
LAX ORTHOGONAL FACTORISATION SYSTEMS

MARIA MANUEL CLEMENTINO AND IGNACIO LÓPEZ FRANCO

Abstract. This paper introduces lax orthogonal algebraic weak factorisation
systems on 2-categories and describes a method of constructing them. This
method rests in the notion of simple 2-monad, that is a generalisation of
the simple reflections studied by Cassidy, Hébert and Kelly. Each simple 2-
monad on a finitely complete 2-category gives rise to a lax orthogonal algebraic
weak factorisation system, and an example of a simple 2-monad is given by
completion under a class of colimits. The notions of kz lifting operation, lax
natural lifting operation and lax orthogonality between morphisms are studied.

1. Introduction

This paper contains four main contributions: the introduction of lax orthogonal
algebraic weak factorisation systems (awfss); the introduction of the concept of
kz diagonal fillers and the study of their relationship to lax orthogonal awfss; the
introduction of simple 2-monads, and the proof that each such induces an awfss;
the proof that 2-monads given by completion under a class of colimits are simple
and the study of the induced factorisations.

Weak factorisation systems form the basic ingredient of Quillen model struc-
tures [?], and, as the name indicates, are a weakening of the ubiquitous orthogonal
factorisation systems. A weak factorisation system (wfs) on a category consists
of two classes of morphisms L and R satisfying two properties: every morphism
can be written as a composition of a morphism in L followed by one in R, and for
any commutative square, with vertical morphisms in L and R as depicted in (1.1),
there exists a diagonal filler. One says that r has the right lifting property with
respect to ` and that ` has the left lifting property with respect to r.

¨ //

LQ`
��

¨

rPR
��

¨

D
<<

// ¨

(1.1)

When r is the unique map to the terminal object, one usually says that C is injective
with respect to `.

In order to unify the study of injectivity with respect to different classes of con-
tinuous maps between T0 topological spaces, Escardó [?] employed lax idempotent
2-monads, also known as kz 2-monads, on poset-enriched categories – these are the
same as 2-categories whose hom-categories are posets. For example, if T is such a
lax idempotent 2-monad, the T-algebras can be described as the objects A that are
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injective to all the morphisms ` such that T` is a coretract left adjoint – also known
as a T-embedding. A central point is that not only each morphism domp`q Ñ A
has an extension along `, but moreover it has a least extension: one that is smallest
amongst all extensions.

¨ //

`
��

A

¨

<< PP

ď

The assignment that sends a morphism to its least extension can be described in
terms of the 2-monad T, so one no longer has the property of the existence of at
least one extension, but the algebraic structure that constructs the extension. If
one wants to describe wfss in this context, instead of just injectivity, one is led to
consider algebraic weak factorisation systems (awfss), to which we shall return in
this introduction.

Injective continuous maps. One of the basic examples that fit in the framework
of [?] is that of the filter monad on the category of T0 spaces, that assigns to each
space its space of filters of open sets. It was shown in [?] that the algebras for this
monad are the topological spaces that arise as continuous lattices with the Scott
topology. These spaces were known to be precisely those injective with respect
to subspace embeddings [?]. In [?] this and other related results are generalised,
characterising those continuous maps of T0 spaces that have the right lifting prop-
erty with respect to different classes of embeddings, and exhibiting for each a wfs
in the category of T0 spaces. A morphism f : X Ñ Y is factorised through the
subspace Kf Ď TX ˆ Y of those pϕ, yq such that Tfpϕq ď tU P OpY q : y P Uu.
The space TX can be the topological space of filters of open sets of X or a vari-
ant of it, and iX : X Ñ TX the inclusion of X as the set of principal filters,
iXpxq “ tU P OpXq : x P Uu. The space Kf fits in a diagram as displayed. The
maps qf and Rf send pϕ, yq P Kf to ϕ P TX and y P Y respectively. The inequality
symbol inside the square denotes the fact that Tf ¨ qf ď iY ¨Rf .

X

Lf
##

iX

&&

f

!!

Kf

Rf
��

qf //

ě

TX

Tf
��

Y
iY
// TY

Central to the arguments in [?] is the fact that the monad f ÞÑ Rf is lax idempo-
tent or kz. This property is intimately linked with the fact that Lf is always an
embedding of the appropriate variant – eg, when TX is the space of all filters of
open sets, then Lf is a topological embedding.

The construction of the factorisation of maps just described resembles the clas-
sical case of simple reflections [?]. One of the aims of the present paper is to show
that both constructions are particular instances of a more general one.

Algebraic weak factorisation systems. Algebraic weak factorisation systems
(awfss) were introduced in [?] with the name natural weak factorisation systems,
with a distributive axiom later added in [?]. The theory of awfss has been devel-
oped in [?] and [?], especially with respect to their relationship to double categories
and to cofibrant generation. The present paper takes the theory in a new direction,
that of awfss on 2-categories whose lifting operations, or diagonal fillers, have a
universal property with respect to 2-cells.
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Many of the factorisation systems that occur in practice provide a construction
for the factorisation of an arbitrary morphism. Such a structure on a category
C is called a functorial factorisation and can be described in several equivalent
ways: as a functor C2 Ñ C3 that is compatible with domain and codomain; as a
codomain-preserving – ie with identity codomain component – pointed endofunctor
Λ: 1 ñ R of C2; as a domain-preserving copointed endofunctor Φ: L ñ 1 of C2.
Then, a morphism f factors as f “ Rf ¨ Lf . Any such functorial factorisation
has an underlying wfs pL,Rq where L consists of those morphisms that admit an
pL,Φq-coalgebra structure and R of those that admit an pR,Λq-algebra structure.
One usually wants, however, to guarantee that Lf P L and Rf P R, for which
one requires extra data in the form of a comultiplication that makes pL,Φq into a
comonad L and a multiplication that makes pR,Λq into a monad R. The pair pL,Rq
together with an extra distributivity condition is called an awfs.

The underlying wfs of an awfs pL,Rq is an orthogonal factorisation system
precisely when L and R are idempotent [?]; for this, it is enough if either is idem-
potent [?].

All the above constructions can be performed on 2-categories instead of cat-
egories. Two morphisms ` : A Ñ B and r : C Ñ D in a 2-category K are lax
orthogonal when the comparison morphism

K pB,Cq ÝÑ K pA,Cq ˆK pA,Dq K pB,Dq

has a left adjoint coretract. – In the the usual definitions of weak orthogonality
and orthogonality this morphism must be an epimorphism and, respectively, an
isomorphism. – This left adjoint provides diagonal fillers that moreover satisfy a
universal property with respect to 2-cells. A choice of diagonal fillers like these that
is in addition natural with respect to ` and r we call a kz lifting operation.

When the 2-category K is locally a preorder, the lax orthogonality of ` and
r reduces to the statement, encountered before in this introduction, that for each
commutative square (1.1) there exists a least diagonal filler.

The notion of awfs on a 2-category we choose is the straightforward generali-
sation of the usual notion of awfs on a category. If K is a 2-category, an awfs
on K consists of a 2-comonad L and a 2-monad R on K 2 that form an awfs on
the underlying category of K 2, and that satisfy codL “ domR as 2-functors; the
definition can be found in Section 4.c.

An interesting question is what is the property on an awfs that corresponds
to the existence of kz lifting operations. The answer is that both the 2-comonad
and the 2-monad of the awfs must be lax idempotent – proved in Theorem 9.10.
Equivalently, either the 2-comonad or the 2-monad must be lax idempotent – proved
in Section 5. This last statement mirrors the case of awfss whose underlying wfs
is orthogonal, for which, as mentioned earlier, it is enough that either the comonad
or the monad be idempotent.

A basic example of a lax idempotent awfs is the one that factors a functor
f : A Ñ B as a left adjoint coretract A Ñ f Ó B followed by the split opfibration
f Ó B Ñ B. We refer to this awfs as the coreflection–opfibration awfs.

Simple reflections. The paper [?] studies the relationship between orthogonal
factorisation systems, abbreviated ofss, and reflections. Every ofs pE ,Mq on a
category C induces a reflection on C as long as C has a terminal object 1; the
reflective subcategory is M{1, the full subcategory of those objects X such that
X Ñ 1 belongs to M. Under certain hypotheses, a reflection, or an idempotent
monad T on C, induces an ofs. One of the possible hypotheses is that T be simple,
which means that for any morphism f the dashed morphism into the pullback
depicted below is inverted by T. The factorisation of f is then given by f “ Rf ¨Lf ,
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and the left class of morphisms consists of those which are inverted by T.

A
Lf

## &&

f

  

Kf //

p.b.Rf
��

TA

Tf
��

B // TB

There is an alternative way of describing simple reflections which seems to be
absent from the literature. Suppose that T is an idempotent monad on C and denote
by T-Iso the category of morphisms in C that are inverted by T . This category fits
in a pullback square

T-Iso //

U
��

Iso

��

C2 T2
// C2

where both vertical functors are full inclusions.

Proposition 1.2. The reflection T is simple if and only if U : T-Iso ãÑ C2 is a
coreflective subcategory.

One way of expressing the construction of the ofs from T is the following. On
any category A we have the ofs pIso,Morq, with left class the isomorphisms and
right class all morphisms. Isomorphisms are the coalgebras for the idempotent
comonad L1 on A2 given by L1pfq “ 1dompfq. If F % U : A ãÑ C is the adjunction
induced by the reflection T, the copointed endofunctor pL,Φq defined by pullback
along the unit of the adjunction satisfies the property that the rectangle on the
right hand side below is a pullback. In other words, pL,Φq-coalgebras are those
morphisms that are inverted by F ; equivalently pL,Φq-Coalg – T-Iso.

L

Φ
��

// U2L1F 2

Φ1
��

1 // U2F 2

pL,Φq-Coalg

��

//

p.b.

pL1,Φ1q-Coalg

��

C2 F2
// A2

Any morphism that is inverted by T is orthogonal to Tf and therefore to its pullback
Rf ; in particular, Lf satisfies this if the reflection is simple. Therefore, we obtain
an ofs when T is simple, with left class those morphisms that are inverted by T .

Simple 2-adjunctions and awfss. The above analysis can be adapted to the case
where categories are substituted by 2-categories and ofss by lax orthogonal awfss.
Reflections are substituted by lax idempotent 2-monads, idempotent (co)monads
by lax idempotent 2-(co)monads, the simple reflections by appropriately defined
simple 2-adjunctions or simple 2-monads. The reflective subcategory Iso of the
arrow category is substituted by the lax idempotent 2-comonad whose algebras
are coretract left adjoints, while Mor is substituted by the free split opfibration
2-monad. A version of the main theorem of Section 11, appropriately modified for
this introduction, states:

Theorem. If the 2-adjunction F % U : K Ñ A is simple, and K ,A are 2-
categories with enough finite limits, then there is a lax orthogonal awfs pL,Rq on
K whose L-coalgebras are morphisms f of K with a coretract adjunction Ff % r
in A .

The notion of simple 2-adjunction is central to the theorem, and occupies most
of Sections 10 and 11.
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A simple 2-monad is one whose associated free algebra 2-adjunction is simple.
When all the 2-categories involved are in fact categories, lax idempotent 2-monads
reduce to reflections and our concept of simple 2-monad to the one of simple re-
flection. Therefore, we know that there are lax idempotent 2-monads that are not
simple, as [?] gives examples of reflections that are not simple.

Examples and further work. The main example treated in the present article
arises from categories with colimits. Given a class of colimits, there exists a 2-
monad on Cat whose algebras are categories with chosen colimits of that class.
We show that these 2-monads are simple, giving rise to lax orthogonal awfss on
Cat. Even though the left morphisms of this factorisation system are described in
general in the theorem above, the right class of morphisms is more difficult to pin
down. We carefully investigate the right class of morphisms and show that they do
not coincide with the obvious candidates: the opfibrations whose fibers have chosen
colimits of the given class and whose push-forward functors between fibres preserve
them.

There are a number of examples of lax orthogonal awfss on locally preordered
2-categories, including that on the (2-)category of T0 topological spaces mentioned
earlier in this introduction, that we have had to leave out of this article for reasons
of space. These will appear in a companion paper that will concentrate in the
case of locally ordered 2-categories, which is still rich enough to encompass a large
number of examples and relates to a rich literature on the subject of injectivity in
order-enriched categories.

Description of sections. Sections 2 and 3 can be regarded as a fairly self-
contained recount of the basic definitions and properties of awfss.

We put together at the beginning of Section 4 some facts about lax idempotent
2-(co)monads, one of our main tools, before introducing lax orthogonal awfs, our
main subject of study.

Section 5 proves that in order for an awfs to be lax orthogonal it suffices that
either the 2-monad or the 2-comonad be lax idempotent.

Sections 6 and 7 recount the notions of lifting operations and diagonal fillers,
with their relationship to awfss. Our approach uses modules or profunctors and
appears to be novel. In a 2-category one can consider the usual lifting operations,
but also lax natural ones. We define lax natural and kz diagonal fillers in Section 8
and prove that lax orthogonal awfss give rise to kz diagonal fillers. Lax orthogonal
functorial factorisations are briefly considered.

In Section 9 we characterise lax orthogonal awfss as those awfs pL,Rq for which
R-algebras are algebraically kz injective to all L-coalgebras, or equivalently, for
which natural kz diagonal fillers exist for squares from L-coalgebras to R-algebras.

Section 10 introduces the concept of simple adjunction of 2-functors. One of our
main results, the construction of a lax idempotent awfs from a simple adjunction,
can be found in Section 11.

Section 12 studies the case when the simple 2-adjunction is the free algebra
adjunction induced by a 2-monad, that we call a simple 2-monad, as it generalises
the notion of simple reflection [?]. Conditions that guarantee that a lax idempotent
2-monad is simple are provided.

Section 13 studies the example of – enriched – categories and completion under
colimits. We show that for a class of colimits Φ, the 2-monad whose algebras
are categories with chosen colimits of that class is simple, whence inducing a lax
orthogonal awfs pL,Rq. We prove in Section 13.d that R-algebras are always split
opfibrations with fibrewise chosen Φ-colimits and that the converse does not always
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hold. The article concludes with a short section that comments on further work
and examples.

2. Background on algebraic weak factorisation systems

In the last few years there has been much interest in algebraic weak factorisation
systems (awfss) mainly due to their connection to Quillen’s model categories and
the small object argument, but also due to the homotopical approach to type theory
(homotopy type theory). The basic theory of awfss appeared in [?] with the name
of natural weak factorisation system, and was later expanded in [?], especially with
respect to the construction of cofibrantly generated awfs. Further study appeared
recently in [?]. From Section 4 onwards, the present paper expands the theory in
another direction, that of awfs in 2-categories whose lifting operations, or diagonal
fillers, satisfy a universal property with respect to 2-cells. Before all that we need
to collect present basics of the theory of awfs, mostly following [?, ?].

2.a. The definition of AWFS. We denote by 2 the category with two objects
0 and 1 and only one non-identity arrow 0 Ñ 1, and by 3 the category with
three objects and three non-identity morphisms 0 Ñ 1 Ñ 2. Given a category C
consider the functors d0, d1, d2 : C3 Ñ C2 that send a pair of composable morphisms
pf : AÑ B, g : B Ñ Cq in C to: d0pf, gq “ f , d1pf, gq “ g ¨ f , d2pf, gq “ g.

When displaying diagrams, we shall denote an object f P C2 by a vertical arrow
and a morphism ph, kq : f Ñ g in C2 by a commutative square, as shown.

¨

f

��
¨

¨

f

��

h // ¨

g

��
¨

k // ¨

Definition 2.1. A functorial factorisation in C is a section of the composition
functor d1 : C3 Ñ C2. This means that for each morphism ph, kq : f Ñ g in C2 we
have a factorisation, functorial in ph, kq, as depicted.

A

f
��

h // C
g
��

B
k
// D

ÞÝÑ

A

Lf
��

h // C

Lg
��

Kf

Rf
��

Kph,kq
// Kg

Rg
��

B
k // D

(2.2)

A functorial factorisation as above induces a pointed endofunctor Λ: 1 ñ R and
a copointed endofunctor Φ: Lñ 1 on C2. The endofunctor L is given by f ÞÑ Lf ,
and the component of the copoint Φ at the object f is depicted on the left hand
side of (2.a). Similarly, f ÞÑ Rf , and the component of the point Λ at the object
f is depicted on the right hand side of (2.a). We note that the domain component
of Φ and the codomain component of Λ are identities, which implies domL “ dom
and codR “ cod, as functors C2 Ñ C. We say that pL,Φq is domain preserving and
that pR,Λq is codomain preserving.

A

Lf
��

A

f
��

Kf
Rf
// B

A

f
��

Lf
// Kf

Rf
��

B B

Conversely, either a domain preserving copointed endofunctor pL,Φq or a codomain
preserving pointed endofunctor pR,Λq on C2 define a functorial factorisation, in
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the first case by setting Rf “ codpΦf q, and in the second case by setting Lf “
dompΛf q.

Definition 2.3. An algebraic weak factorisation system [?, ?] is a functorial fac-
torisation where the copointed endofunctor Φ: L ñ 1 is equipped with a comul-
tiplication Σ: L ñ L2, making it into a comonad L, and the pointed endofunctor
Λ: 1 ñ R is equipped with a multiplication Π: R2 ñ R, making it into a monad
R, plus a distributivity condition. The components of this comultiplication and
multiplication will be denoted as follows.

Σf “
A

Lf
��

A

L2f
��

Kf
σf
// KLf

Πf “

KRf
πf
//

R2f
��

Kf

Rf
��

B B

Furthermore, the monad and comonad must be related by the distributivity con-
dition introduced in [?] that asserts that the natural transformation ∆: LRñ RL
with components

∆f “

¨

LRf

��

σf
//

1

��

¨

RLf

��
¨

πf

// ¨

(2.4)

is a distributive law, ie that the diagrams shown below commute. In fact, the
two triangles automatically commute as a consequence of the comonad and monad
axioms for L and R.

LR
∆ //

ΦR &&

RL

RΦxx
R

L
LΛ
yy

ΛL
%%

LR
∆ // RL

LR
∆ //

ΣR ��

RL

RΣ��
L2R

L∆ // LRL
∆L // RL2

LR2

LΠ
��

∆R // RLR
R∆ // R2L

ΠL
��

LR
∆ // RL

One of the ideas behind this definition is that the L-coalgebras have the left
lifting property with respect to the R-algebras, as explained below. An L-coalgebra
structure on a morphism f : A Ñ B, respectively, an R-algebra structure on f , is
given by morphisms in C2 of the form

A

f
��

A

Lf
��

B
s
// Kf

and
Kf

Rf
��

p
// A

f
��

B B

The domain and codomain components depicted by equality symbols are identity
morphisms as a consequence of the counit axiom of the comonad L, respectively
unit axiom of the monad R. These axioms also imply Rf ¨ s “ 1B and p ¨Lf “ 1A.

Continuing, given a morphism ph, kq in C2 as in (2.2), we get a diagonal filler as
depicted.

A
h //

f

��

Lf

((

C

Lg
��

C

g

��

Kf
Kph,kq

//

Rf
��

Kg

Rg ((

p

77

B

s
66

B
k // B

(2.5)
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Remark 2.6. Every awfs pL,Rq has an underlying wfs pL,Rq, where L consists of
those morphisms of C that admit a coalgebra structure for the copointed endofunc-
tor pL,Φq and R consists of those morphisms that admit an algebra structure for
the pointed endofunctor pR,Λq. To verify this, one can observe that both L and
R are closed under retracts, and that each morphism f factors as f “ Rf ¨ Lf ,
where Lf admits the pL,Φq-coalgebra structure Σf : Lf Ñ L2f and Rf admits the
pR,Λq-algebra structure Πf : R2f Ñ Rf .

2.b. Orthogonal factorisations as AWFSs. We continue with some more back-
ground, in this case, the characterisation of orthogonal factorisation systems in
terms of the associated awfs. Clearly, any orthogonal factorisation system pE ,Mq

in a category C induces an awfs. This is a consequence of the uniqueness of the
factorisations. One can easily characterise the awfs obtained in this way.

Proposition 2.7 ([?, Thm 3.2]). The following are equivalent for an awfs pL,Rq:
‚ The comonad L and the monad R are idempotent.
‚ The underlying wfs is an ofs.

Furthermore, if R is idempotent, then so is L, a proof of which can be found
in [?].

2.c. Right morphisms form a fibration. This section collects some of the ma-
terial of [?, §3.4] that will be crucial later on.

A functor P : A Ñ C2 is a discrete pullback-fibration if it is just like a discrete
fibration except that only pullback squares have cartesian liftings. More explicitly,
for each a P A and each pullback square ph, kq : f Ñ P paq – f is the pullback of the
morphism P paq along k – there exists a unique morphism α : āÑ a in A such that
Pα “ ph, kq.

Lemma 2.8. Suppose the category C has pullbacks. For any codomain preserving
monad R on C2, the codomain functor exhibits R-Alg as a discrete pullback-fibration
over C.

To give an idea of the proof, suppose that g : C Ñ D has an R-algebra structure
pg : Kg Ñ C, and that

A
f ��

h // C
g��

B
k // D

is a pullback square. Then, the R-algebra structure on f is given by the morphism
pf : Kf Ñ A induced by the universal property of pullbacks and the equality
displayed below. This is the unique algebra structure that makes ph, kq a morphism
of algebras.

