ×Y Z)
Tπ2 //

Tπ1

��

δ
uukkkk

kk
TZ

Tg

��

γ

uukkkk
kkkk

kkkk

X ×Y Z
π2 //

π1

��

Z

g

��

TX
Tf

//
α

uukkkk
kkk

kkk
k TY

β

uukkkk
kkkk

kkkk

X
f

// Y

assume that the front face is a pullback. Closedness under limits of Alg(T ) guarantees that

both π1 and π2 are algebraic homomorphisms. Since f is a discrete fibration, the bottom square

is also a pullback. Hence the top square is a pullback – that is, π2 is a discrete fibration – if and

only if the back square is a pullback, that is T preserves the pullback of f along g.

(iii) ⇔ (iv): That (iv) ⇒ (iii) is trivial. To show the converse, note that any map g : Z → Y

factors through ηZ : Z → TZ via an algebraic homomorphism g : (TZ, µZ) → (Y, β). Hence

preservation of pullback (B) by T reduces to preservation of the pullback of f along g, which is

guaranteed by (iii), and the preservation, by T , of the pullback

(D) X ×Y Z

xxqqq
qqq

qqq
qq

π2 //

��

Z

ηZ~~}}
}}
}}
}}

g

��

X ×Y TZ

&&NN
NNN

NNN
NNN

N

π′
2 // TZ

g

!!B
BB

BB
BB

B

X
f

// Y



6 MARIA MANUEL CLEMENTINO, DIRK HOFMANN, AND GEORGE JANELIDZE

of π′
2 along ηZ . Since ηZ is monic, this follows from (BC) of T .

Finally to show (ii) ⇒ (i) we consider any morphism g : (Z, c) → (Y, β) in RelAlg(T ) and

factor it as in diagram (D). By (ii) π′
2 is a discrete fibration, and then π2, as the pullback of a

discrete fibration along a monomorphism, is a discrete fibration as well. �

Corollary 2.2. (1) Every injective algebraic discrete fibration is étale.

(2) If the functor T preserves pullbacks, then every algebraic discrete fibration is étale.

Following the characterization of proper, perfect and open continuous maps stated in [6,

Theorem 2.2], in [9, 18] the following notions were studied in the context of relational T -algebras.

A morphism f : (X, a) → (Y, b) is:

(a) open if for each x ∈ X and y ∈ TY such that y → f(x) in Y , there exists x ∈ TX such

that x → x in X and Tf(x) = y.

(b) proper (perfect) if for each x ∈ TX and y ∈ Y such that Tf(x) → y in Y , there exists (a

unique) x ∈ X such that x → x and f(x) = y.

We remark that discrete fibrations are open, and that, for f : (X, a) → (Y, b) and diagrams

TX
Tf

// TY TX

_a
��

Tf
// TY

_ b
��

X

_a◦

OO

1

f
// Y

_ b◦

OO

and X

2

f
// Y

f is open (resp. proper) if and only if diagram 1 (resp. 2 ) is commutative. In particular,

every algebraic homomorphism is proper. It is in fact perfect because unicity of x in (b) follows

from the fact that a is a map, so that x = a(x).

Finally we introduce some categories that will be used in the sequel. In our general setting we

will say that a pseudo-relational T -algebra (X, a) is Hausdorff if a : TX−→7 X is a partial map,

that is in its relation span

R
a1

}}{{
{{
{{
{{ a2

  @
@@

@@
@@

@

TX X

a1 is injective. If a1 is surjective, (X, a) is said to be compact. It is easy to check that:

Proposition 2.3. If (X, a) is a pseudo-relational T -algebra, then:

(1) (X, a) is Hausdorff if and only if δX is proper;

(2) (X, a) is compact if and only if !X : X → 1 is proper.

We denote by Haus(T ) and Comp(T ) the (full) subcategories of RelAlg(T ) of Hausdorff and

compact relational T -algebras, respectively. We point out that Alg(T ) is exactly the category

of compact and Hausdorff relational T -algebras. It is a reflective subcategory of RelAlg(T ),

with the reflection constructed via the appropriate Stone-Čech compactification (see [20, 7] for

details).

