LAX ORTHOGONAL FACTORISATION SYSTEMS

MARIA MANUEL CLEMENTINO AND IGNACIO LOPEZ FRANCO

ABSTRACT. This paper introduces laxz orthogonal algebraic weak factorisation
systems on 2-categories and describes a method of constructing them. This
method rests in the notion of simple 2-monad, that is a generalisation of
the simple reflections studied by Cassidy, Hébert and Kelly. Each simple 2-
monad on a finitely complete 2-category gives rise to a lax orthogonal algebraic
weak factorisation system, and an example of a simple 2-monad is given by
completion under a class of colimits. The notions of Kz lifting operation, lax
natural lifting operation and lax orthogonality between morphisms are studied.

1. INTRODUCTION

This paper contains four main contributions: the introduction of laxz orthogonal
algebraic weak factorisation systems (AWFSs); the introduction of the concept of
KZ diagonal fillers and the study of their relationship to lax orthogonal AWFSs; the
introduction of simple 2-monads, and the proof that each such induces an AWFSs;
the proof that 2-monads given by completion under a class of colimits are simple
and the study of the induced factorisations.

Weak factorisation systems form the basic ingredient of Quillen model struc-
tures [?], and, as the name indicates, are a weakening of the ubiquitous orthogonal
factorisation systems. A weak factorisation system (WFS) on a category consists
of two classes of morphisms £ and R satisfying two properties: every morphism
can be written as a composition of a morphism in £ followed by one in R, and for
any commutative square, with vertical morphisms in £ and R as depicted in ,
there exists a diagonal filler. One says that r has the right lifting property with
respect to £ and that ¢ has the left lifting property with respect to r.

La[l 3 : “jlreR (1.1)

When 7 is the unique map to the terminal object, one usually says that C' is injective
with respect to £.

In order to unify the study of injectivity with respect to different classes of con-
tinuous maps between Ty topological spaces, Escard6 [?] employed lax idempotent
2-monads, also known as KZ 2-monads, on poset-enriched categories — these are the
same as 2-categories whose hom-categories are posets. For example, if T is such a
lax idempotent 2-monad, the T-algebras can be described as the objects A that are
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injective to all the morphisms ¢ such that T/ is a coretract left adjoint — also known
as a T-embedding. A central point is that not only each morphism dom(¢) — A
has an extension along ¢, but moreover it has a least extension: one that is smallest

amongst all extensions.
— A
w

The assignment that sends a morphism to its least extension can be described in
terms of the 2-monad T, so one no longer has the property of the existence of at
least one extension, but the algebraic structure that constructs the extension. If
one wants to describe WFss in this context, instead of just injectivity, one is led to
consider algebraic weak factorisation systems (AWFSs), to which we shall return in
this introduction.

Injective continuous maps. One of the basic examples that fit in the framework
of [?] is that of the filter monad on the category of T spaces, that assigns to each
space its space of filters of open sets. It was shown in [?] that the algebras for this
monad are the topological spaces that arise as continuous lattices with the Scott
topology. These spaces were known to be precisely those injective with respect
to subspace embeddings [?]. In [?] this and other related results are generalised,
characterising those continuous maps of Tj spaces that have the right lifting prop-
erty with respect to different classes of embeddings, and exhibiting for each a WFS
in the category of Ty spaces. A morphism f: X — Y is factorised through the
subspace Kf € TX x Y of those (¢,y) such that Tf(p) < {U € O(Y) : y € U}.
The space T'X can be the topological space of filters of open sets of X or a vari-
ant of it, and ix: X — TX the inclusion of X as the set of principal filters,
ix(x) ={U € O(X) : x € U}. The space Kf fits in a diagram as displayed. The
maps ¢y and Rf send (p,y) € Kf to p € TX and y € Y respectively. The inequality
symbol inside the square denotes the fact that T'f - qf <iy - Rf.

~ X
L
f\t

Kf—au—-TX

Rfl > le

Y ——TY
iy

Central to the arguments in [?] is the fact that the monad f — Rf is lax idempo-
tent or Kz. This property is intimately linked with the fact that Lf is always an
embedding of the appropriate variant — eg, when T'X is the space of all filters of
open sets, then Lf is a topological embedding.

The construction of the factorisation of maps just described resembles the clas-
sical case of simple reflections [?]. One of the aims of the present paper is to show
that both constructions are particular instances of a more general one.