Kf
pf

//

Rf
��

A
h //

f
��

C
g
��

B B
k // D

“
Kf

Kph,kq
//

Rf
��

Kg
pg

//

Rg
��

C
g
��

B
k // D D

2.d. Miscellaneous remarks. Before moving to the next section and the subject
of double categories, we collect three observations that will be of use later on. We
use the adjunctions cod % id % dom: C2 Ñ C, the first of which has identity counit
and the second has identity unit.

Remark 2.9. Suppose given a functorial factorisation, with associated copointed
endofunctor pL,Φq and pointed endofunctor pR,Λq. The identity natural transfor-
mation 1C “ dom ¨L ¨ id corresponds under id % dom to a natural transformation
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p1, Lq with f -component equal to the morphism depicted on the right hand side
below.

C2
id¨ dom

((

L

66�� p1,Lq C2

dom f

1
��

dom f

Lf
��

dom f
Lf
// Kf

Remark 2.10. Given a functorial factorisation in C with associated copointed end-
ofunctor pL,Φq and pointed endofunctor pR,Λq, denote by V : pR,Λq-Alg Ñ C2

the corresponding forgetful functor from the category of algebras for the pointed
endofunctor pR,Λq. Define a natural transformation as the composition of two
transformations, as displayed.

pR,Λq-Alg V //

V
��

BJp1,pq
C2

id¨ dom
��

C2
L

// C2

p1, pq : L ¨ V ùñ id ¨ dom ¨R ¨ V ùñ id ¨ dom ¨V

The first arrow is the mate of the identity natural transformation cod ¨L “ dom ¨R
under the adjunction cod % id. The second arrow is the application of the pR,Λq-
algebra structure of R ¨ V ñ V . Explicitly, the component of p1, pq on an pR,Λq-
algebra pf, pf q is

dom f

Lf
��

dom f

1
��

Kf
pf

// dom f

Remark 2.11. The pasting along L of the transformation p1, Lq of Remark 2.9 with
the transformation p1, pq of Remark 2.10 is the identity. This is a consequence of
the unit axiom for pR,Λq-algebras: if pf, pf q is an algebra, then pf ¨ Lf “ 1.

3. Double categories of algebras and coalgebras

This section collects remarks on double categories and awfss, due to R Garner.
The definition of awfss used in [?] differs of the original one [?] in the requirement
of an extra distributivity condition: the transformation ∆: LR ñ RL displayed
in (2.4) should be a mixed distributive law. This condition is what makes possible
the definition of a composition of R-algebras and of L-coalgebras, as we proceed to
explain.

The standard category object in Catop displayed on the left below induces a
category object in Cat, that is, a double category, displayed in the centre, that we
may call the double category of squares and denote by SqpCq. Objects of SqpCq are
those of C, vertical and horizontal morphisms are morphisms of C, while 2-cells in
SqpCq are commutative squares in C.

3 2
oo
oo
oo

// 1
oo

oo

C3 C2
//

//

//

oo id C
//dom

//cod
R-Alg

V
��

C
//

//

oo

C2 oo id C
//dom

//cod (3.1)

The central result of this section is the following.

Proposition 3.2. If R is a codomain-preserving monad on C, there is a bijection
between awfss with monad R and extensions of the diagram on the right hand side
of (3.1) to a double functor, by which we mean extensions of the reflexive graph
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R-Alg Ñ C to a category object that makes (3.1) into a functor internal to Cat – a
double functor into SqpCq.

Below we give an indication of the proof of this proposition; a more detailed
account can be found in [?, §3].

3.a. From AWFSs to double categories. If pL,Rq is an awfs on C, R-algebras
can be composed, in the sense that if f : A Ñ B and g : B Ñ C are R-algebras,
then an R-algebra structure for g ¨ f can be constructed from the awfs. Explicitly,
if ppf , 1Bq : Rf Ñ f and ppg, 1Cq : Rg Ñ g are the R-algebra structures of f and
g, with respective domain components pf : Kf Ñ A and pg : Kg Ñ B, then the
R-algebra structure ppg¨f , 1Cq : Rpg ¨ fq Ñ g ¨ f is constructed in the following
manner. The reader will recall from Section 2, especially from diagram (2.5), that
any morphism f Ñ g from an L-coalgebra to an R-algebra has a canonical diagonal
filler. Consider the canonical diagonal filler a of the square pf,Rpg ¨ fqq : Lpg ¨ fq Ñ
g, and then the canonical diagonal filler pg¨f of the square p1A, aq : Lpg ¨ fq Ñ f ,
as depicted in the diagram. It can be shown without much problem that this is an
R-algebra structure on g ¨ f .

A

Lpg¨fq

��

A

f
��

B

g
��

Kpg ¨ fq
Rpg¨fq

//
a

55
pg¨f

::

C

We write pg, pgq ‚ pf, pf q for the R-algebra pg ¨ f, pg¨f q described. This operation on
pairs of composable R-algebras can be shown to be associative and has identities
p1A, R1Aq, so there is a double category R-Alg. The forgetful functor from R-
algebras forms part of a double functor, depicted on the right hand of (3.1).

3.b. From double categories to AWFSs. Suppose that R is a codomain-pre-
serving monad on C2, with associated codomain preserving copointed endofunctor
pL,Φq on C2. Each double category structure on R-Alg Ñ C that is compatible
with the composition of morphisms in C induces a comultiplication Σ: L ñ L2

that makes L “ pL,Φ,Σq into a comonad and pL,Rq an awfs. In the following we
explain how to construct the comultiplication from the double category structure.

If pf, pf q and pg, pgq are R-algebras with codpfq “ dompgq, the double category
structure provides for a vertical composition pg, pgq ‚ pf, pf q “ pg ¨ f, pg ‚ pf q with
underlying morphism g ¨ f . The identities for the vertical composition are the R-
algebras p1, R1q. Morphisms of R-algebras can be vertically composed too: given
such morphisms ph, kq : f Ñ g and pk, `q : f 1 Ñ g1, then ph, `q is a morphism f 1‚f Ñ
g1 ‚ g.

The comultiplication Σf “ p1, σf q : Lf Ñ L2f can be constructed from the
double category structure in the following manner. Consider the morphism of R-
algebras pσf , 1q : Rf Ñ Rf ‚RLf that corresponds under free R-algebra adjunction
to the morphism pL2f, 1q : f Ñ Rf ¨RLf in C2.

Kf
σf
//

Rf

��

KLf

RLf
��

Kf

Rf
��

B B

σf ¨ Lf “ L2f
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The detail of the proof that the components σf yield a comultiplication for L can
be found in [?, Prop. 4].

4. Lax orthogonal AWFSs

This section introduces the fundamental definition of this work, lax orthogonal
awfss, and describes the most basic 2-categorical example. Before all that, we
shall recall some facts about lax idempotent 2-monads.

4.a. 2-monads. We shall assume throughout the paper that the reader is familiar
with the basic notions of 2-category, 2-functor, 2-natural transformation and mod-
ification. Familiarity with 2-(co)monads shall also be assumed, but we can take
this opportunity to remind the reader of the definitions; a complete account can be
found in [?]. A 2-monad T “ pT, i,mq on a 2-category K is a 2-functor T : K Ñ K
with 2-natural transformations i : 1K ñ T , called the unit, and m : T 2 ñ T , called
the multiplication, that satisfy the usual axioms of a monad; in other words, the un-
derlying functor of T with the underlying natural transformations of i and m form
an ordinary monad on the underlying category of K . The definition of 2-comonad
is dual.

An algebra for the 2-monad T is, by definition, an algebra for its underlying
monad. This amounts to an object A with a morphism a : TAÑ A that satisfies the
usual algebra axioms – the 2-cells play no role here. We shall usually be concerned
with the so-called strict morphisms of T-algebras, which are the morphisms of
algebras for the underlying monad of T; ie a strict morphism pA, aq Ñ pB, bq is a
morphism f : A Ñ B in K such that b ¨ Tf “ f ¨ a. However, the 2-dimensional
aspect of K enable us to speak of lax morphisms, which are morphisms f : AÑ B
equipped with a 2-cell f̄ : b ¨Tf ñ f ¨ a that must satisfy certain coherence axioms.
For example, (lax) monoidal functors are examples of lax morphisms for a certain
2-monad. There is a dual notion of oplax morphism, which is a morphism f : AÑ B
with a 2-cell f̄ : f ¨ añ b ¨ Tf that must satisfy coherence axioms. A lax morphism
pf, f̄q whose 2-cell f̄ is invertible is said to be a pseudomorphism.

The four types of morphisms described in the previous paragraph are the mor-
phisms of four 2-categories, all with the T-algebras as objects: T-Algs has the strict
morphisms as morphisms; T-Alg` has the lax morphisms as morphisms; T-Algc has
the oplax morphisms as morphisms; and T-Alg has the pseudomorphisms as mor-
phisms.

A useful fact about adjunctions and (op)lax morphisms is the so-called doctrinal
adjunction theorem, of which we state the version that we will use later.

Proposition 4.1. Let T be a 2-monad on K . An oplax morphism pf, f̄q : pA, aq Ñ
pB, bq between T-algebras has a left adjoint in the 2-category T-Algc if and only if
f has a left adjoint in K and f̄ is invertible.

4.b. Lax idempotent 2-monads. An essential part of our definition of lax or-
thogonal awfs is the concept of a lax idempotent 2-monad, or kz 2-monad, that we
recount in this section. We begin by introducing some space-saving terminology.
Suppose given an adjunction f % g in a 2-category, with unit η : 1 ñ g ¨ f and
counit ε : f ¨ g ñ 1. We say that f % g is a retract (coretract) adjunction when the
counit (unit) is an identity 2-cell.

Definition 4.2. A 2-monad T “ pT, i,mq on a 2-category K is lax idempotent, or
Kock-Zöberlein, or simply kz, if any of the following equivalent conditions hold.

(i) Ti % m with identity unit (coretract adjunction).
(ii) m % iT with identity counit (retract adjunction).
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(iii) Each T-algebra structure a : TAÑ A on an object A is part of an adjunc-
tion a % iA with identity counit (retract adjunction).

(iv) There is a modification δ : Tiñ iT satisfying δ ¨ i “ 1 and m ¨ δ “ 1.
(v) The forgetful 2-functor U` : T-Alg` Ñ K is fully faithful.
(vi) For any pair of T-algebras A, B, every morphism f : UA Ñ UB in K

admits a unique structure of a lax morphism of T-algebras.
(vii) For any morphism f : X Ñ A into a T-algebra pA, aq, the identity 2-cell

exhibits a ¨ Tf as a left extension of f along iX .
The conditions (i), (ii) and (iv) appeared in [?] and [?], albeit in a slightly different
context; [?] shows the equivalence of these three conditions. The proof of the
equivalence of the whole list, in the case of a 2-monad, can be found in [?].

Being lax idempotent can be regarded as a property of the 2-monad, since, for
example, there can exist at most one counit for the adjunction in (i).

It may be useful to say a few words about how to obtain a left extension from
the modification δ. If f : X Ñ A and g : TX Ñ A are morphisms into a T-algebra
pA, aq, and α : f ñ g ¨ iX a 2-cell, then the corresponding 2-cell a ¨ Tf ñ g is
constructed as pa ¨ Tg ¨ δXq ¨ pa ¨ Tαq.

Definition 4.3. A 2-comonad G “ pG, e, dq on K is lax idempotent, or kz, if
the 2-monad pGop, eop, dopq on K op is lax idempotent. This means that we have
conditions dual to the ones spelled out above for 2-monads; eg adjunctions eG %

d % Ge, a modification δ : Ge ñ eG, etc. We state one of the conditions in full:
given a morphism f : AÑ X from a G-coalgebra pA, sq, the identity 2-cell exhibits
Gf ¨ s : AÑ GX as a left lifting of f through eX .

4.c. Definition and basic properties of lax orthogonal AWFSs. A lax or-
thogonal awfs will be, first of all, an awfs on a 2-category. We shall start, thus,
with the definition of 2-functorial factorisations and awfss on 2-categories.

Definition 4.4. A 2-functorial factorisation on a 2-category K is a 2-functor that
is a section of the 2-functor K 3 Ñ K 2 that sends a pair of composable morphisms
to its composition.

A 2-functorial factorisation on K induces a functorial factorisation f ÞÑ Rf ¨Lf
on the underlying ordinary category of K , and in addition it factorises 2-cells, as
depicted.

X

f

��

h
&&

k

88�� α Y

g

��

X 1
h1
''

k1
77�� α

1 Y 1

ÞÝÑ

X

Lf

��

h

**

k

44�� α Y

Lg

��

Kf

Rf

��

Kph,kq
**

Kph1,k1q

44�� Kpα,α
1
q Kg

Rg

��

X 1
h1

**

k1

44�� α1 Y 1

There is a bijection between the family of 2-functorial factorisations and the
family of copointed endo-2-functors Φ: Lñ 1 of K 2 with dom Φf “ 1dompfq; and
also the family of pointed endo-2-functors Λ: 1 ñ R with cod Λf “ 1codpfq, for all
f P K 2.

Definition 4.5. An awfs on a 2-category K consists of a pair pL,Rq formed by
a 2-comonad and a 2-monad on K 2 satisfying the same properties as awfss on
categories. More explicitly,

‚ the domain of the counit Φ: Lñ 1 is an identity morphism;
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‚ the codomain of the unit Λ: 1 ñ R is an identity morphism;
‚ Both pL,Φq and pR,Λq must give rise to the same 2-functorial factorisation

on K ;
‚ the 2-natural transformation ∆ of (2.4) must be a distributive law between

the underlying comonad of L and the underlying monad of R on the ordinary
underlying category of K .

Definition 4.6. An awfs pL,Rq in a 2-category K is lax orthogonal if the 2-
comonad L and the 2-monad R are lax idempotent.

We will later see in Section 5 that it is enough to require that either L or R be
lax idempotent.

Remark 4.7. It was observed in Remark 2.11 that the transformation p1, pq : L ¨
V Ñ id ¨ dom ¨V of Remark 2.10 has as right inverse p1, Lq ¨ V , where p1, Lq is
the transformation of Remark 2.9. We claim that, when the 2-monad R is lax
idempotent, we also have a retract adjunction in the 2-category 2-CatpR-Algs,K 2q

of 2-functors, 2-natural transformations and modifications
p1, pq % p1, Lq ¨ V : id ¨ dom ¨V ùñ L ¨ V.

The counit of this adjunction is the identity modification, and the unit has compo-
nents

A

Lf
��

A

1
��

A

Lf
��

Kf
pf
//

99

1

KS
ηf

A
Lf
// Kf

for f P R-Algs, where ηf is the domain component of the unit of the adjunction
ppf , 1q % pLf, 1q provided by the fact that R is lax idempotent – numeral (iii) of
Definition 4.2. The fact that this defines a modification with components p1, ηf q
follows, and clearly satisfies the triangle identities.

4.d. A basic example. There is a lax orthogonal awfs that will play the role
analogous to the role that the ofs pIso,Morq plays in the context of simple reflec-
tions – as explained in Section 1. The next few pages give a complete description
of this basic example of a lax orthogonal awfs.

Every functor f : A Ñ B factors as Lf : A Ñ Kf “ pf Ó Bq followed by
Rf : Kf Ñ B, where Lfpaq “ pa, 1: fpaq Ñ fpaq, fpaqq, and Rfpa, β : fpaq Ñ
b, bq “ b. The associated pointed endofunctor R on Cat2 given by f ÞÑ Rf un-
derlies the free split opfibration monad R. Precisely the same factorisation can be
constructed in any 2-category K with the necessary comma objects. At this point
one could deduce that there is an awfs pL,Rq by observing that split opfibrations
compose and the results cited in Section 3, and furthermore, one could use the
results of Section 5 to prove that the awfs is lax orthogonal. Instead, we shall
give an explicit description of the comonad and its coalgebras, as they will become
important in later sections.

Given a 2-category K we can perform two constructions to obtain new 2-
categories. The first is the 2-category LaripK q, whose objects are morphisms
f in K equipped with a right adjoint coretract rf , ie a left adjoint right inverse or
lari, in the terminology used in [?]; we may write an object of this 2-category as
pf, rq, omitting the unit and counit of the adjunction, since the unit is an identity
2-cell and the counit is, therefore, the unique 2-cell that satisfies the adjunction
triangle axioms for f % r. A morphism pf, rq Ñ pf 1, r1q in LaripK q is a morphism
ph, kq : f Ñ f 1 in K 2 such that r1 ¨ k “ h ¨ r. It is not difficult to show that ph, kq is
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automatically compatible with the counits of the adjunctions: if the counits are ε
and ε1, then ε1 ¨ k “ k ¨ ε. The 2-cells between morphisms in LaripK q are just the
2-cells in between them in K 2. There is a forgetful 2-functor LaripK q Ñ K 2,
and laris can be composed via the usual composition of adjunctions, so if pf, rq
and pf 1, r1q are laris with f and f 1 composable morphisms, then pf 1 ¨ f, r ¨ r1q is
canonically a lari. In this way, LaripK q has a double category structure, and
furthermore, the composition is obviously compatible with 2-cells, so the double
category structure extends to an internal category in the category of 2-categories.

The second construction is a 2-category OpFibpK q of split opfibrations in K ,
by which we mean morphisms f in K such that each functor K p´, fq is a split
opfibration in rK op,Cats. There is a forgetful 2-functor OpFibpK q Ñ K 2

and the composition of two split opfibrations is canonically a split opfibration,
so OpFibpK q is an internal category in the category of 2-categories.

If the 2-category K has enough comma objects, then there is an awfs pL,Rq
on K that satisfies OpFibpK q – R-Algs, and, as we will see in Proposition 4.11,
LaripK q – L-Coalgs. Let us first say a few words about R. The free split opfi-
bration on f is given by a comma object as depicted on the left hand side of (4.8).
The unit of R has components Λf “ pLf, 1q, where Lf : A Ñ Kf is the unique
morphism such that Rf ¨ Lf “ f , qf ¨ Lf “ 1 and νf ¨ Lf “ 1. The multiplication
Πf “ pπf , 1q is given by the unique morphism πf : KRf Ñ Kf satisfying the three
equalities depicted on the right hand side.

Kf

Rf
��

qf
//

�� νf

A

f
��

B B

qf ¨ πf “ qf ¨ qRf Rf ¨ πf “ R2f νf ¨ πf “ νRf pνf ¨ qRf q

(4.8)
We remark that Lf comes equipped with an adjunction Lf % qf with identity

unit, where qf : Kf Ñ A is the projection. The counit ωLf : Lf ¨ qf ùñ 1 is the
2-cell induced by the universal property of comma objects and the conditions

qf ¨ ωLf “ 1: qf ùñ qf and Rf ¨ ωLf “ νf : Rf ¨ Lf ¨ qf “ f ¨ qf ùñ Rf.

The copointed endo-2-functor L underlies a 2-comonad with comultiplication
Σ: Lñ L2, defined by the following equality and the universal property of comma
objects.

Kf
σf
// KLf

qLf
//

RLf
��

�	 νLf

A

Lf
��

Kf Kf

“

Kf
qf
//

�� ωLf

A

Lf
��

Kf Kf

(4.9)

The 2-monad R is well-known to be lax idempotent. To see that the comonad L is
lax idempotent, one can exhibit an adjunction ΦLf % Σf with identity counit. The
existence of an adjunction RLf % σf , with identity counit follows from Remark 4.10
below. The fact that this adjunction yields an adjunction ΦLf % Σf in K 2 can
be readily checked. We leave the verification of the distributivity law between the
2-comonad and 2-monad to the reader.

Remark 4.10. Given a comma object as exhibited on the left below, each adjunction
` % r induces a retract adjunction p % s, where s is defined by the equality on the
right hand side.

` Ó t
q
//

p
��
�� ν

A

`
��

X
t
// B

X
s // ` Ó t

q
//

p
��
�� ν

A

`
��

X
t
// B

“

X
t // B

r //

""1
�� ε
A

`
��

B
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The unit η : 1 ñ s ¨ p is the unique 2-cell satisfying p ¨ η “ 1 and

` Ó t

1
))

s¨p
55��

η ` Ó t
q
// A “

` Ó t
q
//

p
��
�� ν

A

`
��

��
A

X
t
// B

r

<<

We make a final observation that will be of use later on. Suppose that the unit
of ` % r is an identity and h : Z Ñ ` Ó t is any morphism such that ν ¨ h is an
identity 2-cell. Then η ¨ h is an identity 2-cell.

Proposition 4.11. Let pL,Rq be the awfs described above in this section.
(1) There is an isomorphism over K 2 between pL,Φq-Coalg (the 2-category of

coalgebras for the copointed endo-2-functor pL,Φq) and the 2-category with
‚ Objects pf, v, ξq where f : A Õ B : v and ξ : f ¨ v ñ 1 that satisfy
v ¨ f “ 1A and ξ ¨ f “ 1 – strong deformation retracts of B.