3. Pseudo-relational algebras form a quasitopos

We recall that a category C is cartesian closed if it has finite products and every C-object

is exponentiable, and that C is said to be locally cartesian closed if, for every object B of C,

the comma category (C ↓ B) is cartesian closed, and C has a terminal object (and therefore
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all finite limits); C is a quasitopos if it is locally cartesian closed and it has a strong subobject

classifier and all finite colimits.

When C is locally cartesian closed, and f : A → B is a morphism in C, the right adjoint of

the functor ( )× (A, f) : (C ↓ B) → (C ↓ B) will be written as ( )(A,f). In particular, for every

object C in C, we have

(B × C, pr1)
(A,f) = the partial product of f and C.

The original definition of (categorical) partial product, due to R. Dyckhoff and W. Tholen [15],

is formulated as follows: the partial product of a morphism f : A → B and an object C in a

finitely complete category C is a pair (p : P → B, e : P ×B A → C) such that, given any pair

of the form (p′ : P ′ → B, e′ : P ′ ×B A → C), there exists a unique h : P ′ → P over B with

e′ = e · (h×B 1A) in the diagram

P ′ ×B A

��

//
e′

yyttt
tt

h×B1A
''

A

f

��

C P ×B A
e

oo

66nnnnnnn

��
P ′ p′

//

h ((

B

P
p

66mmmmmmmmm

In fact (P, p) = (B × C,pr1)
(A,f), and e determines the universal arrow

( )× (A, f) → (C ×B, pr2)

as the pair ((P, p), ⟨e, p · π1⟩ : (P, p) × (A, f) → (C × B, pr2)), where π1 : P ×B A → C is the

pullback projection and of course (P, p) × (A, f) = (P ×B A, p · π1). Note that, conversely, the

existence of such universal arrows for all C in C implies the existence of the right adjoint for

( ) × (A, f), since every object in (C ↓ B) can be presented as the equalizer of two parallel

morphisms of the form (C ×B, pr2) → (C ′ ×B, pr2). Moreover, we have:

Theorem 3.1. [15, 22] For a morphism f : A → B in a finitely complete category C, the

following conditions are equivalent:

(i) f is exponentiable, i.e. ( )× (A, f) : (C ↓ B) → (C ↓ B) has a right adjoint;

(ii) the ‘change-of-base’ functor f∗ : (C ↓ B) → (C ↓ A) has a right adjoint;

(iii) the composite (C ↓ B) → C of f∗ and the forgetful functor (C ↓ A) → C has a right

adjoint;

(iv) C has partial products of f with each of its objects.

In PsRelAlg(T ) the pullback of f : (X, a) → (Y, b) and g : (Z, c) → (Y, b)

(Z, c)×(Y,b) (X, a)
π2 //

π1

��

(X, a)

f

��
(Z, c)

g
// (Y, b)

is built as in Set, that is, Z ×Y X = {(z, x) | g(z) = f(x)}, with w → (z, x), for w ∈ T (Z ×Y X)

and (z, x) ∈ Z ×Y X, if Tπ1(w) → z and Tπ2(w) → x (see [11] for details). In [11] it was shown
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that, for f : (X, a) → (Y, b) and (Z, c) in PsRelAlg(T ), the partial product

(E) (Z, c) (P, d)×(Y,b) (X, a)

π1

��

evoo π2 // (X, a)

f

��
(P, d)

p
// (Y, b)

of f and Z can be constructed as P = Z(X,f) = {(s, y) | y ∈ Y, s : (Xy, ay) → (Z, c)}, where
(Xy, ay) is defined as the pullback

(Xy, ay)

��

// (X, a)

f

��
(1, η◦1)

y
// (Y, b)

and in particular Xy can be identified with f−1(y); the structure d : TP−→7 P on P is defined,

for p ∈ TP and (s, y) ∈ P , by:

p → (s, y) if


Tp(p) → y and

T ev(w) → ev((s, y), x) = s(x), whenever w ∈ T (P ×Y X) and x ∈ X

are such that Tπ1(w) = p, f(x) = y and Tπ2(w) → x

Theorem 3.2. [11] The category PsRelAlg(T ) of pseudo-relational T -algebras is a quasitopos.