‚ Morphisms pf, v, ξq Ñ pf 1, v1, ξ1q, morphisms ph, kq : f Ñ f 1 in K 2

such that h ¨ v “ v1 ¨ k and ξ1 ¨ k “ k ¨ ξ.
‚ 2-cells ph, kq ñ ph̄, k̄q : pf, v, ξq Ñ pf 1, v1, ξ1q, 2-cells pα, βq : ph, kq ñ
ph̄, k̄q in K 2 such that α ¨ v “ v1 ¨ β.

(2) There is an isomorphism over K 2 between L-Coalgs and the 2-category
LaripK q.

(3) Cofree L-coalgebras correspond to the coretract adjunctions Lf % qf .
(4) The double category structure on L-Coalgs induced by this awfs is that of

LaripK q, ie given by composition of coretract adjunctions.

Proof. The reader would recall from (4.8) the definition of Kf as a comma object.
There is a bijection between morphisms s : B Ñ Kf such that Rf ¨ s “ 1B and
morphisms v : B Ñ A equipped with a 2-cell ξ : f ¨ v ñ 1B ; the bijection is given
by composing with the comma object νf , ie v “ qf ¨ s and ξ “ νf ¨ s. Under this
bijection, the condition s ¨ f “ Lf , which means that p1, sq is a morphism f Ñ Lf ,
translates into ξ ¨ f “ 1. This completes the description of pL,Φq-coalgebras.

Next we translate the condition σf ¨ s “ Kp1, sq ¨ s, that is the coassociativity
axiom for that makes an pL,Φq-coalgebra into an L-coalgebra. Denote the counit
of Lf % qf by ωf , and recall that σf is defined by (4.9). The morphism σf ¨ s
corresponds under the universal property of the comma object νLf to the 2-cell

B
s // Kf

σf
// KLf

qLf
//

RLf
�� �
 νLf

A

Lf
��

Kf Kf

“

B
s // Kf

qf
//

�	 ωLf

A

Lf
��

Kf Kf

(4.12)

while Kp1, sq ¨ s corresponds to the 2-cell displayed below.

B
s // Kf

Kp1,sq
// KLf

qLf
//

RLf
�� �
 νLf

A

Lf
��

Kf Kf

“

B
s // Kf

qf
//

Rf
�� �� νf

A

f
��

B B
s
// Kf

“

B
v //

�� ξ
A

f
��

B
s
// Kf

(4.13)

Therefore, s is a coalgebra precisely when (4.12) equals (4.13). These are both
2-cells between morphisms with codomain Kf , and as such they are equal if and



16 M M CLEMENTINO AND I LÓPEZ FRANCO

only if their respective compositions with the projections Rf and qf coincide. Their
composition with Rf yield respectively

Rf ¨ ωLf ¨ s “ νf ¨ s “ ξ and Rf ¨ s ¨ ξ “ ξ

while their composition with qf yield respectively

qf ¨ ωf ¨ s “ 1 and qf ¨ s ¨ ξ “ v ¨ ξ.

It follows that s is coassociative if and only if v ¨ ξ “ 1, completing the description
of L-coalgebras as coretract adjunctions f % v.

We now describe the morphisms of pL,Φq-coalgebras from p1, sq : f Ñ Lf to
p1, s1q : f 1 Ñ Lf 1. Such a morphism is a morphism ph, kq : f Ñ f 1 in K 2 satisfying
s1 ¨ k “ Kph, kq ¨ s. Composing with the comma object νf 1 , this equality translates
into v1 ¨ k “ h ¨ v and ξ1 ¨ k “ k ¨ ξ. A morphism of L-coalgebras is just a morphism
between the underlying pL,Φq-coalgebras.

A 2-cell between morphisms ph, kq, ph̄, k̄q : pf, sq Ñ pf 1, s1q of pL,Φq-algebras is
a pair of 2-cells α : h ñ h̄ and β : k ñ k̄ satisfying Kpα, βq ¨ s “ s1 ¨ β. This is an
equality of 2-cells between 1-cells with codomain Kf 1, so it holds if and only if it
does after composing with the projections Rf 1 and qf 1 . The composition of this
equality withRf 1 yields β “ β – no information here – while its composition with qf 1
yields α ¨v “ β ¨v1. This completes the description of pL,Φq-Coalg. When pf, sq and
pf 1, s1q are L-algebras, with associated coretract adjunctions pf, v, ξq and pf 1, v1, ξ1q,
this latter equality is void too, since its mate automatically holds. Explicitly,

`

h ¨ v
α¨v
ÝÝÑ h̄ ¨ v

˘

“
`

h ¨ v “ v1 ¨ k
v1¨β
ÝÝÑ v1 ¨ k̄ “ h̄ ¨ v

˘

holds if and only if it does after precomposing with f and composing with the unit
1 “ v ¨ f of f % v:

α “ α ¨ v ¨ f “
`

h “ h ¨ v ¨ f “ v1 ¨ k ¨ f
v1¨β¨f
ÝÝÝÝÑ v1 ¨ k̄ ¨ f “ h̄ ¨ v ¨ f “ h̄

˘

.

But this latter equality automatically holds, by β ¨ f “ f 1 ¨ α. This shows that
2-cells in L-Coalgs are simply 2-cells in K 2.

Finally, we prove the fourth statement of the proposition. The 2-category of L-
coalgebras is equipped with an obvious composition: that of coretract adjunctions.
Any such composition corresponds to a unique multiplication Π̄ : R2 Ñ R that
makes pR,Λ, Π̄q a 2-monad and satisfies the distributivity condition – see Section 3
for the details. We have to show that Π̄ equals the multiplication Π of the free split
opfibration 2-monad.

By the comments at the end of Section 3.b, or rather the dual version of those
comments, Π̄f “ pπ̄f , 1q is defined by the property that p1, π̄f q is the unique mor-
phism of L-coalgebras from LpRfq ‚ Lf to Lf that composed with the counit
Φf “ p1, Rfq : Lf Ñ f yields the morphism p1, R2fq : LRf ¨ Lf Ñ f in K 2.

A
Lf
��

A

Lf

��

Kf
LRf
��

KLf
π̄f
// Kf

(4.14)

By the previous parts of the present proposition, to say that p1, π̄f q is a morphism
of L-coalgebras is equivalent to saying that 1A and π̄f form a commutative square
with the right adjoints of Lf and of LRf ¨ Lf . It is worth keep in mind that
composition of L-coalgebras that induces π̄f is the usual composition of coretract
adjunctions, so the right adjoint of Lf is qf and the right adjoint of LRf ¨ Lf
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is qf ¨ qRf . It follows that, to say that p1, π̄f q is a morphism of L-coalgebras is
equivalent to requiring the following equality.

qf ¨ π̄f “ qf ¨ qRf

So far we have unravelled the definition of π̄f . In order to deduce that π̄f equals
the multiplication πf of the free split opfibration 2-monad, it suffices to verify that
p1, πf q is too a morphism of L-coalgebras of the form (4.14) and Φf ¨ p1, πf q “
p1, R2fq. The latter equation always holds, as it is Rf ¨ πf “ R2f , as remarked in
the equation (4.8). The fact that p1, πf q is a morphism of L-coalgebras is, by the
same argument applied to π̄f , the condition qf ¨ πf “ qf ¨ qRf , which holds again
by (4.8). By uniqueness of π̄f , we obtain πf “ π̄f and thus the vertical composition
of laris coincides with that of L-coalgebras. �

Remark 4.15. In general, for a copointed endofunctor pG, εq on a category C, and
a retraction r : Y � X with section s in C, each pG, εq-coalgebra structure δ : Y Ñ
GY on Y induces another on X. This induced coalgebra structure is pGrq¨δ¨s : X Ñ

GX. Later, in the proof of Proposition 8.19, we shall need the description of this
construction in the case of the copointed endo-2-functor pL,Φq of Proposition 4.11.
Let pf, v, ξq be a coalgebra and pr0, r1q : f Ñ f̄ a retraction on K 2 with section
ps0, s1q. The induced coalgebra structure pf̄ , v̄, ξ̄q is given by v̄ “ r0 ¨ v ¨ s1 and

f̄ ¨ v̄ “ f̄ ¨ r0 ¨ v ¨ s1 “ r1 ¨ f ¨ v ¨ s1
r1¨ξ¨s1
ùùùùñ r1 ¨ s1 “ 1.

5. The 2-comonad is lax idempotent if the 2-monad is so

In this section we show that, in order for an awfs on a 2-category to be lax
orthogonal, it suffices that either its 2-monad or its 2-comonad be lax idempotent.
This result can be seen as a two-dimensional generalisation of the fact that an awfs
on a category is orthogonal if either its monad or its comonad is idempotent – a fact
that is explained in [?]. However, the proof, as it is to be expected, is more involved.
Incidentally, our proof uses the double category structure on R-Algs mentioned in
Section 3.

Theorem 5.1. The 2-comonad of an awfs on a 2-category is lax idempotent pro-
vided the 2-monad is lax idempotent.

Proof. Denote the awfs on the 2-category K by pL,Rq, where L is a 2-comonad
with counit Φ: L ñ 1 and comultiplication Σ: L ñ L2, and R is a 2-monad
with unit Λ: 1 ñ R and multiplication Π: R2 ñ R. We will verify one of the
equivalent conditions that make L a lax idempotent 2-comonad – the corresponding
conditions for a 2-monad are mentioned in Section 4.b – namely, that there exist
coretract adjunctions Σf % LΦf whose counits form a modification in f : AÑ B. In
Section 3.b we mentioned that pσf , 1Bq is a morphism of R-algebras Rf Ñ Rf‚RLf ,
where the codomain is the vertical composition of the R-algebras RLf and Rf .
Consider the morphism

RLf
RΦf
ÝÝÝÑ Rf

pσf ,1Bq
ÝÝÝÝÝÑ Rf ‚RLf

which is, by Section 4.b, a left extension along ΛLf of its composition with the unit
ΛLf

pσf , 1Bq ¨RΦf ¨ ΛLf “ pσf , 1Bq ¨ Λf ¨ Φf “ pL2f,Rfq : Lf ÝÑ Rf ¨RLf.

The morphism p1KLf , Rfq : RLf Ñ Rf ¨RLf in K 2 satisfies p1KLf , Rfq¨ΛLf “
pL2f,Rfq too, therefore the universal property of left extensions gives a unique 2-
cell pσf , 1Bq¨RΦf ñ p1KLf , Rfq in K 2 whose composition with ΛLf is the identity
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2-cell. This forces the 2-cell to be of the form

pεf , 11B
q : pσf , 1Bq ¨RΦf ùñ p1KLf , Rfq (5.2)

for a 2-cell in K

εf : σf ¨Kp1A, Rfq ùñ 1KLf : KLf Ñ KLf

since the codomain component of Λf is an identity. This definition makes pεf , 11B
q,

and hence εf , a modification in f , a fact that can be verified by using the universal
property of left extensions.

We now proceed to prove that εf is the counit of a coretract adjunction σf %
Kp1A, Rfq in K , for which we must show three conditions:

εf ¨ σf “ 1 Kp1A, Rfq ¨ εf “ 1 εf ¨ L
2f “ 1. (5.3)

The first two conditions are the triangle identities of the adjunction, while the last
one means that εf is a 2-cell in K 2.

Consider the morphism of R-algebras

Rf
pσf ,1Bq
ÝÝÝÝÝÑ Rf ‚RLf

pRf,1Bq‚RΦf
ÝÝÝÝÝÝÝÝÝÑ 1B ‚Rf

1B‚pσf ,1Bq
ÝÝÝÝÝÝÝÑ 1B ‚Rf ‚RLf

that can be depicted in the way of the following diagram – of solid arrows – where,
as always, objects of K 2 are represented by vertical arrows and morphisms of K 2

by commutative squares.

Kf
σf

//

Rf

��

KLf
Kp1A,Rfq

//

KS
εf

1

''

RLf

��

Kf
σf

//

Rf

��

KLf

RLf
��

Kf

Rf
��

Kf
Rf

//

Rf
��

B

1
��

B

1
��

B B B B

(5.4)

This morphism is equal to pσf , 1Bq, since Kp1A, Rfq ¨ σf “ 1. Now consider the
dotted identity arrow and the 2-cell εf in (5.4), observing that it defines a 2-cell

pεf , 1q : pσf , 1q ¨RΦf ùñ 1

in K 2, and, upon precomposing with σf , a 2-cell

pεf ¨ σf , 11B
q : pσf , 1Bq ùñ pσf , 1Bq (5.5)

with equal domain and codomain. This 2-cell (5.5) precomposed with Λf : f Ñ Rf
equals the identity, for σf ¨ Lf “ L2f and εf ¨ L

2f “ 1 by definition of εf . Since
pσf , 1q is a left extension of pσf , 1q ¨ Λf along Λf , we must have pεf ¨ σf , 11B

q “ 1,
the first of the equalities (5.3).

In order to prove the second equality of (5.3), consider the morphism of R-
algebras

RLf
RΦf
ÝÝÝÑ RL

pσf ,1Bq
ÝÝÝÝÝÑ Rf ‚RLf

pRf,1Bq‚RΦf
ÝÝÝÝÝÝÝÝÝÑ 1B ‚Rf
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that can be depicted as in the following diagram – of solid arrows.

KLf

RLf

��

Kp1A,Rfq
//

KS
εf

1

''

Kf

Rf

��

σf

// KLf

RLf
��

Kp1A,Rfq
// Kf

Rf
��

Kf
Rf

//

Rf
��

B

1
��

Kf
Rf

// B B B

This morphism equals pKp1A, Rfq, 1q, since Kp1A, Rfq¨σf “ 1 by the counit axiom
of the comonad L. If we now consider the dotted identity arrow, the 2-cell εf induces
an endo-2-cell

pKp1A, Rfq ¨ εf , 1Rf q : pKp1A, Rfq, Rfq ùñ pKp1A, Rfq, Rfq, (5.6)
which, by definition of εf (5.2), equals the identity when precomposed with ΛLf .
The morphism pKp1A, Rfq, Rfq is a morphism of R-algebras, and hence a left ex-
tension along ΛLf , from where we deduce that (5.6) must be the identity 2-cell.
That is, Kp1A, Rfq ¨ εf “ 1, the second equality of (5.3).

All that remains to verify is εf ¨L2f “ 1, but this is part of the definition of εf ,
completing the proof. �

6. Lifting operations

We turn to the second part of the article where we put the emphasis on lifting
operations and their relationship to awfss. In this section and the next we leave
the case of 2-categories and return to the framework of ordinary categories. After
setting out our own approach to lifting operations, we recall a number of notions
known for ordinary awfs. This is a necessary step previous to extending these
notions to lax idempotent awfss from Section 8 onwards.

6.a. Background on modules. As a preamble to the next section, let us briefly
remind the reader about the language of modules or profunctors, which will be
heavily used henceforth.

Definition 6.1. A module or profunctor φ from a category A to a category B,
denoted by φ : A ÝÞÑ B, is a functor Bop ˆA Ñ Set, and a module morphism is a
natural transformation. Given another module ψ : B ÝÞÑ C, the composition ψ ¨φ is
defined by the coend formula pψ ¨ φqpc, aq “

şB
ψpc, bq ˆ φpb, aq; the identity 1A for

this composition is given by 1Apa, a
1q “ Apa, a1q. In this way we obtain a bicategory

Mod.

Each functor F : A Ñ B induces two modules F˚ and F˚ given by F˚pb, aq “
Bpb, Faq and F˚pa, bq “ BpFa, bq. Furthermore, there is an adjunction F˚ % F˚

with unit and counit given by components

Apa, a1q F
ÝÑ BpFa, Fa1q – F˚ ¨ F˚pa, a

1q

F˚ ¨ F
˚pb, b1q “

ż A

Bpb, Faq ˆ BpFa, b1q comp
ÝÝÝÑ Bpb, b1q.

The coend form of the Yoneda lemma implies that pψ ¨ F˚qpa, cq – ψpc, Faq and
F˚ ¨ χpa, dq – χpFa, dq, whenever these compositions of modules are defined.

Similarly, if α : F ñ G is a natural transformation between functors A Ñ B, then
there are morphisms of modules α˚ : F˚ Ñ G˚ and α˚ : G˚ Ñ F˚, with components

α˚pb, aq “ Bpb, αaq α˚pa, bq “ Bpαa, bq.
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6.b. Lifting operations. Fix a category C. Recall that there are adjunctions
cod % id % dom: C2 ÝÑ C (6.2)

the first of which has identity counit and the second of which has identity unit.
Define a module (profunctor) Diag : C2 ÝÞÑ C2 in the following way. Given two

morphisms f , g in C, Diagpf, gq is the set of commutative diagrams of the form

A

f
��

h // C

g
��

B
k
//

d
;;

D

(6.3)

The action of C2 on either side is simply by pasting the appropriate commutative
square.

Lemma 6.4. There are isomorphisms of modules between Diag and the following
four modules C2 ÝÞÑ C2.

cod˚ ¨ dom˚ id˚ ¨ id˚ pid ¨ domq˚ pid ¨ codq˚

Proof. The bijection Diagpf, gq – pcod˚ ¨ dom˚qpf, gq – Cpcodpfq,dompgqq is the
obvious one, that sends a commutative square with a diagonal filler d as in (6.3) to
the morphism d. Due to the adjunctions (6.2), cod˚ – id˚ and id˚ – dom˚, and we
obtain isomorphisms of cod˚ ¨dom˚ with pid ¨ domq˚, and with id˚ ¨ id˚, and with
cod˚ ¨id˚ – pid ¨ codq˚. �

The second isomorphism is the one induced by the fact that id˚ – dom˚, as seen
in (6.2). The isomorphism Diagpf, gq – pid ¨ domq˚pf, gq “ C2pf, 1dom gq is given by

¨
h //

f
��

¨

g
��

¨
k
//

d
<<

¨

ÞÝÑ

¨
h //

f
��

¨

1dom g

��
¨

d
// ¨

The counit of id˚ % id˚ is a module morphism
Diag ÝÑ 1C2 (6.5)

whose component at pf, gq sends the element (6.3) to the outer commutative square.
It corresponds, under Diag – pid ¨ domq˚, to the module morphism induced by the
natural transformation with f -component

id ¨ dom ùñ 1C2

¨

1dom f

��

¨

f
��

¨
f
// ¨

Definition 6.6. Let pA, Uq, pB, V q be two objects of Cat{C2, and define a module

DiagpU, V q : B V˚
ÝÝÑ C2 Diag

ÝÝÑ C2 U˚
ÝÝÑ A. (6.7)

The module morphism Diag Ñ 1 induces another DiagpU, V q Ñ U˚ ¨ V˚. A lifting
operation for U , V is a section for this module morphism, and amounts to a choice,
for each square in C of the form

A
h //

Ua
��

C

V b
��

B
k
// D

a P A, b P B (6.8)

of a diagonal filler dph, kq, in such a way that it is natural with respect to compo-
sition on either side. To expand on this point, suppose given morphisms α : a1 Ñ a
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in A sent by U to the square Uα “ px, yq : Ua1 Ñ Ua, and β : b Ñ b1 in B sent by
V to V β “ pu, vq : V b Ñ V b1. The naturality of dph, kq means that the equality
below holds.

¨
x //

Ua1

��

¨
h //

Ua

��

¨
u //

V b

��

¨

V b1

��
¨

y
// ¨

k
//

dph,kq

@@

¨
v
// ¨

“

¨
u¨h¨x //

Ua1

��

¨

V b1

��
¨

v¨k¨y
//

dpu¨h¨x,v¨k¨yq

77

¨

Example 6.9. A functorial factorisation system, with associated copointed endo-
functor pL,Φq and pointed endofunctor pR,Λq, gives rise to a lifting operation for
the forgetful functors U : pL,Φq-Coalg Ñ C2 and V : pR,Λq-Alg Ñ C2. The section
to the module morphism DiagpU, V q Ñ U˚ ¨ V˚ has component at an object pf, gq
of pL,Φq-Coalg ˆ pR,Λq-Alg described in the following terms. If p1, sq : f Ñ Lf
is the coalgebra structure of f and pp, 1q : Rg Ñ g the algebra structure of g, the
component is given by

C2pf, gq
L
ÝÑ C2pLf, Lgq

C2
ps,1q

ÝÝÝÝÑ C2pf, Lgq
C2
p1,p1,pqq

ÝÝÝÝÝÝÝÑ C2pf, 1dompgqq (6.10)

¨
h //

f
��

¨

g
��

¨
k
// ¨

ÞÝÑ

¨
h //

f
��

¨

1
��

¨
p¨Kph,kq¨s

// ¨

The reader would have noticed that the diagonal filler p ¨Kph, kq ¨ s so obtained is
the same one mentioned in Section 2.a and that we reproduce below.

A
h //

f

��

Lf

((

C

Lg
��

C

g

��

Kf
Kph,kq

//

Rf
��

Kg

Rg ((

p

77

B

s
66

B
k // B

There is an equivalent description of (6.10) that, instead of using C2pf, 1dompgqq –

DiagpU, V qpf, gq, uses C2p1codpfq, gq – DiagpU, V qpf, gq. From this point of view, the
section takes the form

C2pf, gq
R
ÝÑ C2pRf,Rgq

C2
p1,pq

ÝÝÝÝÑ C2pRf, gq
C2
pps,1q,1q

ÝÝÝÝÝÝÝÑ C2p1codpfq, gq

¨
h //

f
��

¨

g
��

¨
k
// ¨

ÞÝÑ

¨
p¨Kph,kq¨s

//

1
��

¨

g
��

¨
k

// ¨

Example 6.11. A functorial factorisation corresponds to an orthogonal factorisation
system when DiagpU, V q Ñ U˚ ¨ V˚ is invertible.

Remark 6.12. Let us now assume that in Definition 6.6 U has a right adjoint G.
Then, the module (6.7) is isomorphic to pG ¨ id ¨ dom ¨V q˚, U˚ ¨ V˚ is isomorphic
to pG ¨ V q˚, and the module morphism U˚ ¨Diag ¨ V˚ Ñ U˚ ¨ V˚ corresponds to the
natural transformation

G ¨ id ¨ dom ¨V ùñ G ¨ V (6.13)
induced by the counit of the adjunction id % dom, ie the transformation with
component at b P B

Gp1, V bq : G1dompV bq ÝÑ GV b.
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Now suppose that the functor U is the forgetful functor U : L-Coalg Ñ C2, for a
comonad L, and still denote by G its right adjoint. Denote by FL : C2 Ñ KlpLq the
Kleisli construction of L. The natural transformation (6.13), belonging to the full
image of G, can be described as a morphism in rB,KlpLqs

FL ¨ id ¨ dom ¨V ùñ FL ¨ V. (6.14)

Proposition 6.15. Given a comonad L on C2, lifting operations for the functors
U : L-Coalg Ñ C2 and V : B Ñ C2 are in bijective correspondence with sections of
the natural transformation (6.14).

Proof. The proof is an application of Remark 6.12 to the case when the right adjoint
is the universal functor into the Kleisli category of the comonad. �

Example 6.16. As we saw in Example 6.9, each awfs pL,Rq on C induces a lifting
operation which corresponds to a section of (6.14), by Proposition 6.15. We can
describe in explicit terms this section as follows.

If V : R-Alg Ñ C2 is the forgetful functor, consider the transformation p1, pq : L ¨
V ñ id ¨ dom ¨V as in Remark 2.10, and denote by θ : FLV ÝÞÑ FLid ¨ dom ¨V the
associated morphism in rR-Alg,KlpLqs. It is easy to check that θ is the required
section: FLp1, gq ¨ θg is, as a morphism in C2,

p1, gq ¨ p1, pq “ p1, Rgq “ Φg.

7. The universal category with lifting operations

R. Garner defined in [?] for each functor U : A Ñ C2 a category A& and a functor
U& : A& Ñ C2 as follows. The objects of A& are pairs pg, φgq, where g P C2 and φg
is an assignment of a diagonal filler for each square

¨
h //

Ua
��

¨

g

��
¨

k
//

φg
pa,h,kq

99

¨

(7.1)

which are compatible with morphisms Uα : Ua1 Ñ Ua, in the sense that
φgpa, h, kq ¨ codpUαq “ φgpa1, h ¨ dompUαq, k ¨ codpUαqq.

A morphism pg, φgq Ñ pe, φeq is a morphism pu, vq : g Ñ e in C2 such that u ¨
φgpa, h, kq “ φepa, u ¨ h, v ¨ kq, for all ph, kq.

The functor U& just forgets the lifting operations, or in other words, U&pg, φgq “
g. There is a canonical lifting operation from U to U&, namely the lifting operation
that given a commutative square ph, kq : UaÑ U&pg, φgq “ g picks out the diagonal
φgpa, h, kq, as in the diagram (7.1). Furthermore, U& equipped with this lifting
operation is universal among functors into C2 that are equipped with a lifting
operation against U .

The category A& and the functor U& can be constructed as a certain limit in
Cat, of the form

C2 Y // PpC2q PpU˚q
,,A&

U&
++

U& 33

�� PpAq
C2

zDiagC

// PpC2q PpU˚q
22

where PpX q denotes the presheaf category on X , and zDiagC is the functor associated
to Diag. Equally well, U& is a certain enhanced limit, in the sense of [?].

We continue with some further observations from [?]. The universal property of
U& implies that lifting operations for the pair of functors U : A Ñ C2 Ð B : V are
in bijection with functors B Ñ A& over C2. In particular, each awfs pL,Rq in C
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gives rise to a canonical functor R-Alg Ñ L-Coalg&. Furthermore, this functor is
fully faithful, as we proceed to show. Let pp, 1q : Rg Ñ g and pp1, 1q : Rg1 Ñ g1 be
two R-algebra structures, and pu, vq : g Ñ g1 a morphism in L-Coalg&. We know
that the chosen diagonal filler of the square p1, Rgq : Lg Ñ g is p, and similarly for
g1 and p1, so we have u ¨ p “ p1 ¨Kpu, vq. Hence, pp1, 1q ¨ Rpu, vq “ pu, vq ¨ pp, 1q, so
pu, vq is a morphism of R-algebras.

Lemma 7.2. Given a functor U : A Ñ C2, an adjunction U % G, and g P C2,
there is a bijection between the structure of an object pg, φgq P A& and sections s
of Gp1, gq : Gp1dom gq Ñ Gg in A. If pf, φf q P A& is another object, with associated
section t, morphisms pg, φgq Ñ pf, φf q in A& are in bijection with morphisms
ph, kq : g Ñ f in C2 such that Gph, hq ¨ s “ t ¨Gph, kq.

Proof. See discussion before Proposition 6.15. �

Lemma 7.3. Assume the conditions of Lemma 7.2. Then, for any full subcategory
F Ă A containing the full image of G, the functor A& Ñ F& induced by the
inclusion is an isomorphism.

Proof. Denote by J : F ãÑ A the fully faithful inclusion functor, and by H the right
adjoint to UJ , observing that JH “ G. An object of F& is a lifting operation for the
functors UJ and g : 1 Ñ C2, ie a section to the module morphism pUJq˚ ¨Diag¨g˚ Ñ
pUJq˚ ¨ g˚. The same data can be equally given by a section to the morphism
Hp1, gq : Hp1dompgqq Ñ Hg in F ; or a section to the image of this morphism under
the fully faithful J . But JH “ G, so we simply have a section of Gp1, gq, which is
precisely an object of A& by Lemma 7.2. This shows that A& Ñ F& is bijective
on objects. The proof that it is fully faithful is along the same lines, and is left to
the reader. �

Corollary 7.4. If L is a domain preserving comonad on C2, the category L-Coalg&

can be described as the category with objects pairs pg, dgq satisfying the commuta-
tivity of

¨

Lg
��

¨

g

��
¨

Rg
//

dg
>>

¨

(7.5)

and morphisms pg, dgq Ñ pf, df q morphisms ph, kq : g Ñ f in C2 such that h ¨ dg “
df ¨Kph, kq. If F Ă L-Coalg is a full subcategory containing the cofree L-coalgebras,
the induced functor L-Coalg&

ÝÑ F& over C2 is an isomorphism.

Proof. An object of L-Coalg& can be described, by Lemma 7.2, as a morphism g of
C equipped with a section s “ ps0, s1q to Lp1, gq : L1dom g Ñ Lg that is a morphism
of L-coalgebras. In fact, s0 “ 1 since Lp1, gq has identity domain component. The
morphism of coalgebras p1, sq : Lg Ñ L1dom g corresponds to a unique morphism
p1, dgq : Lg Ñ 1dom g in C2, where dg “ R1dom g ¨ s1, by the cofree coalgebra ad-
junction. Similarly, the equality of coalgebra morphisms 1Lg “ Lp1, gq ¨ s can be
translated into

Φg “ Φg ¨ Lp1, gq ¨ s “ p1, gq ¨ Φ1dom g
¨ s;

the domain component of each morphism in this string of equalities is an identity
morphism, while the codomain component yields Rg “ g ¨R1dom g ¨ s1 “ g ¨ dg. So
far we have proven that 1 “ Lp1, gq ¨ s is equivalent to the commutativity of the
bottom triangle in (7.5). Again by the free coalgebra adjunction, the top triangle
in (7.5), namely dg ¨ Lg “ 1, is equivalent to s1 ¨ Lg “ Lp1dom gq, which says that
p1, s1q is a morphism Lg Ñ L1dom g. This completes the description of the objects
of L-Coalg&.
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We now prove the part of the statement relating to morphisms. Suppose that
ph, kq : pg, φgq Ñ pf, φf q is a morphism in L-Coalg& and s : Lg Ñ L1domg and
t : Lf Ñ L1dom f the sections of Lp1, gq and Lp1, fq provided by Lemma 7.2. By
the same lemma, the condition of ph, kq being a morphism in L-Coalg& is equivalent
to the equality Lph, hq ¨ s “ t ¨ Lph, kq, which is equivalent to

ph, hq ¨ Φg ¨ s “ Φf ¨ Lph, hq ¨ s “ Φf ¨ t ¨ Lph, kq.
The domain component of this equality is trivial, and so it is equivalent to the
equality of its codomain component, which is

h ¨ dg “ h ¨Rg ¨ s “ Rf ¨ t ¨Kph, kq “ df ¨Kph, kq.

The last sentence of the statement follows from Lemma 7.3, completing the proof.
�

8. KZ lifting operations

Section 6.b described the algebraic structure that provides a lifting operation,
and the category A&, in terms of modules. This section introduces variations of
these notions that are suitable to lax orthogonal factorisations.

8.a. Lifting operations in 2-categories. Before introducing the main definitions
of this section, let us remind the reader about some facts around Cat-modules. A
Cat-module φ from a 2-category A to another B, denoted by φ : A ÝÞÑ B, is a
2-functor BopˆA Ñ Cat. A difference with the case of modules between ordinary
categories is that for Cat-modules there is a 2-category Cat-ModpA ,Bq of Cat-
modules A ÝÞÑ B: the morphisms are 2-natural transformations and the 2-cells
are the modifications.

Given a Cat-module φ : B ÝÞÑ C , and 2-functors F : A Ñ B and G : D Ñ C ,
we write φ ¨ F˚ : A ÝÞÑ C and G˚ ¨ φ : B ÝÞÑ D for the modules defined by the
formulas

pφ ¨ F˚qpc, aq “ φpc, Faq and pG˚ ¨ φqpd, bq “ φpGd, bq.

In a completely analogous way to the case of Set-modules or profunctors ad-
dressed in Section 6.a, we have the following facts:

‚ Each 2-functor F : A Ñ B induces a pair of Cat-modules F˚ : A ÝÞÑ B
and F˚ : B ÝÞÑ A , by the formulas F˚pb, aq “ Bpb, Faq and F˚pa, bq “
BpFa, bq.

‚ Each 2-natural transformation α : F ñ G induces a morphism of Cat-
modules α˚ : F˚ Ñ G˚ by α˚pb, aq “ Bpb, αaq.

‚ If F , G : A Ñ B are 2-functors, each morphism of Cat-modules F˚ Ñ G˚
is of the form α˚ for a unique 2-natural transformation α : F ñ G.

The forgetful 2-functor from Cat-ModpA ,Bq to Cat|B|ˆ|A | that sends a mod-
ule φ to the family of categories tφpa, bq|a P |A |, b P |B|u is 2-monadic, by the
usual argument: its left adjoint is given by left Kan extension along the inclusion
of objects |B| ˆ |A | ãÑ Bop ˆA , and it is conservative. We denote the associated
2-monad by T.

We now substitute the category C in Section 6.b by a 2-category K , and make the
modules into Cat-enriched modules. So Diagpf, gq is now the category with objects
commutative squares with a diagonal filler as depicted in (6.3), with morphisms,
from an object with diagonal d to another with diagonal d1, given by 2-cells dñ d1

in K ; in other words, Diagpf, gq is isomorphic to the category K pcod f, dom gq.
Given 2-functors U : A Ñ K 2 and V : B Ñ K 2, we define DiagpU, V q in the same
way as we did in Section 6.b in the case of ordinary categories, ie DiagpU, V qpa, bq “
K 2pUa, V bq, with the difference that now the modules are Cat-enriched.
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Definition 8.1. (1) A lifting operation for a pair of 2-functors U , V into K 2

is a Cat-module that is a section of DiagpU, V q Ñ U˚ ¨ V˚; in other words,
it is a section in Cat-ModpA ,Bq – the reader may want to compare with
Definition 6.6.

(2) A lax natural lifting operation for U , V is a section of DiagpU, V q Ñ U˚ ¨ V˚
in T-Algc, the 2-category of T-algebras and oplax morphisms, also known
as colax morphisms, for the 2-monad T on Cat|B|ˆ|A | whose algebras are
Cat-modules – an explicit description can be found below.

An object of the 2-category T-Algc is a Cat-module ϕ : A ÝÞÑ B, while a mor-
phism t : ϕÑ ψ is a morphism of the underlying matrices that is oplax with respect
to the action of A and B. This means that, given a morphism f : a Ñ a1 in A ,
and g : bÑ b1 in B, there is extra data

ϕpb, a1q
tpb,a1q

//

ϕpg,fq
��

CKt̄f,g

ψpb, a1q

ψpg,fq
��

ϕpb1, aq
tpb1,aq

// ψpb1aq

satisfying coherence axioms.
Each component U˚ ¨ V˚pa, bq Ñ DiagpU, V qpa, bq of the section of Definition 8.1

gives a diagonal filler for each square UaÑ V b in K 2. The oplax morphism struc-
ture on the section can be described as follows. Suppose the morphisms α : a1 Ñ a
in A and β : bÑ b1 in B are mapped by U and V to commutative squares in K

A1

Ua1
��

x // A

Ua
��

B1
y
// B

and
C

u //

V b
��

C 1

V b1
��

D
v // D1

Consider the diagonal fillers given by the respective components of the section:

A
h //

Ua
��

C

V b
��

B
k
//

d
<<

C

and
A1

u¨h¨x //

Ua1
��

C 1

V b1
��

B1
v¨k¨y

//

j
;;

D1

Then, the oplax morphism structure on U˚ ¨ V˚ Ñ DiagpU, V q provides a 2-cell ω “
ωpα, βq : j ñ u ¨d ¨y, satisfying pV b1q ¨ω “ 1, ω ¨ pUa1q “ 1, and coherence conditions
that we proceed to describe. Suppose given an object d of DiagpU, V qpa, bq as above,
and morphisms in A and B

a2
α1
ÝÑ a1

α
ÝÑ a and b

β
ÝÑ b1

β1

ÝÑ b2

we have the following diagram, where the dashed arrows are chosen diagonal fillers.

A2

Ua2

��

x1 // A1

Ua1

��

x // A

Ua

��

h // C

V b

��

u // C 1

V b1

��

u1 // C2

V b2

��

B2
y1

//

e

22

B1
y

//
j

44

B
k

//

d
@@

D
v

// D1
v1

// D2

The condition corresponding to the associativity axiom of the oplax morphism
U˚ ¨ V˚ Ñ DiagpU, V q says that
`

e
ωpα¨α1,β1¨βq
ÝÝÝÝÝÝÝÝÑ u1 ¨ u ¨ d ¨ y ¨ y1

˘

“
`

e
ωpα1,β1q
ÝÝÝÝÝÑ u1 ¨ j ¨ y1

u1¨ωpα,βq¨y1

ÝÝÝÝÝÝÝÑ u1 ¨ u ¨ d ¨ y ¨ y1
˘
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The axiom corresponding to the unit axiom of the oplax morphism U˚ ¨ V˚ Ñ
DiagpU, V q says that ωp1, 1q “ 1.

8.b. KZ lifting operations. Having introduced in the previous section lifting
operations and lax natural lifting operations, we now introduce a version of lifting
operation that corresponds to lax orthogonal awfss, namely, kz lifting operations.

Definition 8.2. A kz lifting operation in K for the 2-functors U , V is a left adjoint
section to the morphism DiagpU, V q Ñ U˚ ¨ V˚ in the 2-category Cat-ModpA ,Bq.

In more explicit terms, a kz lifting operation is given by, for each square (6.8)
in K , a diagonal filler dph, kq, with the following universal property. For any
d1 : B Ñ C and any pair of 2-cells α, β satisfying

A

h
&&

d1¨Ua

88�� α C
V b // D “ A

Ua // B

k
&&

V b¨d1
88�� β D

there exists a unique 2-cell γ : dph, kq ñ d1 such that γ ¨ Ua “ α and V b ¨ γ “ β.

A
h //

Ua
��

B

V b
��

C
k

//

dph,kq
11

d1

@@

��
D!γ

D

(8.3)

This universal property makes, by the usual argument, dph, kq functorial in ph, kq:
for any pair of 2-cells µ : hñ h1 and κ : k ñ k1 such that V b ¨ µ “ κ ¨Ua, there is a
2-cell dpµ, κq : dph, kq ñ dph1, k1q. Furthermore, the diagonal fillers dph, kq must be
2-natural in a and b, in the following sense. Suppose that Γ is a 2-cell in A and Θ
a 2-cell in B, sent by U and V to 2-cells in K 2 as depicted.

¨

α
##

α1

;;�� Γ ¨
U
ÞÝÑ

¨

x
##

x1

;;�� γ

Ua1

��

¨

Ua

��
¨

y

##

y1

;;�� δ ¨

¨

β
##

β1

;;�� Θ ¨
V
ÞÝÑ

¨

u
##

u1

;;�� θ

V b

��

¨

V b1

��
¨

v
##

v1

;;�� τ ¨

The 2-naturality of the lifting operation means that there is an equality of 2-cells
θ ¨ dph, kq ¨ δ “ dpθ ¨ h ¨ γ, τ ¨ k ¨ δq.

¨

x
##

x1

;;�� γ

Ua1

��

¨

��

h // ¨

u
##

u1

;;�� θ

��

¨

V b1

��
¨

y

##

y1

;;�� δ ¨ k
//

dph,kq

@@

¨

v
##

v1

;;�� τ ¨

“

¨

Ua1

��

¨

V b1

��
¨

dpu¨h¨x,v¨k¨yq ..

dpu1¨h¨x1,v1¨k¨y1q

77

dpθ¨h¨γ,τ ¨k¨δq

��
¨

Definition 8.4. A lax natural kz lifting operation in K for the 2-functors U , V
is a left adjoint section to the morphism DiagpU, V q Ñ U˚ ¨ V˚ in the 2-category
Cat|B|ˆ|A |.

This means that a lax natural kz lifting operation is given by a left adjoint
section for each component

DiagpU, V qpa, bq ÝÑ K 2pUa, V bq a P A , b P B.

More explicitly, it is given by a choice, for each square ph, kq : Ua Ñ V b, of a
diagonal filler dph, kq : codpUaq Ñ dompV bq with the property that 2-cells dph, kq ñ
d1 : codpUaq Ñ dompV bq are in bijection with 2-cells ph, kq ñ pd1 ¨ Ua, V b ¨ d1q. In
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other words, the same universal property of kz lifting operation, except that the
chosen diagonals dph, kq need not be natural in a, b.

Remark 8.5. A lax natural kz lifting operation equates to providing, for each a P A
and b P B, with Ua : A Ñ B and V b : C Ñ D, a left adjoint section of the usual
comparison functor

K pB,Cq ÝÑ K pA,Cq ˆK pA,Dq K pB,Dq.

However, the presentation using modules effortlessly yields more, as discussed be-
low.

Proposition 8.6. (1) Each kz lifting operation is also a lax natural kz lifting
operation.

(2) Each lax natural kz lifting operation is also a lax natural lifting operation.

Proof. The first part of the statement follows from the existence of a forgetful
2-functor

Cat-ModpA ,Bq ÝÑ Cat|A |ˆ|B|. (8.7)
Then, given 2-functors U : A Ñ K 2 and V : B Ñ K 2, a left adjoint section to
the canonical morphism DiagpU, V q Ñ U˚ ¨ V˚ in Cat-ModpA ,Bq is also a left
adjoint section in Cat|A |ˆ|B|.

For the second part of the statement, one needs to use the fact that the 2-
functor (8.7) is monadic; this means that there is a 2-monad T on Cat|A |ˆ|B| and
that Cat-ModpA ,Bq is the 2-category T-Algs of T-algebras and strict morphisms.
A lax natural kz lifting operation is a left adjoint section of (8.7) in the 2-category
Cat|A |ˆ|B|. Since (8.7) is a strict morphism of T-algebras, the doctrinal adjunction
Proposition 4.1 ensures that (8.7) has a left adjoint in T-Algc, which is the definition
of lax natural lifting operation – Definition 8.1. �

Lemma 8.8. kz lifting operations are unique up to canonical isomorphism. More
precisely, if the diagonal filler dph, kq and d1ph, kq define two kz lifting opera-
tions between 2-functors U : A Ñ K 2 Ð B : V , then there exists a unique 2-cell
γph, kq : dph, kq ñ d1ph, kq such that V b¨γph, kq “ 1 and γph, kq¨Ua “ 1, as depicted
in (8.3). Furthermore, γ is invertible.

Proof. This is a direct consequence of the universal property of kz lifting opera-
tions. �

Proposition 8.9. kz lifting operations for the 2-functors U : A Ñ K 2 and
V : B Ñ K 2 are, if U has a right adjoint G, in bijective correspondence with
left adjoint sections of the morphism G ¨ id ¨ dom ¨V Ñ G ¨ V induced by the counit
of id % dom – with components Gp1, V bq – in the 2-category rB,A s of 2-functors
B Ñ A .