4. Algebraic homomorphisms are exponentiable, topologically

In this section we will prove that the partial product of an algebraic homomorphism and

a relational T -algebra is a relational T -algebra, showing that algebraic homomorphisms are

exponentiable in RelAlg(T ). First we show that perfect homomorphisms, hence in particular

algebraic homomorphisms, have an interpolation property which is sufficient for exponentiability

(similarly to the proof for the ultrafilter monad done in [12]).

Proposition 4.1. Let f : (X, a) → (Y, b) be a perfect morphism in RelAlg(T ), and let the

diagram

(Z ×Y X, d)
π2 //

π1

��

(X, a)

f

��
(Z, c)

g
// (Y, b)

be a pullback in PsRelAlg(T ). Then:

(1) π1 is a proper map.

(2) If W ∈ T 2(Z ×Y X), (z, x) ∈ Z ×Y X and Z ∈ TZ are such that

(a) µX(T 2π2(W)) → x,

(b) T 2π1(W) → Z → z,

then there exists w ∈ T (Z ×Y X) such that Tπ1(w) = Z and

W → w → (z, x).

Proof. It was proved in [11] that proper maps are pullback-stable in PsRelAlg(T ), hence π1 is

proper, that is π1 · d = c · Tπ1. Therefore, also Tπ1 · Td = Tc · T 2π1. Hence, if T 2π1(W) → Z,

there exists w ∈ T (Z ×Y X) such that Tπ1(w) = Z and W → w. Using now the fact that π1 is

proper and Tπ1(w) = Z → z, there exists (z, x′) ∈ Z ×Y X such that w → (z, x′). The chain
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W → w → (z, x′) gives rise to a chain in X, T 2π2(W) → Tπ2(w) → x′, which implies that

µX(T 2π2(W)) → x′. Since f(x) = f(x′), perfectness of f gives x = x′. �

Theorem 4.2. Perfect maps are exponentiable in RelAlg(T ).

Proof. For f : (X, a) → (Y, b) perfect in RelAlg(T ) and (Z, c) ∈ RelAlg(T ), form the partial

product (p : (P, d) → (Y, b), e : (P, d)×(Y,b) (X, a) → (Z, c)) of f and (Z, c) in PsRelAlg(T ) as

in (E). To check that (P, d) ∈ RelAlg(T ), we need to check that, for

P → p → (s, y) in P

we have µP (P) → (s, y) in P . The first of the two conditions defining µ(P) → (s, y) easily

follows from the fact that (Y, b) belongs to RelAlg(T ), and we will check only the second one.

Suppose there exist w̃ ∈ T (P ×Y X) and x ∈ X such that Tπ1(w̃) = µP (P), f(x) = y and

Tπ2(w̃) → x. Since the diagram

T 2(P ×Y X)

T 2π1
��

µP×Y X
// T (P ×Y X)

Tπ1

��
T 2P

µP // TP

is a (BC)-square, there exists W ∈ T 2(P ×Y X) such that

µP×Y X(W) = w̃ and T 2π1(W) = P.

The lemma above guarantees the existence of w ∈ T (P ×Y X) such that Tπ1(w) = p and

W → w → ((s, y), x).

Therefore T 2ev(W) → T ev(w) → s(x), hence

T ev(w̃) = T ev(µP×Y X(W)) = µZ(T
2ev(W)) → s(x),

and so we can conclude that µP (P) → (s, y) in P by the definition of the structure on P . �

In a different context a similar result was proved by Richter and Tholen [23].

Corollary 4.3. Algebraic homomorphisms are exponentiable in RelAlg(T ).

5. Étale algebraic homomorphisms are exponentiable, algebraically

In this section we will show that étale algebraic homomorphisms are exponentiable in Alg(T ),

generalizing the corresponding result for topological spaces obtained by Cagliari and Mantovani

[2].

Proposition 5.1. If (X, a), (Y, b) and (Z, c) are pseudo-relational T -algebras, f : (X, a) →
(Y, b) is open, and (Y, b) and (Z, c) are Hausdorff, then the partial product of f and (Z, c) in

PsRelAlg(T ) is Hausdorff too.

Proof. Consider the partial product (E) and assume that p ∈ TP is such that p → (s, y)

and p → (s′, y′) in P . Hausdorffness of Y guarantees that y = y′. If Xy = f−1(y) is empty,

then necessarily s = s′. Otherwise, let x ∈ f−1(y). Since Tp(p) → f(x), openness of f gives

x ∈ Tf−1(Tp(p)) with x → x. By (BC) of T there exists w ∈ T (P ×Y X) such that Tπ1(w) = p

and Tπ2(w) = x. So, in the pullback structure, w is in relation with both ((s, y), x) and ((s′, y), x),

and, consequently, T ev(w) is related to both s(x) and s′(x), which implies s(x) = s′(x) because

Z is Hausdorff. �
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Corollary 5.2. If f : (X, a) → (Y, b) is open in Haus(T ) and exponentiable in RelAlg(T ),

then it is exponentiable in Haus(T ).

We remark that this result implies the corresponding result for topological spaces, due to

Cagliari and Mantovani [3]. We do not know whether, as in Top, openness of f is essential for

its exponentiability in Haus(T ).

Proposition 5.3. Let the diagram

Z ×Y X

π1

��

π2 // X

f
��

Z
g

// Y

be a pullback in PsRelAlg(T ), with π1 a discrete fibration, X and Z compact, and Y Hausdorff.

Then the functor T preserves the underlying pullback of sets.

Proof. Applying T to the diagram and forming the pullback

T (Z ×Y X)
Tπ2 //

Tπ1

��

can
**UUUU

TX

Tf

��

TZ ×TY TX π′
2

22dddddddddddddddddddd

π′
1yysss

sss
sss

sss

TZ
Tg

// TY

we have to show that the comparison map can : T (Z ×Y X) → TZ ×TY TX is injective.

Suppose w,w′ ∈ T (Z ×Y X) have can(w) = can(w′). Denote Tπ1(w) = Tπ1(w
′) by Z, and

Tπ2(w) = Tπ2(w
′) by x. By compactness of Z and X, we can write Z → z and x → x. Then

Hausdorffness of Y gives g(z) = f(x). Hence both w and w′ are in relation with (z, x) and are

mapped, by Tπ1, to Z. Since π1 is a discrete fibration, w = w′. �

This result assures that, if f is an étale algebraic homomorphism and Z ∈ Alg(T ), preservation

of the pullback of the partial product (E) in PsRelAlg(T ) is a necessary condition for f to be

exponentiable in Alg(T ) with its exponentials built as in RelAlg(T ). The next result shows

that this pullback-preservation property is also sufficient.

Proposition 5.4. Let f : (X,α) → (Y, β) be an étale algebraic homomorphism and (Z, γ)

a T -algebra. The domain (P, d) of the partial product of f and (Z, γ) in RelAlg(T ) (or in

PsRelAlg(T )) is compact if and only if T preserves the pullback

P ×Y X
π2 //

π1

��

X

f
��

P
p

// Y

Proof. Consider again the partial product (E), assume that T preserves its underlying pullback

of sets, and let p ∈ TP . We need to find (s, y) ∈ P such that p → (s, y), with y ∈ Y and

s : Xy → Z, where Xy = f−1(y) is to be seen as

Xy

iy //

!
��

X

f
��

1
y

// Y
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Since Y is a T -algebra, there is a unique y ∈ Y such that Tp(p) → y. Hence, we are left with

the construction of s : Xy → Z.

Since f is étale, the diagram

TX

α
��

Tf
// TY

β
��

X
f

// Y

is a pullback in Set, and so it determines a pullback in Alg(T ) (where TX and TY have

the free algebra structures) and therefore in RelAlg(T ). Hence we can consider the following

commutative diagram, where both squares 1 and 2 are pullbacks.