Proof. By the comments about Cat-modules at the beginning of Section 8.a and
same argument deployed in Remark 6.12, the Cat-module transformation

U˚ ¨ Diag ¨ V˚ ÝÑ U˚ ¨ V˚ (8.10)

corresponds to the 2-natural transformation of the statement

G ¨ id ¨ dom ¨V ùñ G ¨ V. (8.11)

Since the 2-functor from rB,A s to Cat-ModpB,A q that sends F to F˚ is full and
faithful – an isomorphism on hom-categories – (8.10) has a left adjoint coretract if
and only if (8.11) does. �
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Proposition 8.12. Given a lax orthogonal awfs pL,Rq on K , the 2-natural trans-
formation F L ¨ id ¨ dom ¨V ñ F L ¨ V induced by the counit of id % dom has a left
adjoint section in rR-Algs, L-Coalgss, where F L : K 2 Ñ L-Coalgs is the cofree coal-
gebra 2-functor and V the forgetful 2-functor from L-Coalgs.

Proof. Given an R-algebra structure ppg, 1q : Rg Ñ g we need to exhibit a coretract
adjunction in L-Coalgs with right adjoint Lp1, gq : L1dompgq Ñ Lg. We know from
Remark 4.7 that there is a coretract adjunction p1, pgq % p1, Lgq, whose unit we
denote by ηg; the same remark points out that these adjunctions are 2-natural in
pg, pgq. Together with the adjunction Σg % LΦg that exhibits L as lax idempotent,
we obtain

Lp1, pgq ¨ Σg % LΦg ¨ Lp1, Lgq “ Lp1, gq.

The unit of this composition of adjunctions is

1 “ LΦg ¨ Σg
LΦg ¨Lpηgq¨Σg
ÝÝÝÝÝÝÝÝÝÑ LΦg ¨ Lp1, Lgq ¨ Lp1, pq ¨ Σg “ 1,

which is the identity since Φg ¨ ηg “ 1 – again by Remark 4.7. �

Theorem 8.13. Each lax orthogonal awfs pL,Rq on the 2-category K induces
(1) A kz lifting operation for L-Coalgs Ñ K 2 and R-Algs Ñ K 2.
(2) A lax natural kz lifting operation for U` : L-Coalg` Ñ K 2 and V` : R-Alg` Ñ

K 2.
Moreover, the diagonal fillers are those given by the awfs in the usual way – (2.5).

Proof. The first part is a direct consequence of Propositions 8.9 and 8.12. The
second part means that there must exist a left adjoint coretract to each functor

DiagpU`, V`qppf, sq, pg, pqq “ K pcodpfq,dompgqq ÝÑ K 2pf, gq (8.14)

where pf, sq is an L-coalgebra and pg, pq an R-algebra. We know that such a left
adjoint coretract does exist, by the first part of the statement, and the proof is
complete. �

Remark 8.15. It may be useful to exhibit the counit of the coretract adjunction in
the proof of Theorem 8.13, in which (8.14) is the right adjoint, even though it is
not necessary to prove that result. Let d be a diagonal filler for a square

A
f ��

h // C
g
��

B
k // D

from an L-coalgebra pf, sq to an R-algebra pg, pq. The diagram on the left below
shows the equality Kph, kq “ Kp1C , Rgq ¨ Kp1C , Lgq ¨ Kph, dq, while the diagram
on the right shows that p “ R1C ¨Kp1C , pq ¨ σg.

¨

Lf

��

h // ¨

L1C

��

¨

L2g

��

¨

Lg

��
¨

Kph,dq
//

Rf

��

¨

R1C

��

Kp1C ,Lgq
// ¨
Kp1C ,Rgq

//

RLg

��

¨

Rg

��
¨

d // ¨
Lg

// ¨
Rg

// ¨

¨

Lg

��

¨

L2g

��

¨

L1C

��
¨

σg
// ¨

RLg

��

Kp1C ,pq
// ¨

R1C

��
¨

p
// ¨
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Using these equalities, one can show that the counit p ¨Kph, kq ¨ sñ d given by the
kz lifting operation can be described by

p ¨Kph, kq ¨ s “ R1C ¨Kp1C , pq ¨ σg ¨Kp1C , Rgq ¨Kp1C , Lgq ¨Kph, dq ¨ s ùñ
ùñ R1C ¨Kp1C , pq ¨Kp1C , Lgq ¨Kph, dq ¨ s “ R1C ¨Kph, dq ¨ s “ d ¨Rf ¨ s “ d

(8.16)

where the unlabelled arrow is the one induced by the counit σg ¨Kp1, Rgq ñ 1Kg
that endows the comonad L with its lax idempotent structure.

Theorem 8.13 (2) can be rephrased by saying that the usual lifting operation for
pL,Rq is, when both L and R are lax idempotent, lax natural with respect to all
morphisms in K .

8.c. Lax orthogonal functorial factorisations. We have seen in the previous
sections that the lifting operation of a lax orthogonal awfs has the extra structure
of a kz lifting operation. One could ask what extra structure is inherited from a lax
orthogonal awfs to its underlying wfs. Since we work with algebraic factorisations,
we have at our disposal not only mere wfss but functorial factorisations, and it is
for these that we answer the question.

Let A , B be 2-categories and X be Cat-ModpB,A q. Denote by M the 2-
monad pM,ΛM ,ΠM q on X 2 whose algebras are morphisms in X equipped with a
left adjoint coretract. A dual of M has been described in Section 4.d; more precisely,
if L is the 2-comonad of Proposition 4.11, whose algebras are morphisms equipped
with a right adjoint retract defined on the 2-category pX opq2 – pX 2qop, then M is
Lop. An algebra for the pointed endo-2-functor pM,ΛM q is a morphism α : φ Ñ ψ
equipped with a coretract σ : ψ Ñ φ and a 2-cell m : σ ¨ αñ 1 such that σ ¨m “ 1.
This is a dual form of Proposition 4.11 (1).

Definition 8.17. Consider 2-functors U and V from A and B into K 2. A lax
orthogonality structure on U , V is an pM,ΛM q-coalgebra structure on the morphism
of Cat-modules U˚ ¨ Diag ¨ V˚ Ñ U˚ ¨ V˚. Consider a functorial factorisation on
K with associated copointed endo-2-functor pL,Φq and associated pointed endo-2-
functor pR,Λq. A lax orthogonality structure on the functorial factorisation is one
on U , V , for U the forgetful 2-functor from pL,Φq-coalgebras and V the forgetful
2-functor from pR,Λq-algebras.

Explicitly, a lax orthogonality structure as in the definition is a choice of 2-
natural diagonal fillers dpa, bqph, kq : codpUaq Ñ dompV bq that is functorial on
squares ph, kq : Ua Ñ V b, and 2-natural in a P A , b P B. Furthermore, for any
diagonal filler e of ph, kq we are given a 2-cell θpa, bqpeq : dpa, bqph, kq ñ e that is
2-natural in e and a modification on a, b.

¨
h //

Ua

��

¨

V b

��
¨

k
//

d
11

e

EE

��
θpeq

¨

The 2-cells θpa, bqpeq must satisfy pV bq ¨ θpa, bqpeq “ 1k and θpa, bqpeq ¨ pUaq “ 1h.
Naturality in e means that for each 2-cell ε : eñ ē the equality

`

θpa, bqpēq
˘`

dpa, bqpε ¨ Ua, V b ¨ εq
˘

“ εθpa, bqpeq

holds. The modification property for θ means that, if α : a1 Ñ a and β : bÑ b1 are
morphisms in A and B, then

dompV βq ¨ θpa, bqpeq ¨ codpUαq “ θpa1, b1qpdompV βq ¨ e ¨ codpUαqq.
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¨

Ua1

��

domUα // ¨

Ua

��

h // ¨

V b

��

domV β
// ¨

V b1

��
¨

codUα
// ¨

k
//

d

66

e

HH

�$
θpeq

¨
codV β

// ¨

“

¨

Ua1

��

domV β¨h¨domUα
// ¨

V b1

��
¨

codV β¨k¨codUα
//

d
..

�� θ

domV β¨e¨codUα

66

¨

Observe that there is no reason why θ should satisfy the extra property that the
endo-2-cell θpa, bqpdpa, bqph, kqq of dpa, bqph, kq be an identity 2-cell.

Remark 8.18. In the particular instance when A “ B “ 1, the 2-functors U and V
pick out morphisms f : AÑ B and g : C Ñ D in K , and a lax orthogonality struc-
ture for f , g can be described simply as a functor D that is a section of the canoni-
cal comparison functor H into the pullback, together with a natural transformation
θ : DH ñ 1 that satisfies Hθ “ 1. This structure can be described as a choice of a
diagonal filler Dph, kq for each square ph, kq and a 2-cell θpeq : Dph, kq ñ e for any
other diagonal filler e, that satisfies g ¨ θpeq “ 1 and θpeq ¨ f “ 1.

K pB,Cq
H //
oo
D

K pA,Cq ˆK pA,Dq K pB,Dq

Proposition 8.19. The underlying 2-functorial factorisation of a lax orthogonal
awfs carries a canonical lax orthogonal structure, whose diagonal fillers are those
induced by the 2-functorial factorisation in the usual way – as in Example 6.9.

Proof. For an awfs pL,Rq, consider the forgetful functors U and V from, re-
spectively, the 2-categories of pL,Φq-coalgebras and pR,Λq-algebras. Denote by
Σ̄ “ p1, sq : U ñ LU the L-coalgebra structure of U , and Π̄ “ pp, 1q : RV ñ V the
R-algebra structure of V . In this proof we use the notation introduced in the sec-
ond paragraph of this section: X is the 2-category of Cat-modules from L-Coalgs
to R-Algs, and M “ pM,ΛM ,ΠM q the 2-monad on X 2 whose algebras are right
adjoint retracts.

We can form two objects of X 2 depicted as the vertical arrows in the square
below, induced by the Cat-module morphism Diag Ñ 1 introduced in (6.5). The
morphisms of Cat-modules Σ̄˚ : pLUq˚ Ñ U˚ and Λ̄˚ : pRV q˚ Ñ V˚ induce a
morphism in X 2, depicted as the commutative diagram in X below.

U˚L˚DiagR˚V˚

��

Σ̄˚DiagΠ̄˚
// U˚DiagV˚

��

U˚L˚R˚V˚
Σ̄˚Π̄˚

// U˚V˚

(8.20)

This morphism is a retraction in X 2, since Σ̄˚ and Π̄˚ are retractions with respec-
tive sections Φ˚ and Λ˚. Theorem 8.13 implies that the object of X 2 depicted by
the leftmost vertical arrow in the diagram carries a structure of an M-algebra. Hence
the object on the right hand side, as a retract of an M-algebra, carries an pM,ΛM q-
algebra structure that makes the retraction (8.20) a morphism of pM,ΛM q-algebras.
It remains to show that the section of U˚ ¨Diag ¨ V˚ Ñ U˚ ¨ V˚ so obtained is equal
to that induced by the functorial factorisation, as described in Example 6.9, for
which we appeal to Remark 4.15. The induced section is

U˚V˚
U˚Φ˚Λ˚V˚
ÝÝÝÝÝÝÝÝÑ U˚L˚R˚V˚ Ñ U˚L˚DiagK R˚V˚

p1,sq˚Diagpp,1q˚
ÝÝÝÝÝÝÝÝÝÝÑ U˚DiagV˚

where the middle morphism is the kz lifting operation for LU , RV . One can
verify that the diagonal filler of a square ph, kq : f Ñ g, where pf, sq is an pL,Φq-
coalgebra and pg, pq and pR,Λq-algebra, is p ¨ d ¨ s where d is the diagonal filler of
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pLg ¨h, k ¨Rfq : Lf Ñ Rg. But d “ Kph, kq, so p ¨d ¨ s is precisely the diagonal filler
induced by the functorial factorisation. �

9. Algebraic KZ Injectivity

In previous sections we have visited the construction of the universal category
A& with lifting operations against a functor A Ñ C2, and the fact that, for any
awfs pL,Rq on C, each R-algebra comes equipped with a lifting operation against
L-coalgebras; in other words, the existence of a functor R-Alg Ñ L-Coalg&. In this
section we concentrate in the analogous constructions adapted to the case of lax
orthogonal awfss, where kz lifting operations will play an important role.

The reader would recall from Section 7, and originally from [?], the definition
of the free category with a lifting operation U& : A& Ñ C2 for U : A Ñ C2. If
U : A Ñ K 2 is a 2-functor instead, A & has objects pg, φq where φ is a section of
the morphism U˚ ¨ Diag ¨ g˚ Ñ U˚ ¨ g˚ in the 2-category Cat-Modp1,A q, which
is isomorphic to rA op,Cats. Morphisms pg, φq Ñ pg1, φ1q are those morphisms
pu, vq : g Ñ g1 in K 2 that are compatible with the sections, while 2-cells pu, vq ñ
pū, v̄q are pairs of 2-cells α : uÑ ū and β : v Ñ v̄ in K such that the equality below
holds – we omit the dots that denote composition to save space.

U˚g˚
φ
// U˚Diagg˚

U˚Diagpu,vq˚
,,

U˚Diagpū,v̄q˚
22�� U˚Diagg1˚ “ U˚g˚

U˚pu,vq˚++

U˚pū,v̄q˚

33�� U˚g1˚
φ1
// U˚Diagg1˚

In more elementary terms, α ¨ φpa, h, kq “ φ1pa, α ¨ h, β ¨ kq, for each a P A and
each square ph, kq : Ua Ñ g. The 2-functor U& : A & Ñ K 2 is the obvious one,
analogous to the case of ordinary categories.

Next we introduce a different construction, the universal 2-category with a kz
lifting operation.

Definition 9.1. Given a 2-functor U : A Ñ K 2 define another U&kz : A &kz Ñ K 2

in the following manner.
‚ Its objects are morphisms g P K 2 that are algebraically kz injective to U , by

which we mean that they are equipped with a kz lifting operation for the 2-
functors U , g : 1 Ñ K 2; ie a left adjoint coretract to the morphism of Cat-
modules U˚ ¨ Diag ¨ g˚ Ñ U˚ ¨ g˚. Hence, an object of A &kz is an object of A &

equipped with the extra structure of a coretract adjunction.
‚ A morphism g Ñ g1 in A &kz is a morphism ph, kq in K 2 such that in the diagram

below not only the square formed with the right adjoints commutes – this always
holds – but moreover the diagram represents a morphism of adjunctions; ie the
square formed by the vertical arrows and the horizontal left adjoints commutes,
and the vertical morphisms are compatible with the counits.

U˚ ¨ Diag ¨ g˚ //K
oo

U˚¨Diag¨ph,kq˚
��

U˚ ¨ g˚

U˚¨ph,kq˚
��

U˚ ¨ Diag ¨ g1˚ //K
oo

U˚ ¨ g1˚

(9.2)

‚ The 2-cells in A &kz are those of K 2. Observe that any such 2-cell is automati-
cally compatible with the left adjoints in (9.2) – by Proposition 4.11 (2). There
are obvious forgetful 2-functors A &kz Ñ A & and A &kz Ñ K 2, the first of which
is locally fully faithful.
Dually, given a 2-functor V : B Ñ K 2 define &kzV : &kzB Ñ K 2 by &kzB “

pBopq&kz and &kzV “ pV opq&kz . Here we use the obvious isomorphism pK 2qop –
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pK opq2. More explicitly, objects of &kzB are f P K 2 equipped with a kz lifting
operation for the 2-functors f : 1 Ñ K 2, V .

Remark 9.3. There is a concise way of describing A &kz . Let M be the 2-monad
on the 2-category PpA q2 whose algebras are right adjoint retract morphisms in
PpA q “ rA op,CATs. This 2-monad can be described by performing the construc-
tion of the 2-monad of Section 4.d starting from the 2-category PpA qop. More
explicitly, if φ is a morphism in PpA q, then Mφ is the morphism with domain the
co-comma object depicted and whose composition with this co-comma object is an
identity 2-cell.

¨
φ
��

AI ¨

�� φ

��

¨ //

1 //

¨
Mφ
$$
¨

The Cat-module morphism Diag ÝÑ 1K 2 can be equivalently described as a 2-
functor

E : K 2 ÝÑ PpK 2q2

that sends g P K 2 to Diagp´, gq Ñ K 2p´, gq. Then A &kz is the pullback of the
2-category of M-algebras along PpU˚q2E.

A &kz

��

// M-Algs

��

K 2 E //PpK 2q2
PpU˚q2

//PpA q2

Remark 9.4. One can express the compatibility of the morphism ph, kq in A &kz

with the counits required in Definition 9.1 in terms of diagonal fillers. Given a
diagonal filler j as on the left hand side below, the counit provides for a 2-cell
εj : φpa, u, vq ñ j. The compatibility means that h ¨ εj “ εh¨j .

¨

Ua

��

u // ¨

g

��
¨

j
@@

v
// ¨

¨
u //

Ua

��

¨

g

��

h // ¨

g1

��
¨

φ
33

j

KK

�$

v
// ¨

k
// ¨

“

¨
h¨u //

Ua

��

¨

g1

��
¨

11

h¨j

EE

��

k¨v
// ¨

These constructions are functorial, in the sense that if F : pA , Uq Ñ pB, V q is a
2-functor over K 2, there is another 2-functor F&kz : pB&kz , V &kzq Ñ pA &kz , U&kzq,
which sends g P K 2 equipped with a kz lifting operation for V, g to the induced
choice for U “ V F, g. A 2-functor &kzF can be similarly defined.

Remark 9.5. Given V : B Ñ K 2, there is an isomorphism of categories between
2-functors B Ñ A &kz over K 2 and kz lifting operations for the pair of 2-functors
U, V . Similarly, there is an isomorphism of categories between 2-functors A Ñ
&kzB over K 2 and kz lifting operations for the pair of 2-functors U, V . We hence
have a natural isomorphism of sets

2-Cat{K 2ppA , Uq, pB&kz , V &kzqq – 2-Cat{K 2ppB, V q, p&kzA ,&kzUqq

and an adjunction between p´q&kz and &kzp´q.
The unit and counit of this adjunction – or rather, both units – are 2-functors

NU : A Ñ
&kz
pA &kzq and MU : A Ñ p

&kzA q&kz commuting with the functors into
K 2. The first one corresponds to the tautological kz lifting operation for the pair
of 2-functors U,U&kz , and the second one to the tautological kz lifting operation
for &kzU,U .
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Example 9.6. In the case when U is the 2-functor f : 1 Ñ K 2 that picks out a
morphism f , the objects of the 2-category f&kz are morphisms algebraically kz
injective with respect to f . This is a slight abuse of language, as a morphism can be
algebraically kz injective to f in more than one way – but two such are, of course,
isomorphic.

Lemma 9.7. Given a 2-functor U : A Ñ K 2, a 2-adjunction U % G and g P K 2,
there is an isomorphism of 2-categories over K 2 between A &kz and the 2-category
described by:

‚ Objects are coretract adjunctions `g % Gp1, gq : Gp1dompgqq Ñ Gg in A .
‚ Morphisms from `g % Gp1, gq to `ḡ % Gp1, ḡq are morphisms ph, kq : g Ñ ḡ

in K 2 such that Gph, kq defines a morphism of adjunctions: Gph, kq ¨ `g “
`ḡ ¨Gph, kq and Gph, kq commutes with the counits.

‚ 2-cells ph, kq ñ ph̄, k̄q are 2-cells in K 2, with no additional conditions.

Proof. By Proposition 8.9 there is a bijection between objects of A &kz and coretract
adjunctions as in the statement. The description of the morphisms and 2-cells is a
direct translation from the ones of A &kz – Definition 9.1. �

Lemma 9.8. Assume the conditions of Lemma 9.7. Then, for any full sub-2-
category F Ă A containing the full image of G, the functor A &kz Ñ F &kz induced
by the inclusion is an isomorphism.

Proof. If we denote by J : F ãÑ A the inclusion and H “ JG : A Ñ F the
right adjoint of UJ , Lemma 9.7 allows us to describe F &kz as the 2-category with
objects coretract adjunctions `g % Hp1, gq : Hp1dompgqq Ñ Hg in F . But to give
this retract adjunction in F is equivalent to giving a retract adjunction `g % Gp1, gq
in A . The rest of the proof is similarly easy. �

Corollary 9.9. If pL,Rq is a lax orthogonal awfs on K , there exists a 2-functor
R-Algs ÝÑ L-Coalg&kz

s over L-Coalgs.

Proof. Proposition 8.12 together with Lemma 9.7 imply that, in order to define
the 2-functor on objects, we may send an R-algebra pp, 1q : Rg Ñ g to a corectract
adjunction ` % Lp1, gq in L-Coalgs. The adjunction is Lp1, pq ¨ Σg % Lp1, gq, which
is the composition of the adjunctions Σg % LΦg and Lp1, pq % Lp1, Lgq. On
morphisms and 2-cells, the 2-functor is defined by the identity. �

Theorem 9.10. The following are equivalent for an awfs pL,Rq on a 2-category.
(1) pL,Rq is a lax orthogonal awfs.
(2) There is a kz lifting operation for the forgetful 2-functors from L-coalgebras

and from R-algebras.
(3) There is a 2-functor R-Algs Ñ L-Coalg&kz

s making (9.10) commutative.
Furthermore, this 2-functor is essentially unique.