Xy

!

��

iy

''
T (P ×Y X)

Tπ2 //

Tπ1

��

TX

1

α //

Tf
��

X

2 f
��

TP
Tp

// TY
β

// Y

1

p
88rrrrrrrrrrrr
Tp·p

44hhhhhhhhhhhhhhhhhhhhhhhhh y

77

Since the diagram 1 2 is a pullback, there exists a (unique) map κ : Xy → T (P ×Y X) with

Tπ1(κ(x)) = p and α(Tπ2(κ(x))) = x, for each x ∈ Xy. Using this map, we define s as the

composite

Xy
κ // T (P ×Y X)

T ev // TZ
γ

// Z.

To prove that p → (s, y), we need to show that T ev(w) → s(x) whenever w ∈ T (P ×Y X) and

x ∈ X have Tπ1(w) = p, f(x) = y, and Tπ2(w) → x. Since (X,α) is a T -algebra, Tπ2(w) → x

means α(Tπ2(w)) = x, and since 1 2 is a pullback, this equality, together with Tπ1(w) = p,

imply w = κ(x). This gives s(x) = γ(T ev(κ(x))) = γ(T ev(w)), and so T ev(w) → s(x) in the

T -algebra (Z, γ), as desired. �

Theorem 5.5. Every étale algebraic homomorphism is exponentiable in Alg(T ), with the expo-

nentials built as in RelAlg(T ).

Proof. It follows directly from Theorem 2.1, Corollary 4.3 and Propositions 5.1 and 5.4. �

6. Examples

6.1 Compact Hausdorff spaces. In case T = (T, η, µ) is the ultrafilter monad, both T

and µ satisfy (BC). Hence Theorem 5.5 says that an étale continuous map between compact

Hausdorff spaces is exponentiable. Cagliari and Mantovani [2] showed that also the reverse

implication holds, that is, an exponentiable continuous map in CompHaus is étale. Moreover,

the exponentials coincide with the exponentials built in Top.

6.2 Sup-lattices. When T = (P, η, µ) is the powerset monad, again both P and µ satisfy

(BC). Alg(P ) is the category Sup of complete lattices and sup-preserving maps. Theorem

5.5 says that étale homomorphisms are exponentiable in Sup. In fact étale and exponentiable

homomorphisms coincide, as shown next.
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Proposition. For a morphism f : X → Y in Sup, the following conditions are equivalent:

(i) f is exponentiable;

(ii) the diagram

(F) X +X
f+f

//

∇X

��

Y + Y

∇Y

��
X

f
// Y

is a pullback;

(iii) for all x ∈ X and y′ ∈ Y with y′ ≤ y = f(x), there is a unique x′ ∈ X with x′ ≤ x and

f(x′) = y′;

(iv) f is a down-closed embedding;

(v) f is étale.

Proof. We know that (v) ⇒ (i), by Theorem 5.5, and that (i) ⇒ (ii) since pulling back along an

exponentiable morphism preserves colimits.

(ii) ⇒ (iii): Since Sup admits an enrichment in the category of commutative monoids via the

∨ operation, its finite coproducts are canonically isomorphic to products, and the codiagonal

∇X : X + X → X is given by ∇X(x, x′) = x ∨ x′. Let x ∈ X and y′ ∈ Y be such that

y′ ≤ y = f(x). Then y = y′∨y, hence there is a (unique) pair (x′, x′′) with f(x′) = y′, f(x′′) = y

and x′ ∨ x′′ = x, hence x′ ≤ x. By uniqueness, x′′ = x and x′ is indeed unique.

To conclude that (iii) ⇒ (iv) we only have to check that f is injective, which follows easily

from the uniqueness of x′ above.