(4) There is a 2-functor R-Algs Ñ F &kz making the outer diagram in (9.10)
commutative, for any full sub-2-category F Ă L-Coalgs containing the
cofree L-coalgebras. Furthermore, this 2-functor is essentially unique.

R-Algs //

((

L-Coalg&kz
s

��

// F &kz

��

L-Coalg&
s

// F &

Proof. There is a bijection between structures in (2) and those in (3), by definition
of A &kz , in which case both are essentially unique since kz lifting operations are
unique up to isomorphism – Lemma 8.8. The equivalence of (3) and (4) follows
from Lemma 9.8, while that of (1) and (3) was already explained above.
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We now proceed to prove (3)ñ(1). As it has been our convention, we will denote
by K the base 2-category, and by U and V the forgetful 2-functors from the 2-
categories of L-coalgebras and R-algebras, respectively.

Let pg, pq be an R-algebra. Its image in L-Coalg&
s can be given as in Corollary 7.4,

again by pg, pq. By hypothesis, pg, pq carries a structure of an object of L-Coalg&kz
s .

By definition p ¨ Lg “ 1 and g ¨ p “ Rg. Consider the diagonal

¨
Lg

//

Lg
��

¨

Rg
��

¨
Rg

//

Lg¨p

88

¨

and note that Rg is an object of L-Coalg&kz
s , and that the chosen diagonal filler of

the outer square is the identity morphism. It follows the existence of a unique 2-cell
η : 1 ñ Lg ¨ p such that η ¨ Lg “ 1 and Rg ¨ η “ 1. The first of these two equalities
is one of the triangle identities required to obtain a retract adjunction p % Lg. The
second of these equalities tells us that, if we can prove the other triangle identity,
we obtain not only an adjunction in K but also a retract adjunction pp, 1q % Λg in
K 2.

We now show that p ¨ η “ 1. Consider the pasting below.
¨

Lg

��

¨

g

��

¨
p

44

¨ Lg

44

¨

p 44

1 ++

��
η

Rg
// ¨

The chosen diagonal filler of the outer diagram is p, and p ¨ η is an endo-2-cell of
p. In addition, g ¨ p ¨ η “ Rg ¨ η “ 1 and p ¨ η ¨ Lg “ 1. By the universal property
of kz lifting operations spelled out immediately after Definition 8.2, it must be
p ¨ η “ 1. This finishes the proof that R-algebra structures are left adjoint retracts
to the components of the unit of R, ie that R is lax idempotent.

One can show that L is lax idempotent either by appealing to Theorem 5.1 or by
a duality argument. By taking opposite 2-categories, and taking into account the
isomorphism pK opq2 – pK 2qop, the 2-functor L-Coalgs Ñ

&kzR-Algs, which exists
by Remark 9.5, transforms into a 2-functor Lop-Algs Ñ Rop-Coalg&kz

s that com-
mutes with the 2-functors into Rop-Coalg&

s . By the proof above we know that Lop

is a lax idempotent 2-monad on pK 2qop, which is to say that L is a lax idempotent
2-comonad. �

Theorem 9.10 has a dual statement of the following form: an awfs pL,Rq is lax
orthogonal if and only if there exists an – essentially unique – 2-functor L-Coalgs Ñ
&kzR-Algs commuting with the respective forgetful functors into &R-Algs.

Remark 9.11. For a lax orthogonal awfs pL,Rq, objects of L-Coalg&kz
s are in bi-

jection with normal pseudo-R-algebras. Indeed, the proof of Theorem 9.10 shows
that they are in bijection with retract adjunctions pp, 1q % Λg in K 2, which are
precisely normal pseudo-R-algebras

10. Simple 2-adjunctions and lax idempotent 2-monads

This section introduces the notion of simple 2-adjunction, which can be thought
as a lax version of that of simple reflection studied in [?].

In the same way that one can define a strict monoidal category as a category
with a bifunctor p´ b ´q that is associative and has a unit object, we may define
a strict monoidal 2-category as a 2-category A with a 2-functor b : A ˆA Ñ A



LAX ORTHOGONAL FACTORISATION SYSTEMS 35

that is associative and has a unit object I. A monoid in A is a monoid in its
underlying strict monoidal category, ie an object T with a multiplication and unit
morphisms that satisfy the usual monoid axioms. The main example for us will
be A “ EndpBq, the endo-2-morphisms of a 2-category B, where a monoid is a
2-monad.

Definition 10.1. A lax idempotent monoid in a strict monoidal 2-category A is
a monoid j : I Ñ T Ð T b T : m that satisfies conditions analogous to those of
Definition 4.2 numerals (i), (ii) and (iv). These are, in turn,
‚ T b j % m with identity unit;
‚ m % j b T with identity counit;
‚ there is a 2-cell δ : T b j ñ j b T : T Ñ T b T that satisfies δ ¨ j “ 1 and
m ¨ δ “ 1.

We can now make our first statement of the section. The reader would have
noticed that the monoidal 2-categories need not be strict in order for the results to
hold, but we keep the strictness hypothesis for simplicity.

Lemma 10.2. Let A be a monoidal 2-category and C Ď A a coreflective 2-
category, closed under the monoidal structure, and pT, i,mq a monoid in A . If
α : S Ñ T is the coreflection of T into C , then S carries a structure of a monoid
pS, j, nq making α a monoid morphism. Assume further that αbS : SbS Ñ T bS
is the coreflection of T b S. Then S is lax idempotent if there exists a coretract
adjunction

`

T
Tbj
ÝÝÝÑ T b S

˘

%
`

T b S
Tbα
ÝÝÝÑ T b T

m
ÝÑ T

˘

. (10.3)

Proof. The unit j : I Ñ S and multiplication n : S bS Ñ S are defined by α ¨ j “ i
and α ¨ n “ m ¨ pα b αq. We shall define a 2-cell δ : S b j ñ j b S : S Ñ S b S.
From the fact that αbS is a coreflection, it follows that to give δ is equally well to
give a 2-cell δ1 : pT b jq ¨ α ñ i b S, and by the adjunction (10.3), to give a 2-cell
δ2 : αñ m ¨ pT b αq ¨ pib Sq, which we choose to be the identity.

The axiom δ ¨j “ 1 of a lax idempotent monoid follows from the triangle identity
ε ¨ pT b jq “ 1, where ε is the counit of (10.3): we show that δ1 ¨ j “ 1 below.

δ1 ¨ j “ ppT b jq ¨m ¨ pT b αq ¨ δ1 ¨ jqpε ¨ pj b Sq ¨ jq “ ε ¨ pT b jq ¨ i “ 1.

It only rests to verify the axiom n ¨δ “ 1. By the coreflection α, we have to show
1 “ α ¨ n ¨ δ “ m ¨ pα b αq ¨ δ “ m ¨ pT b αq ¨ δ1 “ δ2, which holds by our choice of
δ2. �

Before continuing, it is convenient to introduce some notation. Each endo-2-
functor S of K 2 corresponds under the isomorphism EndpK 2q “ rK 2,K 2s –

rK 2,K s2 to a pair of 2-functors S0, S1 : C2 Ñ C with a 2-natural transforma-
tion S0 ñ S1. We denote the component of this natural transformation at f by
Sf : S0f Ñ S1f . A morphism S Ñ T in EndpK 2q corresponds to a pair of 2-
natural transformations S0 ñ T0 and S1 ñ T1, compatible with S0 ñ S1 and
T0 ñ T1.

A version for categories and functors, as opposite to 2-categories and 2-functors,
of the following lemma is contained in [?, Prop 4.7].

Lemma 10.4. If K has pushouts, then the category of codomain-preserving pointed
endo-2-functors 1zEndcodpK 2q is a coreflective sub-2-category of the 2-category of
pointed endofunctors 1zEndpK 2q. The coreflection of a 2-monad has a canonical
structure of a codomain-preserving 2-monad that makes the coreflection counit a
monad morphism.
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Given a pointed endo-2-functor pT,Θq, its codomain-preserving coreflection pR,Λq
is given by the following pullback square, while the point Λ: 1 ñ R is induced by
the universal property. The natural transformation Rñ T with components given
by the pullback square is the counit of the coreflection.

A

f

((

Θ0f

**
Λ0f

))
R0f

pbRf
��

// T0f
Tf
��

B
Θ1f

// T1f

Remark 10.5. For future reference, we state that the coreflection Rñ T of a monad
T on C2 into a codomain-preserving monad R is a monad morphism.
Definition 10.6. Suppose given the following data.

‚ A 2-adjunction F % U : A Ñ K , whose counit we denote by e : FU ñ 1.
‚ A 2-monad P on A 2 with multiplication m : P 2 ñ P .
‚ The codomain-preserving coreflection of the 2-monad U2PF 2, that we de-

note by α : S Ñ U2PF 2, and whose unit we denote j : 1 ñ S.
The 2-adjunction is said to be simple with respect to P if there is a coretract
adjunction in the 2-category rK 2,A 2s, with components at f P K 2

`

PFf
PF2jf
ÝÝÝÝÑ PFSf

˘

%
`

PFSf
PF2αf
ÝÝÝÝÝÑ PFUPFf

PePF2f
ÝÝÝÝÝÑ PPFf

mFf
ÝÝÝÑ PFf

˘

.

Lemma 10.7. Given a simple 2-adjunction as in Definition 10.6, the codomain-
preserving reflection S is a lax idempotent 2-monad.
Proof. Let us denote by T the 2-monad U2PF 2. By the construction of the core-
flection S as a pullback, it is clear that αT : SS Ñ TS is the coreflection of TS.
Lemma 10.2 tells us that S will be lax idempotent if we have a coretract adjunction
in rK 2,K 2s

`

T
Tj
ÝÝÑ TS

˘

%
`

TS
Tα
ÝÝÑ TT ÝÑ T

˘

.

Such an adjunction is obtained from the one of Definition 10.6 by applying U2. �

Let us now make an observation that shall be needed later on.
Remark 10.8. Given F % U , P and the codomain-preserving coreflection α : S Ñ
U2PF 2 as in Lemma 10.7, we claim that the composition of the multiplication with
the counit α

SS ÝÑ S
α
ÝÑ U2PF 2

factors through U2mF 2, where m is the multiplication of P. Indeed, since α is a
2-monad (strict) morphism, we know that

pSS Ñ S
α
ÝÑ U2PF 2q “ pSS

αα
ÝÝÑ U2PF 2U2PF 2 Ñ U2PPF 2 Ñ U2PF 2q.

Below we describe Definition 10.6 in a particular case of interest, but before let us
recall a few facts about the Kleisli construction for the free split opfibration 2-monad
R1 on A 2, for a 2-category A with lax limits of morphisms. This Kleisli construction
can be described as the inclusion 2-functor of A 2 into the 2-category Laxr2,A s of
2-functors from 2 to A and lax transformations between them. Morphisms between
free R1-algebras are in bijection with morphisms in Laxr2,A s, and the bijection is
given as displayed below, a fact we shall soon employ.

¨

R1f
��

h // ¨

R1g
��

¨
k // ¨

ÞÝÑ

¨
Lf
//

f
��

¨

R1f
��

h // ¨

R1g
��

qg
//

~� ν

¨

g
��

¨ ¨
k // ¨ ¨

(10.9)
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Proposition 10.10. Let F % U : A Ñ K be a 2-adjunction, where A has comma
objects and K has pullbacks, and R1 be the free split opfibration 2-monad on A 2.
Denote by R the codomain-preserving coreflection of U2R1F 2. The 2-adjunction
is simple with respect to the coreflection–opfibration awfs precisely when there are
coretract adjunctions FLf % qFf ¨eK1Ff ¨Fτf 2-natural in f , where these morphisms
are those defined in (10.11).

Proof. In this proof we shall denote the unit and counit of F % U by i and e,
respectively, and the comparison adjoint of the Kleisli construction of a 2-monad P
on A 2 by C : KlpPq Ñ P-Algs. In a moment we will use the well-known fact that
C is full and faithful and its replete image is the full subcategory of free algebras.
The definition of simple adjunction consists of a coretract adjunction in rK 2,A 2s

between 2-natural transformations whose components are strict morphisms of P-
algebras between free P-algebras in A 2. Therefore, the said coretract adjunction
is the image of a coretract adjunction in rK 2,KlpPqs under the 2-functor

r1, Cs : rK 2,KlpPqs ÝÑ rK 2,P-Algss.

When P is the free split opfibration 2-monad R1, its Kleisli construction is iso-
morphic to the inclusion of A 2 into Laxr2,A s, by the comments before the present
proposition. We can use the correspondence between morphisms of free R1-algebras
and morphisms in Laxr2,A s described in (10.9) to deduce the form of the lifting
to rK 2,Laxr2,A ss of the coretract adjunction in rK 2,A 2s that exhibits F % U
as a simple 2-adjunction. The lifting has component at f P K 2 displayed below,
where ν is the comma object that defines R1.

FA

Ff

��

FLf
// FKf

FRf

��

FB FB

%

FKf

FRf

��

Fτf
// FUK 1Ff

FUR1Ff

��

e // K 1Ff
qF f

//

R1Ff

��
�� ν

FA

Ff

��

FB
FiB // FUFB

e // FB FB

(10.11)

This adjunction consists of a coretract adjunction as in the statement of this propo-
sition, plus the requirement that its counit, say αf , is a 2-cell in Laxr2,A s; ie

FRf ¨ αf “ ν ¨ eK1Ff ¨ Fτf . (10.12)

Thus, the direct part of the statement is trivial. To prove the converse, we will
show that if FLf has a right adjoint retract in K as in the statement, then (10.12)
automatically holds. As a consequence of the adjunction, the 2-cell on the left hand
side of (10.12) is the unique 2-cell β, with the appropriate domain and codomain,
such that β ¨ FLf “ 1. We must verify that the 2-cell on the right hand side of
(10.12) satisfies the same property. By definition of Lf ,

eK1Ff ¨ Fτf ¨ FLf “ eK1Ff ¨ FUL
1pFfq ¨ FiA “ L1pFfq ¨ eFA ¨ FiA “ L1pFfq,

from where it is clear that ν ¨ eK1Ff ¨ Fτf ¨ FLf “ ν ¨ L1pFfq “ 1, concluding the
proof. �

Lemma 10.7 yields:

Corollary 10.13. If F % U : A Ñ K is a 2-adjunction simple with respect to the
free split opfibration 2-monad R1 on A 2, then the codomain-preserving coreflection
R of U2R1F2 is lax idempotent.

Remark 10.14. There is a 2-monad morphism with components pτf , icodpfqq : Rf Ñ
UR1Ff , by Remark 10.5. Taking the mate along F % U , we obtain an opmorphism
of 2-monads pτ̂f , 1F codpfqq : FRf Ñ R1Ff .
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Recall from Lemma 2.8 that the codomain functor is a fibration from (the un-
derlying category of) R-Algs to C. In particular the category of split opfibrations
in a 2-category K with lax limits of morphisms is a fibration over K .

Theorem 10.15. Assume given a 2-adjunction F % U : A Ñ K between 2-
categories equipped with chosen lax limits of morphisms and pullbacks, strictly pre-
served by U . If the 2-monad R is as in Proposition 10.10, then there is a canonical
2-functor into the category of split opfibrations in K that commutes with the for-
getful functors into K 2.

R-Algs ÝÑ OpFibspK q

Proof. Denote by R1A and R1K the free split opfibration 2-monad on A 2 and K 2

respectively. Clearly U2R1A “ R1K U2, and there is a monad morphism R1K Ñ

U2R1A F 2. Since R is by definition the codomain-preserving coreflection of U2R1A F 2,
there exists a 2-monad morphism R Ñ R1K , which induces the 2-functor of the
statement. �

Remark 10.16. The 2-monad R on K 2 of Proposition 10.10 has a slightly more
elementary description that will be useful later in our work. The associated 2-
functorial factorisation f “ Rf ¨ Lf : A Ñ B can be described as follows. The
morphism Rf is given by the comma object displayed below, and Lf is the unique
morphism such that µf ¨ Lf “ 1.

A

Lf
##

iA

&&

f

  

Kf
qf
//

Rf
��

�	 µf

UFA

UFf
��

B
iB
// UFB

(10.17)

This is so because µf is related to the comma object ν that appears in (10.11) via
the equality below.

Kf
qf
//

�	 µfRf
��

UFA

UFf
��

B
iB
// UFB

“

Kf

Rf
��

τf
//

pb

UK 1Ff
UqF f

//

UR1Ff
��

�� UνF f

UFA

UFf
��

B
iB

// UFB UFB

(10.18)

The multiplication is given by a morphism πf : R2f Ñ Rf that satisfies the equality
below.

KRf

R2f

��

πf
// Kf

Rf

��

qf
//

�� µf

UFA

UFf

��

B B
iB
// UFB

“

KRf

R2f

��

qRf
//

�	 µRf

UFKf

UFRf

��

UFqf
//

�
 UFµf

UFUFA

UFUFf

��

UeF A // UFA

UFf

��

B
iB
// UFB

UFiB

// UFUFB
UeF B

// UFB

(10.19)

11. AWFSs through simple adjunctions

If pL1,R1q is an awfs on A, and F % U : A Ñ C an adjunction, we obtain a
transferred right algebraic weak factorisation system ppL,Φq,Rq in C. The monad R
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is the codomain-preserving coreflection of the monad U2R1F 2 on C2 – Lemma 10.4.
This means that Rf is given by the pullback in C depicted on the left hand side.

Kf

Rf
��

// UK 1Ff

UR1Ff
��

B
iB // UFB

A

Lf
%%

f

##

iA // UFA
UL1Ff

''

Kf

Rf
��

τf
// UK 1Ff

UR1Ff
��

B
iB // UFB

The associated 2-functorial factorisation is given by f “ Rf ¨ Lf : A Ñ B where
Lf is as in the diagram on the right hand side above. The corresponding domain-
preserving copointed endofunctor pL,Φq on C2 sends f to Lf and Φf “ p1, Rfq : Lf Ñ
f , and can be constructed as the pullback on the left below. As a consequence, the
diagram on the right is a pullback, as can be easily shown.

L

Φ
��

// U2L1F 2

U2Φ1F2

��

1 i2 // U2F 2

pL,Φq-Coalg

��

// pL1,Φ1q-Coalg

��

C2 F2
// A2

(11.1)

The above considerations hold not only in the case of categories and functors
but also in the case of 2-categories, 2-adjunctions, etc, which we assume for the
rest of the section. We also assume that the comonad L1 on the 2-category A 2 has
as coalgebras the left adjoint coretracts in the 2-category A, which we assume to
have comma objects; the 2-category L1-Coalgs can be written in the notation used
in [?] as LaripAq, where lari stands for left adjoint right inverse. The resulting
factorisation f “ Rf ¨ Lf can be described by the following diagram, where the
2-cell µ is a comma object.

A

Lf
$$

Kf

Rf
��

qf
//

�
 µf

UF

UFf
��

B
iB
// UFB

“

A

f

""

iA

&&

“ UFA

UFf
��

B
iB
// UF

Definition 11.2. If F : K Ñ A is a 2-functor, define a 2-category

F -Emb
pb

//

G
��

LaripA q

��

K 2
F2

// A 2

whose objects may be called F -embeddings – the terminology is widely used in
the context of categories enriched in posets, as topological embeddings are F -
embeddings for a certain choice of F . Explicitly, an object of F -Emb is a mor-
phism f in K equipped with a right adjoint retract rf for Ff in A , with counit
αf : Ff ¨ rf ñ 1. A morphism pf, rf , αf q Ñ pg, rg, αgq is a morphism ph, kq : f Ñ g
in K 2 such that pFh, Fkq is a morphism in LaripA q; this means that Fh ¨ rf “
rg ¨ Fk. (It is not hard to show that the compatibility with the counits, expressed
in Fk ¨ αf “ αg ¨ Fk, is automatically satisfied.)

Remark 11.3. The composition of laris described in Section 4.d induces a com-
position on F -Emb and the projections K 2 Ð F -Emb Ñ LaripK q preserve it.
Explicitly, if pf, rq and pf 1, r1q are objects of F -Emb with f and f 1 composable



40 M M CLEMENTINO AND I LÓPEZ FRANCO

morphisms of K , then pf 1 ¨ f, r ¨ r1q has a canonical structure of an F -embedding
arising from F pf 1 ¨ fq – Ff 1 ¨ Ff % r ¨ r1.

The pullback square that defines F -Emb can be factorised as the pasting of two
pullback squares, one of which we have already met in (11.1). In particular, each
f P F -Emb has an pL,Φq-coalgebra structure.

F -Emb //

��

LaripA q

��

pL,Φq-Coalg //

��

pL1,Φ1q-Coalg

��

K 2 F2
// A 2

(11.4)

Theorem 11.5. Suppose given a 2-adjunction F % U : A Ñ K where A has
comma objects and K has pullbacks. Then the following are equivalent.

(1) The 2-adjunction is simple.
(2) The copointed endo-2-functor pL,Φq can be extended to a comonad L and

F -Emb is isomorphic to L-Coalgs over pL,Φq-Coalg.
(3) The forgetful 2-functor G : F -Emb Ñ K 2 has a right adjoint and the

induced comonad on K 2 has underlying copointed endo-2-functor pL,Φq.

Proof. (1)ñ(3) The hypothesis tells us that there are adjunctions FLg % rLg in
A , where rLg “ eFA ¨Fqg : FKf Ñ FA, with counits εLg : FLf ¨ rLg ñ 1 that are
modifications in g P K 2. This defines a 2-functor J : K 2 Ñ F -Emb that sends g
to pLg, rLg, εLgq. We shall show that J is a right adjoint to G.

Suppose that pf, rf , αf q is an object of F -Emb, and construct a morphism sf
as the unique morphism satisfying the displayed equality.

B
sf
// Kf

Rf
�� �
 µf

qf
// UFA

UFf
��

B
iB
// UFB

“
B

iB // UFB
�� Uαf

Urf
//

1 ++

UFA

UFf
��

UFB

(11.6)

To be more precise, qf ¨ sf “ Urf ¨ iY , Rf ¨ sf “ 1 and µf ¨ sf “ Uαf ¨ iY . We claim
that

A

f
��

A

Lf
��

B
sf
// Kf

is a morphism in F -Emb.

We have to show the compatiblity of sf with the right adjoints, which means that
rLf ¨ Fsf “ rf should hold, as it indeed does, as witnessed by

rLf ¨ Fsf “ eFA ¨ Fqf ¨ Fsf “ eFA ¨ F pqf ¨ sf q “ eFA ¨ F pUrf ¨ iBq “ rf .

The morphisms Ψpf,rf ,αf q “ p1, sf q : f Ñ Lf in F -Emb form a 2-natural trans-
formation Ψ: 1F -Emb ñ JU . On the other hand, we already have a 2-natural
transformation Φ: UJ “ L ñ 1K 2 with components Φg “ p1, Rgq. We now pro-
ceed to show that these are the unit and the counit of a 2-adjunction G % J . We
start by considering

G
GΨ
ùùñ GJG “ LG

ΦG
ùùñ G

and evaluating on pf, rf , αf q P F -Emb to obtain p1, Rfq ¨ p1, sf q “ p1, Rf, ¨sf q “
p1, 1q, so one of the triangle identities holds. The other triangle identity involves
the composition

J
ΨJ
ùùñ JGJ

JΨ
ùùñ J
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which evaluated on g : X Ñ Y in K 2 gives
¨

Lg

��

¨

L2
g

��

¨

Lg

��
¨

sLg
// ¨

Kp1,Rgq
// ¨

where sLg is defined according to (11.6). We have to show that Kp1, Rgq ¨ sLg “ 1;
since the codomain is the comma object Kg, this equality is equivalent to the
conjunction of the three conditions

Rg ¨Kp1, Rgq ¨ sLg “ Rg qg ¨Kp1, Rgq ¨ sLg “ qg µg ¨Kp1, Rgq ¨ sLg “ µg

where µg : UFg ¨ qg ñ iY ¨Rg is the universal 2-cell of the comma object. The first
of these equalities always holds, since Rg ¨Kp1, Rgq ¨ sLg “ Rg ¨ RLg ¨ sLg “ Rg.
The second equality also holds, by definition of rLg:

qg ¨Kp1, Rgq ¨ sLg “ qLg ¨ sLg “ UrLg ¨ iKg “ UeFX ¨ UFqg ¨ iKg “ qg.

The third and last equality can be rewritten by using what we know of the definition
of sf , as

µg “ µg ¨Kp1, Rgq ¨ sLg “ UFRg ¨ µLg ¨ sLg “ UFRg ¨ UαLg ¨ iY (11.7)

and in order to prove (11.7) we may consider the 2-cell γg that is the transpose of
µg under the 2-adjunction F % U .

Kg
qg
//

Rg

��
|� µg

UFX

UFg

��

Y
iY
// UFY

ÐÑ

FUFX
eF X // FX

Fg

��

FKg

Fqg

OO

FRg
//

�� γg

FY

We will soon use the fact that the equality µg ¨ Lg “ 1 translates to γg ¨ FLg “ 1.
Transposing (11.7) under F % U yields the equivalent equation

γg “ FRg ¨ αLg

that we prove by considering the pasting diagram depicted below

FX
FLg

##

FX
Fg

""

FKg

rLg

;;

�� αLg

FKg
FRg

//

�� γg

rLg

;;

FY

and calculating

FRg ¨ αLg “
`

γg ¨ FLg ¨ rLg
˘`

FRg ¨ αLg
˘

“
`

Fg ¨ rLg ¨ αLg
˘

γg “ γg

where we have used γg ¨ FLg “ 1 and rLg ¨ αLg “ 1. This completes this part of
the proof.

(3)ñ(2) is clear.
(2)ñ(1) Suppose that L “ pL,Φ,Σq is a 2-comonad with category of coalgebras

and strict maps isomorphic to F -Emb over pL,Φq-Coalg. The comultiplication has
components Σf “ p1, σf q : Lf Ñ L2f . Since Σf is a pL,Φq-coalgebra structure on
Lf , and the commutativity of the top square in (11.4), the morphism σf : Kf Ñ
KLf and the right adjoint rLf of FLf are related by

rLf “ eFA ¨ FqLf ¨ Fσf : FKLf ÝÑ FA.

We have to show that rLf “ eFA ¨ Fqf , for which it will suffice to show that

qf “ qLf ¨ σf .
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We make use of the counit axiom 1 “ LΦf ¨ Σf , whose codomain component is
1Kf “ Kp1, Rfq ¨σf . Composing the latter with qf we obtain the required equality:
qf “ qf ¨Kp1, Rfq ¨ σf “ qLf ¨ σf . �

Theorem 11.8. If the 2-adjunction F % U : A Ñ K is simple, where A has
comma objects and K has pullbacks, then there exists an awfs pL,Rq on K that
extends the 2-functorial factorisation f “ Rf ¨ Lf . Furthermore,

‚ this awfs is lax idempotent; and,
‚ the 2-category L-Coalgs is isomorphic over K 2 to the 2-category F -Emb

of Definition 11.2.
‚ the 2-monad R is the codomain-preserving reflection of U2R1F2, where R1

is the free split opfibration 2-monad on A 2.

Proof. The category F -Emb has an obvious composition, mentioned in Remark 11.3,
so L-Coalgs does too. This already generates a 2-monad R “ pR,Λ,Φq with
Λf “ pLf, 1q. We shall show that R is the codomain preserving coreflection of
the monad U2R1F2 considered in Section 10, where R1 is the free split opfibration
2-monad on A . Both this coreflection, that we denote by R̄, and R have the same
underlying 2-functor and unit; this is because the description of the respective 2-
functorial factorisations in Remark 10.16 and just before Definition 11.2 coincide.
It remains to prove that they share the same multiplication. Denote by Π̄ the mul-
tiplication of R̄ and by Π that of R. We know from Section 3.b, or, more precisely,
by a dual case to that explained in that section, that Π can be described in terms
of the composition of L-coalgebras as the unique morphism of L-coalgebras

A
Lf ��

A

Lf

��

Kf
LRf ��

KRf
πf
// Kf

that composed with the counit p1, Rfq : Lf Ñ f equals the morphism p1, R2fq in
K 2; the L-coalgebra structure of LpRfq ¨ Lf is that given by the composition of
coalgebras, ie the composition of F -Emb. To show Π “ Π̄ we only need to show
that p1, π̄f q satisfies the same properties. We certainly know that Rf ¨ π̄f “ R2f ,
so it remains to show that p1, π̄f q is a strict morphism of L-coalgebras, or, what
is the same, that it is a morphism in F -Emb. We know that there are coretract
adjunctions FLf % rLf and FLpRfq % rLRf in A . To say that p1, π̄f q is a
morphism in F -Emb is to say that

rLf ¨ Fπ̄f “ rLf ¨ rLRf ,

or, substituting the right adjoints r by their expressions given by the simplicity of
F % U ,

eFA ¨ Fqf ¨ Fπ̄f “ eFA ¨ Fqf ¨ eKf ¨ FqLf “

“ eFA ¨ eFUFA ¨ FUFqf ¨ FqLf “ eFA ¨ FUeFA ¨ FUFqf ¨ FqLf . (11.9)

Taking the transpose of each side under F % U , the equality is equivalent to

qf ¨ π̄f “ UeFA ¨ UFqf ¨ qLf

which is precisely the equality satisfied by π̄f as mentioned in Remark 10.16. This
completes the proof. �

We now look at the fibrant replacement 2-monad associated to the awfs con-
structed.
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Corollary 11.10. Suppose that in Theorem 11.5 the 2-category K has a terminal
object 1, and that i1 : 1 Ñ UF1 is a right adjoint of UF1 Ñ 1. Then the restriction
of R to K {1 – K – the fibrant replacement 2-monad of pL,Rq – is isomorphic to
UF .

Proof. Let us denote by f : A Ñ 1 the unique morphism into the terminal object,
and by R1 the restriction of R to K {1. We shall show that in the comma object

Kf
qA //

Rf
�� �


UFA

UFf
��

1 i1 // UF1

the projection qA is an isomorphism. For any morphism x : X Ñ UFA, there exists
a unique 2-cell UFf ¨ xñ i1 ¨ !, as these are in bijection, by mateship along i1 % f ,
with endo-2-cells of X Ñ 1, of which there is only one. Hence K pX, qAq is an
isomorphism, for each X, and thus qA is an isomorphism. Since qA ¨ Lf “ iA, and
the compatibility of q with the multiplication of R and UF exhibited by (10.19),
namely

qA ¨ πf “ UeFA ¨ UFqf ¨ qKf ,

we have that q is a 2-monad isomorphism q : R1 Ñ UF . �

We conclude the section with the following lemma, which will be of use in later
sections. Corollary 11.10 says that for any morphism b : 1 Ñ B from the terminal
object of K the fibre Ab of any R-algebra g : A Ñ B – ie the pullback of g along
b – has a structure of a T-algebra, for the monad T induced by F % U .

Ab
zb //

!
��

A
g
��

1 b // B

Furthermore, pzb, bq is a morphism of R-algebras.

Lemma 11.11. Assume the conditions of Corollary 11.10, and denote by T the
monad generated by F % U . Given g : AÑ B and b : 1 Ñ B, the morphism

pKgqb
zb
ÝÑ Kg

qg
ÝÑ TA

is a morphism of T-algebras.

Proof. Denote by a : T pKgqb Ñ pKgqb the T-algebra structure given by Corol-
lary 11.10. We are to show that the following rectangle commutes.

T pKgqb
Tzb //

a
��

TKg
Tqb // T 2A

mA
��

pKgqb
zb // Kg

qb // TA

(11.12)

In order to do so, consider the string of equalities displayed below, the first of which
holds since pzb, bq is a morphism of R-algebras; the second holds by definition of πg,
depicted in (10.19); the next equality reflects the definition of Kpzb, bq and the fact
that the restriction of R to K {1 is T – Corollary 11.10.

T pKgqb
a //

��

pKgqb

��

zb // Kg

Rg
��

qg
//

}�

TA

Tg
��

1 1
b
// B

iB
// TB

“

T pKgqb
Kpzb,bq

//

��

KRg

R2g
��

πg
// Kg

Rg
��

qg
//

�	

TA

Tg
��

1
b

// B B
iB
// TB

“
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“

T pKgqb
Kpzb,bq

//

��

KRg

R2g
�� �


// TKg
Tqg
//

�
TRg
��

T 2A
mA //

T 2g
��

TA

Tg
��

1
b

// B
iB

// TB
TiB

// T 2B
mB

// TB

“

“

T pKgqb

��

1 //

�� !

T pKgqb

��

Tzb // TKg

TRg
��

Tqg
//

�


T 2A
mA //

T 2g
��

TA

Tg
��

1
i1

// T1
Tb

// TB
TiB

// T 2B
mB

// TB

It is now clear that (11.12) commutes, completing the proof. �

12. Simple 2-monads

A 2-monad T on a 2-category K with lax limits of morphisms is said to be
simple if the usual Eilenberg-Moore adjunction F % U : T-Algs Ñ K is simple
with respect to the coreflection–opfibration awfs on T-Algs – in the sense of Def-
inition 10.6. To make this definition more explicit, consider the factorisation of a
morphism f : A Ñ B in K depicted in (10.17), and recall from Proposition 10.10
that the simplicity of F % U amounts to the existence of a certain coretract ad-
junction in T-Algs; namely

TLf % mK1Ff ¨ Tqf (12.1)
where m is the multiplication of T and the rest of the notation is as in the dia-
gram (10.18). This adjunction must be an adjunction in T-Algs – a condition that
is redundant when, for example, T is lax idempotent, as it will often be in our
examples.

Remark 12.2. At this point it is useful to consider the meaning of simple 2-monads
and the previous proposition when the 2-category is locally discrete, ie just a
category C. In this case comma objects are just pullbacks, and the coreflection–
opfibration factorisation becomes the orthogonal factorisation pIso,Morq that fac-
tors a morphism f as the identity followed by f . To say that a monad T on C is
simple is to say that the image of the comparison morphism `, which goes from
the naturality square of i to the pullback in (12.2), is sent to an isomorphism by
the free T-algebra functor. Equivalently, one can say that T` is an isomorphism.
Observe that, when T is a reflection, this gives the definition of simple reflection in
the sense of [?].

A
`

''

f

&&

iA

))
B ˆTB TA

��

// TA

Tf
��

B
iB

// TB

We consider in this section some properties that guarantee that a 2-monad is
simple, thus inducing a transferred awfs. We make the blanket assumption that
the 2-category K has pullbacks and cotensor products with 2, and therefore comma
objects.

Notation 12.3. If T : A Ñ B is a 2-functor and limD the limit of a 2-functor D
into A , there is a “comparison” morphism T plimDq Ñ limTD. We are interested
in the limits that are comma objects. Given a cospan f : A Ñ C Ð B : g, if α
and β are the universal 2-cells of the comma objects f Ó g and Tf Ó Tg, then the
comparison morphism

k : T pf Ó gq ÝÑ Tf Ó Tg, (12.4)
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is defined by the equality

T pf Ó gq
k // Tf Ó Tg //

�� �� β

TA
Tf
��

TB
Tg

// TC
“

T pf Ó gq

�� T pαq

//

��

TA
Tf
��

TB
Tg

// TC

Proposition 12.5 (Simplicity criterion). A 2-monad T “ pT, i,mq is simple if
it is lax idempotent and satisfies the following property: given morphisms f , u, v
as displayed below, composition with the comparison morphism k defined in Nota-
tion 12.3 induces a bijection between 2-cells ξ as on the left and 2-cells ζ as on the
right. In other words, for each ζ there exists a unique ξ such that k ¨ ξ “ γ.

A

v
��

u

��

Tf Ó iB
�� ξ

i
// T pTf Ó iBq

A

v
��

k¨u

��

Tf Ó iB
�� ζ

k¨i
// TTf Ó TiB

Proof. As we have done before, we will denote by R1 the free split opfibration 2-
monad on T-Alg2

s . Let R be the 2-monad on K 2 induced from R1 by the simple
adjunction F % U , according to Theorem 11.8. By the same theorem, R is the
codomain-preserving coreflection of the 2-monad U2R1F 2. The right part Rf of
the factorisation of a morphism f in K induced by R is given by a comma object

Kf
qf
//

Rf
�� �	 µf

TA

Tf
��

B
iB
// TB

(12.6)

and the left part Lf : A Ñ Kf is the unique morphism such that µf ¨ Lf “ 1.
As explained at the beginning of the present section, we must exhibit a coretract
adjunction (12.1) in K ; this adjunction is automatically an adjunction in T-Algs,
since T is lax idempotent.

In order to define a counit α : TLf ¨mK1Ff ¨Tqf ùñ 1 we can give its transpose
under the free T-algebra 2-adjunction, which is a 2-cell ᾱ : TLf ¨ qf ùñ iKf in K .

The morphism k of (12.4) is the unique such that satisfies the equality

TKf
Tqf
//

TRf
�� �
 Tµf

T 2A

T 2f
��

TB
TiB

// T 2B

“

TKf
k // T 2f Ó TiB

d0 //

d1
�� �� θ

T 2A

T 2f
��

TB
TiB

// T 2B

To give ᾱ is to equally give a pair of 2-cells, corresponding to d0 ¨ k ¨ ᾱ and d1 ¨ k ¨ ᾱ:

ᾱ1 : Tqf ¨ TLf ¨ qf “ TiA ¨ qf ùñ iTA ¨ qf “ Tqf ¨ iKf (12.7)
ᾱ2 : TRf ¨ TLf ¨ qf “ Tf ¨ qf ùñ iB ¨Rf “ TRf ¨ iKf (12.8)

compatible with θ, in the sense that the following two compositions of 2-cells must
be equal.

T 2f ¨ TiA ¨ qf
T 2f ¨ᾱ1
ÝÝÝÝÑ T 2f ¨ Tqf ¨ iKf “ T 2f ¨ d0 ¨ k ¨ iKf

θ¨k¨iKf
ÝÝÝÝÝÑ TiB ¨ d1 ¨ k ¨ iKf

T 2f ¨d0 ¨k ¨TLf ¨qf
θ¨k¨TLf ¨qf
ÝÝÝÝÝÝÝÑ TiB ¨d1 ¨k ¨TLf ¨qf “ TiB ¨Tf ¨qf

T iB ¨ᾱ2
ÝÝÝÝÝÑ TiB ¨iB ¨Rf

Set ᾱ1 “ δA ¨ qf and ᾱ2 “ µf , where δ : Tiñ iT is the modification given by the
lax idempotent structure of T. We must verify the pair of 2-cells displayed above
are equal. Using that θ ¨ k “ Tµf , the verification takes the following form, where
the first equality is the modification property for δ and the 2-naturality of i, the
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second is the interchange law in a 2-category, the third holds since δ ¨ i “ 1, and
the last holds since µf ¨ Lf “ 1.
`

Tµf ¨ iKf
˘`

T 2f ¨ δA ¨ qf
˘

“
`

iTB ¨ µf
˘`

δB ¨ Tf ¨ qf
˘

“
`

δB ¨ iB ¨Rf
˘`

TiB ¨ µf
˘

“

“ TiB ¨ µf “ pTiB ¨ µf qpTµf ¨ TLf ¨ qf q (12.9)
It remains to verify the triangle identities of an adjunction. One of them is

mA ¨ Tqf ¨ α “ 1, equivalent to mA ¨ Tqf ¨ ᾱ “ 1, and by definition of ᾱ, equivalent
to mA ¨ ᾱ1 “ 1. This latter equality clearly holds, since mA ¨ δ “ 1,

Up to now we have only used the hypothesis in the case when v is an identity
morphism. In order to prove the other triangle identity α ¨ pTLfq “ 1 we shall
need the hypothesis in its general form, more precisely, for v “ Lf . The triangle
equality is equivalent to ᾱ ¨Lf “ 1, which holds since δA ¨ qf ¨Lf “ δA ¨ iA “ 1 and
µf ¨ Lf “ 1, finishing the proof. �

The proposition will be usually used in the following, less powerful form.
Corollary 12.10. A 2-monad T “ pT, i,mq is simple if it is lax idempotent and
composing with (12.4) induces a bijection between 2-cells u ñ ifÓg ¨ v and k ¨ u ñ
k ¨ ifÓg ¨ v, where f : AÑ B Ð C : g are arbitrary morphisms.

Let µ : h ¨ j ñ g be a left extension in a 2-category with comma objects. Recall
that µ is a pointwise left extension if, whenever pasted with a comma object as
depicted on the left hand side below, the resulting 2-cell is a left extension. Recall
that if a 2-monad T “ pT, i,mq is lax idempotent then the identity 2-cell below
exhibits Tf as a left extension – not necessarily a pointwise extension – of iB ¨ f
along iA – Section 4.b.

j Ó w //

��
+3
W

w
��

X
j
//

g
%%

Y

h
��
+3µ

Z

A

f
��

iA // TA

Tf
��

B
iB // TB

(12.11)

Theorem 12.12. A lax idempotent 2-monad T is simple if it satisfies:
‚ the identity 2-cell on the right hand side of (12.11) exhibits Tf as a point-

wise left extension of iB ¨ f along iA, for all f ;
‚ and the components of the unit i : 1 Ñ T are fully faithful.

Proof. We will verify the hypothesis of Corollary 12.10. Given a comma object
h Ó g depicted on the left below, denote by k : T ph Ó gq Ñ Th Ó Tg the comparison
morphism. Given a morphism u : X Ñ T ph Ó gq, we consider the diagram on
the right hand side, where the unlabelled 2-cell is a comma object. This pasting
exhibits pTdnq ¨ u as a left extension, since Tdn is a pointwise left extension.

h Ó g
d1 //

d0
��

@Hγ

B

g
��

A
h
// C

¨
e1 //

e0
��

DL
X

u
��

h Ó g
ihÓg

//

dn
��

T ph Ó gq

Tdn
��

codpdnq
i // T pcodpdnqq

Given a morphism v : X Ñ h Ó g, we will show that 2-cells α : k ¨ uñ k ¨ ihÓg ¨ v are
in bijection with 2-cells uñ ihÓg ¨ v.