(iv) ⇒ (v): Since down-closed embeddings are pullback-stable, we only have to show that

every down-closed embedding is a discrete fibration. A morphism f : X → Y in Sup is a

discrete fibration if and only if

PX
Pf

//

supX
��

PY

supY
��

X
f

// Y

is a pullback. If f is a down-closed embedding, and x = supS, for x ∈ X and S ⊆ Y , then

S ⊆ X and the diagram is a pullback. �

The category Inf of complete lattices and inf-preserving maps is isomorphic to Sup, via

f : X → Y 7→ fop : Xop → Y op.

Hence we can conclude that, in Inf , a morphism f : X → Y is exponentiable if and only if it is

an up-closed embedding.

6.3 Continuous lattices. For the filter monad F = (F, η, µ), Alg(F ) is the category ContLat

of continuous lattices and monotone maps preserving infima and directed suprema (see [14]).

Since F and µ satisfy (BC), Theorem 5.5 applies, that is every étale homomorphism is exponen-

tiable in ContLat.

Lemma. For a continuous lattice Y and y ∈ Y , the following conditions are equivalent:

(i) the embedding ↑ y → Y is étale;

(ii) y is compact.
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Proof. (i) ⇒ (ii): Let f = ⟨{↑ x |x ≪ y}⟩, where ≪ is the way below relation. Then y =

supB∈f inf B. Hence, ↑ y ∈ f, that is, ↑ y ⊇↑ x for some x ≪ x. But this implies x ≥ y, hence

x = y and y ≪ y.

(ii) ⇒ (i): Let g be a filter on Y with y = supB∈g inf B. Since y ≪ y, y ≤ inf B for some

B ∈ g, hence B ⊆↑ y and therefore ↑ y ∈ g, which, together with the preservation of infima and

directed suprema by the inclusion ↑ y → Y , gives that this morphism is étale. �

The arguments used in the proof of Proposition 6 can be used here, since ContLat is also

enriched in the category of commutative monoids via the ∧ operation. Hence:

(1) every exponentiable morphism in ContLat is an up-closed embedding, that is, it is (up

to isomorphism) an inclusion ↑ y → Y , for some y ∈ Y ;

(2) a morphism is étale if and only if it is, up to isomorphism, an inclusion ↑ y → Y with y

compact.

Therefore one has:

Proposition. For a morphism f : X → Y in ContLat, each of the conditions below implies

the following one:

(i) there is a compact element y of Y such that f is, up to isomorphism, the inclusion

↑ y → Y ;

(ii) f is exponentiable;

(iii) there is an element y of Y such that f is, up to isomorphism, the inclusion ↑ y → Y .

We do not know whether exponentiability of ↑ y → Y implies compactness of y.

6.4 Monoids. Let M = (M,η, µ) be the free-monoid monad on Set, with MX the set of words

in the alphabet X (of length ≥ 0), ηX the insertion of X into MX as one-letter words, and

concatenation µX . It is well known that Alg(M) is the category Mon of monoids and monoid

homomorphisms. This monad is cartesian, hence in particular both M and µ satisfy (BC).

We will show next that in Mon étale homomorphisms are exactly the exponentiable ones.

It follows from Theorem 5.5 that étale homomorphisms are exponentiable since the free-monoid

monad satisfies (BC).

To prove the converse, let f : (X,α) → (Y, β) be an exponentiable homomorphism in Mon,

and consider the commutative diagram

MX
Mf

//
k
**TTT

TT

α

��

MY

β

��

X ×Y MY

zztt
tt
tt
tt
tt

22ddddddddddddddddd

X
f

// Y

We will show that the canonical map k is injective and surjective, that is f is a discrete fibration,

which, by Corollary 2.2, gives that f is étale.

Injectivity. First we observe that exponentiability of f implies preservation of the initial object

by the functor f∗, which means that the kernel Ker(f) of f is a trivial monoid. Now, suppose

k(x1, · · · , xn) = k(x′1, · · · , x′n′). This means

x1 · · ·xn = x′1 · · ·x′n′ in X, and (f(x1), · · · , f(xn)) = (f(x′1), · · · , f(x′n′)) in MY,
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which implies n = n′, and is equivalent to

(G) x1 · · ·xn = x′1 · · ·x′n in X, and f(xi) = f(x′i) in Y for each i = 1, · · · , n.

If f(xi) = f(x′i) = 1 for some i, then xi = x′i = 1 since Ker(f) = {1}, and simultaneously

removing xi from the sequence (x1, · · · , xn) and x′i from the sequence (x′1, · · · , x′n) will not change
anything in (G) except decreasing n. Therefore, without loss of generality, we can assume that

f(xi) ̸= 1 ̸= f(x′i), and so xi ̸= 1 ̸= x′i for each i. Let ι1, ι2 : X → X+X and κ1, κ2 : Y → Y +Y

be the coproduct injections. Consider the elements

t = ιε1(x1) · · · ιεn(xn) and t′ = ιε1(x
′
1) · · · ιεn(x′n) ∈ X +X,

where εi = 1 for even i and εi = 2 for odd i; their images in Y + Y under f + f are

(H) (f + f)(t) = κε1(f(x1)) · · ·κεn(f(xn)) and (f + f)(t′) = κε1(f(x
′
1)) · · ·κεn(f(x′n)),

respectively. Next, consider diagram (F) as in Proposition 6.2, which is a pullback again since

f is exponentiable. In this diagram, as follows from (G) and (H), the elements t and t′ have the

same images in X and in Y + Y . Therefore t = t′, and since xi ̸= 1 ̸= x′i for each i, this implies

(x1, · · · , xn) = (x′1, · · · , x′n′). That is, k is injective.

Surjectivity. We have to prove that, for every x ∈ X and every (y1, · · · , yn) ∈ MY with

f(x) = y1 · · · yn, there exist (x1, · · · , xn) ∈ MX with x1 · · ·xn = x in X and f(xi) = yi for each i.

Again, if yi = 1 for some i, removing it will not change the equality f(x) = y1 · · · yn, and so we can

assume that yi ̸= 1 for each i. Next, in the diagram (F) we have f(x) = ∇Y (κε1(y1) · · ·κεn(yn))
in the notation above. Since (F) is a pullback diagram, and having in mind the construction of

coproducts of monoids and the fact that yi ̸= 1 for each i, we conclude that there a sequence

(x1, · · · , xn) of elements in X with the desired properties.

That is, f is exponentiable if and only if it is étale.

Let us make some further remarks about monoids. As mentioned above, whenever f is ex-

ponentiable, we have Ker(f) = {1}. More generally, the same is true whenever f is open. This

immediately follows from the fact that Ker(Mf) = {1} for any f . However, even if f étale, it

does not have to be injective. Note that, for every map f from a set X to a set Y , since M is a

cartesian monad, the diagram

M2X
M2f

//

µX

��

M2Y

µY

��
MX

Mf
// MY

is a pullback, and so Mf : (MX,µX) → (MY,µY ) is étale. On the other hand, injectivity of

an algebraic homomorphism is not sufficient for being étale, and not even for being open. For

example, for an additive monoid N of natural numbers, the inclusion homomorphism N\{1} → N
is not open simply because 1 + 1 = 2 ∈ N \ {1}, while 1 ̸∈ N \ {1}.

6.5 Semigroups. If we take instead the monadM ′ of non-empty words,Alg(M ′) is the category

SGrp of semigroups and semigroup homomorphisms. An argument analogous to the previous

one, used for monoids, shows that exponentiable homomorphisms in SGrp are exactly the étale

homomorphisms.

6.6 M-Sets. For a monoid M = (M, ·, e), consider the free M -set monad T = (M × −, η, µ),

where ηX = ⟨e, 1X⟩ : X → M ×X, and µX : M ×M ×X → M ×X is given by µX(m,n, x) =

(m · n, x). Then Alg(T ) is the category M -Set of M -sets, that is, sets X equipped with an
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M -action, and equivariant maps. Again, since the monad is cartesian, M × − and µ satisfy

(BC). The extension T : Rel → Rel is defined, for a relation r : X−→7 Y , by

(m,x)Tr (n, y) ⇔ m = n and x r y.