We begin by observing that 2-cells α are in bijection with pairs of 2-cells
α0 : pTd0q ¨ uñ pTd0q ¨ ihÓg ¨ v and α1 : pTd1q ¨ uñ pTd1q ¨ ihÓg ¨ v
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compatible with Tγ in the sense that pTg ¨ α1qpTγ ¨ uq “ pTγ ¨ ihÓg ¨ vqpTh ¨ α0q
holds.

By the universal property of extensions, αn is in bijection with 2-cells i ¨dn ¨e0 ñ
pTdnq¨ihÓg ¨v ¨e1 “ icodpdnq ¨dn ¨v ¨e1, and since i has fully faithful components, with
2-cells βn : dn ¨e0 ñ dn ¨v ¨e1. The compatibility between α0, α1, and Tγ translates
into pg ¨ β1qpγ ¨ e0q “ pγ ¨ v ¨ e1qph ¨ β0q. By the universal property of γ, the pair β0,
β1 is in bijection with 2-cells e0 ñ v ¨e1, and thus with 2-cells ihÓg ¨e0 ñ ihÓg ¨v ¨e1.
Finally, by the description of u as a left extension, these 2-cells are in bijection with
2-cells uñ ihÓg ¨ v, as required. �

The theorem can be used to prove that, for a class of Set-colimits, the 2-monad
on Cat whose algebras are categories with chosen colimits of that class is simple.
Section 13 proves this fact in another way, that applies to enriched categories.

13. Example: completion of V -categories under a class of colimits

This section is divided in four parts. The first compiles the basic facts about
completions under a class of colimits that will be needed to prove. In the second
part, it is shown that the 2-monad whose algebras are V -categories with chosen
colimits of a class is simple, therefore inducing a lax orthogonal awfs pL,Rq on
V -Cat. The third part exhibits the example when the colimits involved are initial
objects. The last part shows that the algebras for R are, at least when V “ Set,
split opfibrations whose fibres are equipped with chosen colimits and whose push
forward functors strictly preserve them. Intuition should dictate that this type of
split opfibration should coincide with the R-algebras; however, in general they do
not, as we show at the end of the section.

Notation 13.1. In this section we will tend to think of categories enriched in V as
objects of a 2-category, in this case V -Cat. Instead of denoting V -categories by
calligraphic letters, we opt to maintain the notation we have used for 2-categories,
where objects are denoted by capital roman letters and morphisms by lowercase
letters. As a result, V -categories will be denoted by A, B, etc, and V -functors by
f : AÑ B, etc.

13.a. Completion under colimits. Throughout the section V will be a base of
enrichment, in our case, a complete and cocomplete symmetric monoidal closed
category. As argued in [?], the usual notion of colimit is not well adapted to the
context of enriched categories and must be extended to that of weighted colimit.
A weight is just a V -functor φ : Jop Ñ V with J a small V -category. Then a
φ-weighted colimit of a functor G : J Ñ C is expressed by a V -natural isomorphism

Cpcolimpφ,Gq, cq – rJop, V spφ,CpG´, Cqq.

The free completion of a V -category C under small colimits can be constructed
as the V -category PC with objects small presheaves – ie V -functors Cop Ñ V that
are a left Kan extension of its own restriction to a small subcategory of Cop – and
enriched homs given by PCpφ, ψq “

ş

c
rφc, ψcs. This extends to a pseudomonad

on V -Cat, whose unit has components the Yoneda embedding yC : C Ñ PC,
and whose multiplication we denote by mP . A number of properties of PC, in
particular its completeness, are studied in [?].

A class of colimits is a set of weights Φ “ tφi : Jop
i Ñ CatuiPI . The free com-

pletion of C under colimits of the class Φ, or Φ-colimits, can be constructed as the
smallest full sub-V -category of PC that is closed under Φ-colimits and contains the
representable presheaves. We follow the notation of [?] and denote this V -category
by ΦC. One obtains a pseudomonad, also denoted by Φ, with unit the corestricted
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Yoneda embedding yC and multiplication mΦ, together with a pseudomonad mor-
phism Φ Ñ P that has fully faithful components.

Given a class of colimits Φ, [?] shows the existence of a 2-monad on V -Cat, that
we denote by TΦ, whose algebras are the V -categories with chosen Φ-colimits, and
whose strict morphisms are V -functors that strictly preserve these. Furthermore,
the same article shows that this is a lax idempotent 2-monad. Earlier, less general,
versions of this monad appeared, for example, in [?].

It is convenient to recall some aspects of the construction of TΦ from [?]. Part
of this construction is an equivalence tA : TΦAÑ ΦA for each V -category A, which
form a pseudonatural transformation T Ñ Φ, and moreover, a pseudomonad mor-
phism.

Lemma 13.2. Denote by Φ a small class of V -enriched colimits and the associated
pseudomonad on V -Cat. Let f : A Ñ B be a fully faithful V -functor into a Φ-
cocomplete V -category, and denote by f̃ : ΦpAq Ñ B a left Kan extension of f
along the corestricted Yoneda embedding yA : AÑ ΦA. Then the morphisms

ΦpAqpφ, yApaqq ÝÑ Bpf̃pφq, fpaqq (13.3)
induced by f̃ are isomorphisms for all φ P ΦpAq and a P A.

Proof. The morphism (13.3) can be written as the composition of ΦpAqpφ, fq from
ΦpAqpφ, yApaqq to ΦpAqpφ,Bpf´, fpaqqq and the isomorphism between the latter
and Bpcolimpφ, fq, fpaqq. The result is an isomorphism since f is full and faithful
and f̃pφq – colimpφ, fq. �

An explicit description of TΦA is only possible in particular instances. In theory,
one can give an inductive description of the objects, but in practice this is not very
useful. Instead, we will use ΦA and its relationship to TΦA.

13.b. Simplicity of completion under a class colimits. Before proving that
the 2-monads TΦ are simple, we need the following easy lemma.

Lemma 13.4. Suppose given commutative diagrams of V -functors whose horizon-
tal arrows u, v and w are full and faithful.

A
u //

f

��

A1

f 1

��

C
v // C 1

B
w //

g

��

B1

g1

��

C
v // C 1

Then, the V -functor h : pf Ó gq ÝÑ pf 1 Ó g1q, defined on objects by pa, b, αq ÞÑ
pupaq, wpbq, vpαqq, is full and faithful.

Proof. Of the routes one may take to prove this result, we choose a fairly direct
one. The diagram displayed on the left exhibits f Ó g as the comma category
pv ¨ fq Ó pv ¨ gq; this is a direct consequence of the construction of comma categories
and the fact that v is full and faithful.

f Ó g

��

//

~�

A

f

��

B
g
// C

v
// C 1

pf 1 ¨ uq Ó pg1 ¨ wq // //
��

��
pb

‚ //
��

��
pb

A��
u
��

‚ // //

��
pb

f 1 Ó g1 //

�� �


A1

f 1
��

B //
w

// B1
g1
// C 1

Using the commutativity of the diagrams in the statement, we see that f Ó g can be
constructed as pf 1 ¨ uq Ó pg1 ¨wq, and the latter comma category can be constructed
from f 1 Ó g1 by taking pullbacks, as shown in the diagram on the right. Since full and
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faithful V -functors are stable under pullback, all the arrows denoted � are fully
faithful functors. The composition of the isomorphism f Ó g – pf 1 ¨uq Ó pg1 ¨wq with
the diagonal pf 1 ¨uq Ó pg1 ¨wq ÝÑ f 1 Ó g1 is precisely the V -functor f Ó g ÝÑ f 1 Ó g1

of the statement, which is, therefore, full and faithful. �

Let Φ be a small class of colimits, and TΦ the 2-monad on V -Cat whose algebras
are small V -categories with chosen colimits of the class Φ.

Theorem 13.5. The 2-monads TΦ are simple – in the sense of Section 12 – there-
fore inducing a lax orthogonal awfs pLΦ,RΦq on V -Cat.

Proof. Let the 2-monad T in Corollary 12.10 be TΦ, and assume that we are given
V -functors f and g as in the statement of Corollary 12.10. The V -category Tf Ó Tg
is Φ-cocomplete, as the forgetful 2-functor from T-algebras creates comma objects.
The comparison morphism of the corollary is the left Kan extension of the V -functor
h : f Ó g Ñ Tf Ó Tg induced by iA and iB . Since h is full and faithful, then k is
full and faithful on homs of the form T pf Ó gqpu, ifÓgpvqq by Lemma 13.2, so we
have indeed the bijection of 2-cells required in Corollary 12.10. �

13.c. Completion under initial objects. Suppose that the base of enrichment
is the category Set of sets, so we work with locally small categories, and that the
class of colimits has only one member, Φ “ tH Ñ Setu. Then, Φ-colimits are initial
objects, and the 2-monad TΦ can be described as having endo-2-functor TΦ that
sends a category X to the category constructed by adding to X an object 0 and
adding one arrow 0 Ñ x for all x P X. Then the morphism Rf : Kf Ñ B, the right
part of the factorisation of f , can be described as the split opfibration with fibre
over b P B equal to TΦpf{bq and with push-forward functor TΦpf{bq Ñ TΦpf{b

1q

induced by a morphism β : b Ñ b1 equal to TΦpβ˚q where β˚ : f{b Ñ f{b1 is the
push-forward functor of the free split opfibration f{B.

Kf

Rf
��

//

�


TΦA

TΦf
��

B
iB
// TΦB

An R-algebra is a split opfibration AÑ B whose fibres Ab, for b P B, are categories
equipped with a chosen initial object, and whose push-forward functors β˚ : Ab Ñ
Ab1 , for β : bÑ b1 in B, strictly preserve the initial objects.

13.d. Split opfibrations with fibrewise chosen Φ-colimits. Given a small
class of Set-colimits Φ, denote by OpFibs-Φ-Colims the 2-category with objects
split opfibrations in Cat whose fibres are small categories with chosen colimits of
the class Φ and whose push-forward functors strictly preserve these. Morphisms
from p : E Ñ B to p1 : E1 Ñ B1 are strict morphisms ph, kq : p Ñ p1 of split fibra-
tions – indicated by the first s in the notation – such that the restriction of h to
fibres strictly preserves the chosen Φ-colimits – indicated by the second s in the
notation. The 2-cells are those of Cat2.

Theorem 13.6. Let Φ be a class of Set-colimits and pL,Rq be the lax orthogonal
awfs induced by the completion under Φ-colimits. There is a 2-functor over Cat2

R-Algs ÝÑ OpFibs-Φ-Colims.

Proof. We have shown in Theorem 13.5 that the 2-monad TΦ, whose algebras are
categories with chosen Φ-colimits, is simple; this means that the free algebra ad-
junction FΦ % UΦ : TΦ-Alg Ñ Cat2 is simple. The 2-monad R is, by construction,
the codomain-preserving coreflection of UΦR

1FΦ, where R1 is the split opfibration
2-monad on TΦ-Algs. We are, thus, in a position of applying Theorem 10.15 to
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deduce the existence of a 2-functor from R-Algs to the 2-category OpFibs of split
opfibrations; this means that each R-algebra is a split opfibration and each mor-
phism of R-algebras is a morphism of split opfibrations. It remains to prove that:

(a) the fibres of any R-algebra are equipped with chosen Φ-colimits;
(b) the push-forward functors between fibres strictly preserve them;
(c) any morphism of R-algebras strictly preserves them.

The fibre of g : A Ñ B over b P B is the pullback of g along b : 1 Ñ B; thus, this
fibre is an R-algebra Ab Ñ 1. We know from Corollary 11.10 that the restriction
of R to Cat{1 – Cat is isomorphic to TΦ, so the fibres of R-algebras are TΦ-
algebras, and the restriction of any morphism of R-algebras to fibres is a morphism
of TΦ-algebras. This verifies the literals (a) and (c).

It remains to prove (b), ie that for any morphism β : b Ñ b1 in B the push-
forward functor Ab Ñ Ab1 preserves the chosen colimits. The strategy we follow to
prove this claim is an usual one: it suffices to prove it for free R-algebras and use
that any R-algebra is a canonical coequaliser of free ones.

There is a split coequaliser in Cat{B

KRg

πg
//

Kpp,1q
//

oo
LpRgq

Kg
p
//

oo
Lg

A

– where p denotes the R-algebra structure of g – which then lifts to a (non-split)
coequaliser in the 2-category of split opfibrations. Taking the fibre over b P B
of this split coequaliser, we obtain a coequaliser in T-Algs that splits in Cat. In
particular, for any functor d into Ab

colimpφ, dq “ pbpcolimpφ, pLgqb ¨ dqq (13.7)

because p strictly preserves the chosen colimits. Taking fibres over the domain b
and the codomain b1 of the morphism β in B, we have a commutative square in
Cat where all the categories have chosen Φ-colimits and the horizontal functors
strictly preserve them.

pKgqb
pb //

β˚ ��

Ab
β˚
��

pKgqb1
pb1 // Ab

(13.8)

Therefore, if the push-forward functors of Rg preserve the chosen Φ-colimits, then
so do the ones of g, as shown by the following string of equalities. By commutativity
of the square, β˚ ¨ pb strictly preserves Φ-colimits, and

β˚pcolimpφ, dqq “ β˚pbpcolimpφ, pLgqb ¨ dqq “
“ colimpφ, β˚ ¨ pb ¨ pLgqb ¨ dq “ colimpφ, β˚ ¨ dq. (13.9)

The first equality holds by (13.7), the second equality holds because the dia-
gram (13.8) shows that β˚ ¨ pb strictly preserves Φ-colimits, and the last equality is
a consequence of p ¨ Lg “ 1.

We now prove that the push-forward functors of a free R-algebra Rg strictly
preserve chosen Φ-colimits. By the description of Kg as a comma object (12.6),
its objects are triples px, b, ξq where x P TA, b P B and ξ : pTgqpxq Ñ iBpbq is
a morphism in TB. If we denote by zb : pKgqb Ñ Kg the inclusion of the fibre
over b P B and qg : Kg Ñ TA the projection of the comma object, we showed in
Lemma 11.11 that qg ¨zb : pKgqb Ñ TA strictly preserves Φ-colimits. It is clear that
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the triangle on the left hand side commutes, since β˚px, b, ξq “ px, b1, iBpβq ¨ ξq.

pKgqb
β˚ ��

qg¨zb
// TA

pKgqb1
qg ¨zg1

77 Tg{iBpbq
prb //

β˚ ��

TA

Tg{iBpb
1q

prb1

77

But pKgqb is the slice category Tg{iBpbq, and qg ¨ zb is the projection into TA, so
we have a commutative triangle as in the right hand side. We can now apply the
Lemma 13.10, that follows the present proof, to deduce that prb “ β˚ ¨prb1 preserves
and creates chosen Φ-colimits, so β˚ strictly preserves chosen Φ-colimits.

This concludes the proof, since the 2-cells are automatically taken care of because
the two 2-categories of the statement are locally full and faithful over Cat2. �

Lemma 13.10. (1) Let C be a category with Φ-colimits, H : C Ñ E a Φ-
cocontinuous functor, e an object of E and Q : H{eÑ C the projection. For
any functor D : J Ñ H{e and any colimiting cylinder η : φ ñ CpQD´, cq
with φ P Φ, there exists a unique ε : Hc Ñ e in E and a unique colimiting
cylinder ν : φñ H{epD´, pc, εqq such that Qpνq “ η.

(2) Moreover, if C is equipped with chosen Φ-colimits, then there exists a unique
choice of Φ-colimits on H{e that is strictly preserved by Q.

(3) Suppose S : A Ñ H{e is a functor, where A has chosen Φ-colimits. Then
S strictly preserves Φ-colimits if and only if QS : AÑ C does so.

Proof. Since H preserves colimits, the top horizontal natural transformation in the
diagram is a colimiting cylinder. The functorD : J Ñ H{e can be given by a natural
transformation δ from the constant functor on the terminal set to DpHQD´, eq. By
the universal property of the colimit Hc, there exists a unique morphism ε : HcÑ e
that makes the diagram commute.

φ
η +3

! #+

CpQD´, cq
H +3 EpHQD´, Hcq

Ep1,εq
��

∆1 δ +3 EpHQD´, eq

The functor H{epD´, pc, εqq is the equaliser of the natural transformations

CpQD´, cq
H
ùñ EpHQD´, Hcq

Ep1,εq
ùùùùñ EpHQD´, eq (13.11)

CpQD´, cq ùñ ∆1 δ
ùñ EpHQD´, eq (13.12)

from where it follows that η factors uniquely through a certain natural transfor-
mation ν : φ ñ H{epD´, pc, εqq. This transformation can easily be shown to have
the universal property of a colimiting cylinder, a verification that we leave to the
reader. In particular, pc, εq is a colimit of D weighted by φ.

To prove the second part of the statement, if η exhibits c as colimpφ,DQq, then
we can choose the colimit colimpφ,Dq as pc, εq, and this is the unique possible choice
that makes Q preserve this colimit in a strict way, by the argument of the previous
paragraph. The last part of the statement easily follows from the second part. �

In many instances, the 2-functor of Theorem 13.6 is an isomorphism. For exam-
ple, it is not hard to verify this when Φ is the class for initial objects tH Ñ Setu;
see Section 13.c.

Proposition 13.13. The 2-functor of Theorem 13.6 is not always an isomorphism.

Proof. To save space, let us write F instead of OpFibs-Φ-Colims. One can with-
out much problem show that the forgetful 2-functor F Ñ Cat2 is monadic, but
instead we will consider the free object of F over a functor g : A Ñ 1 ` 1; the
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codomain is the discrete category with two objects that we denote by ˚ and ‚.
Another way of describing g is as a pair of categories A˚ over t˚u and A‚ over
t‚u. It is not hard to see that the free object of F on g is g̃ : Ã Ñ 1 ` 1, with
Ã˚ “ TΦpA˚q and Ã‚ “ TΦpA‚q; this is due to the fact that a split opfibration over
a discrete category amounts to just a functor. The details of this point are left to
the reader. The universal property of g̃ implies the existence of a unique morphism
ph, 1q : g̃ Ñ Rg such that

A
Lg

//

g
��

Kg

Rg
��

1` 1 1` 1
“

A˚ `A‚
iA˚`iA‚

//

��

TΦpA˚q ` TΦpA‚q
h //

��

Kg

Rg
��

1` 1 1` 1 1` 1

If the 2-functor of Theorem 13.6 were an isomorphism, the morphism h would be
an isomorphism, as both g̃ and Rg would be the free object on g. To complete the
proof we must give an example where h is not an isomorphism.

Consider the class of colimits with one sole element Φ “ t∆H : 1 Ñ Setu consist-
ing of the functor that picks out the empty set. The colimit of a functor v : 1 Ñ Set
that picks out a set v, weighted by ∆H – known as the tensor product of v by H –
is colimp∆H, vq “ H. The completion of a small category A under these colimits
consists of the full subcategory ΦA Ď rAop,Sets defined by the representables to-
gether with the initial object. A choice of Φ-colimits on a category A amounts to
an assignment of an initial object 0paq P A for each object a P A.

We can explicitly describe the 2-monad T associated to Φ. If A is a category, let
TΦpAq have objects of the form pa, nq P obAˆ N, and have morphisms defined by
the following two clauses: there is a full and faithful functor iA : AÑ TΦpAq given
on objects by a ÞÑ pa, 0q; and, each object pa, nq for n ą 0 is an initial object. We
equip TΦpAq with the chosen Φ-colimits given by 0pa, nq “ pa, n` 1q.

The fibre pKgq˚ of Rg over ˚ is TΦpAq Ó i1`1p˚q. In particular some of its objects
are of the form ppa, nq, ξq where a P obA, n ą 0 and ξ : TΦpgqpa, nq “ pgpaq, nq Ñ
i11p˚q is a morphism in TΦp1 ` 1q. The domain of ξ is an initial object, so ξ
carries no information at all. On the other hand, the restriction of the morphism
h to fibres h˚ : TΦpA˚q Ñ pKgq˚ does not reach objects of form ppa, nq, ξq P pKgq˚
unless a P A˚. Therefore, h˚, and thus h, is not surjective on objects, completing
the proof. �

14. Further work and examples

There are a number of examples and theoretical questions that have been left
out of the present article and will benefit from a fuller explanation in forthcoming
companion articles. Examples pertaining to the world of topological spaces will be
treated in Lax orthogonal factorisations in topology. As a way of illustration, we
mention the lax orthogonal awfs arising from the filter monad on the category of
T0 topological spaces; this awfs has an underlying wfs that was mentioned in our
Introduction and studied in [?], where information about the filter monad can be
found. This factorisation f “ Rf ¨ Lf has the property that Lf is a topological
embedding and Rf is “fibrewise a continuous lattice” in the appropriate sense.

The main theoretical aspect of lax orthogonal awfss left out from the present
article is the cofibrant generation thereof. This will have a full treatment in the
forthcoming paper Cofibrantly kz-generated algebraic weak factorisation systems.
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