To describe a relational T -algebra a : M × X−→7 X, we write x
n→ y if (n, x) a y. Then a :

M ×X−→7 X is a relational algebra if and only if, for all x, y, z ∈ X:

(a) x
e→ x, and

(b) x
n→ y and y

m→ z ⇒ x
m·n−→ z.

A homomorphism f : (X, a) → (Y, b) is a map f : X → Y such that, for all x, x′ ∈ X,

(c) x
n→ x′ ⇒ f(x)

n→ f(x′).

Therefore relational T -algebras can be seen as M -labeled ordered sets and homomorphisms as

monotone maps.

The category M -Set is a topos, hence it is locally cartesian closed, so that every homomor-

phism is exponentiable in M -Set. However, in general there are homomorphisms in M -Set

which are not étale. Consider for instance M = (N,×, 1) and the action of N on Z and Q via

multiplication. The inclusion

N× Z
1×f

//

α

��

N×Q

β
��

Z
f

// Q

is not open, since f(1) = 1 = β(2, 12) and there is no element of N × Z mapped by 1 × f into

(2, 12).

The case of M -sets is worth to study in detail. Theorem 5.5 states that étale maps are expo-

nentiable in M -Set, with exponentials built as in the category of M -labeled sets and monotone

maps. In fact, although any map is exponentiable in M -Set, the exponentials are built as in M -

labeled ordered sets if and only if the map is étale, as we show next. Note that f : (X,α) → (Y, β)

in M -Set is étale if and only if

(∀x ∈ X) (∀m ∈ M) (∀y ∈ Y ) f(x) = my ⇒ (∃!x′ ∈ X) mx′ = x and f(x′) = y.

Now, we are going to check that the partial product of f : (X,α) → (Y, β) ∈ M -Set and

(Z, γ) ∈ M -Set calculated in RelAlg(T ) (as described in Section 3) is an M -set only if f is

étale. First we remark that, for each y ∈ Y , the relational structure αy on Xy, obtained by

pulling back y : (1, η◦1) → (Y, β) along f , is discrete, that is x
m→ x′, if and only if m = e and

x = x′. Hence any map s : Xy → Z becomes a homomorphism s : (Xy, αy) → (Z, γ); that is,

P = Z(X,f) = {(s, y) | y ∈ Y, s : Xy → Z a map}.

The relational T -algebra structure on P has

(s, y)
m→ (s′, y′) ⇔

my = y′, and

m(s(x)) = s′(x′), whenever f(x′) = y′ and mx = x′,

which is the direct translation of its general description in Section 3 to the present case. It shows

that, whenever Z has more than one element, the uniqueness of (s′, y′) satisfying (s, y)
m→ (s′, y′)

is equivalent to the existence and uniqueness of x ∈ X satisfying f(x) = y and mx = x′ for each
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y ∈ Y and x′ ∈ X with f(x′) = my. That is, the partial product of f with every T -algebra is a

T -algebra if and only if f is étale.

6.7 G-Sets. In the previous example, if M is a group G, then every morphism in G-Set is étale.

Indeed, for every homomorphism f : (X,α) → (Y, β), given x ∈ X and (g, y) ∈ G× Y such that

f(x) = gy, put x′ = g−1x. Then (g, x′) is the unique element of G ×X such that gx′ = x and

(1G×f)(g, x′) = (g, g−1f(x)) = (g, y). Hence, exponentiable and étale homomorphisms coincide.

6.8 Remark. In this paper we only considered monads on Set. However, the results of [4, 5]

on exponentiable morphisms in categories of domains suggest that our results, suitably adapted,

hold for monads on Ord and other categories. For instance, from [4, Theorem 1.9 and Lemma

1.5] it follows that a monomorphism f : X → B in the category DCPO of directed-complete

ordered sets and continuous maps is exponentiable in DCPO if and only if f is exponentiable

in Ord and, moreover, for every x ∈ X and every directed down-set D ⊆ B with f(x) =
∨

D,

there is a directed subset C ⊆ X with x =
∨
C and f(C) ⊆ D is cofinal.
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