Algebraic weak factorisation systems. Algebraic weak factorisation systems
(awFss) were introduced in [?] with the name natural weak factorisation systems,
with a distributive axiom later added in [?]. The theory of AWFSs has been devel-
oped in [?] and [?], especially with respect to their relationship to double categories
and to cofibrant generation. The present paper takes the theory in a new direction,
that of AWFSs on 2-categories whose lifting operations, or diagonal fillers, have a
universal property with respect to 2-cells.
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Many of the factorisation systems that occur in practice provide a construction
for the factorisation of an arbitrary morphism. Such a structure on a category
C is called a functorial factorisation and can be described in several equivalent
ways: as a functor C2 — C3 that is compatible with domain and codomain; as a
codomain-preserving — ie with identity codomain component — pointed endofunctor
A: 1 = R of C?; as a domain-preserving copointed endofunctor ®: L = 1 of C2.
Then, a morphism f factors as f = Rf - Lf. Any such functorial factorisation
has an underlying Wrs (£, R) where £ consists of those morphisms that admit an
(L, ®)-coalgebra structure and R of those that admit an (R, A)-algebra structure.
One usually wants, however, to guarantee that Lf € £ and Rf € R, for which
one requires extra data in the form of a comultiplication that makes (L, ®) into a
comonad L and a multiplication that makes (R, A) into a monad R. The pair (L, R)
together with an extra distributivity condition is called an AWFS.

The underlying wrs of an AwFs (L,R) is an orthogonal factorisation system
precisely when L and R are idempotent [?]; for this, it is enough if either is idem-
potent [?].

All the above constructions can be performed on 2-categories instead of cat-
egories. Two morphisms £: A — B and r: C — D in a 2-category £ are lax
orthogonal when the comparison morphism

%(B,C) —>’%/(Aa0) X # (A,D) ‘%/(B7D)

has a left adjoint coretract. — In the the usual definitions of weak orthogonality
and orthogonality this morphism must be an epimorphism and, respectively, an
isomorphism. — This left adjoint provides diagonal fillers that moreover satisfy a
universal property with respect to 2-cells. A choice of diagonal fillers like these that
is in addition natural with respect to £ and r we call a Kz lifting operation.

When the 2-category % is locally a preorder, the lax orthogonality of ¢ and
r reduces to the statement, encountered before in this introduction, that for each
commutative square there exists a least diagonal filler.

The notion of AWFS on a 2-category we choose is the straightforward generali-
sation of the usual notion of AWFS on a category. If J# is a 2-category, an AWFS
on J consists of a 2-comonad L and a 2-monad R on 2 that form an AWFS on
the underlying category of #2, and that satisfy cod L = dom R as 2-functors; the
definition can be found in Section F.c

An interesting question is what is the property on an AWFS that corresponds
to the existence of Kz lifting operations. The answer is that both the 2-comonad
and the 2-monad of the AWFS must be lax idempotent — proved in Theorem [9.10
Equivalently, either the 2-comonad or the 2-monad must be lax idempotent — proved
in Section [5} This last statement mirrors the case of AWFss whose underlying WFs
is orthogonal, for which, as mentioned earlier, it is enough that either the comonad
or the monad be idempotent.

A basic example of a lax idempotent AWFS is the one that factors a functor
f: A — B as a left adjoint coretract A — f | B followed by the split opfibration
f 1 B — B. We refer to this AWFS as the coreflection—opfibration AWFsS.

Simple reflections. The paper [?] studies the relationship between orthogonal
factorisation systems, abbreviated OFss, and reflections. Every ors (£, M) on a
category C induces a reflection on C as long as C has a terminal object 1; the
reflective subcategory is M/1, the full subcategory of those objects X such that
X — 1 belongs to M. Under certain hypotheses, a reflection, or an idempotent
monad T on C, induces an OFS. One of the possible hypotheses is that T be simple,
which means that for any morphism f the dashed morphism into the pullback
depicted below is inverted by T. The factorisation of f is then given by f = Rf-Lf,
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and the left class of morphisms consists of those which are inverted by T.

There is an alternative way of describing simple reflections which seems to be
absent from the literature. Suppose that T is an idempotent monad on C and denote
by T-Iso the category of morphisms in C that are inverted by 7T'. This category fits
in a pullback square

T-Iso —— Iso

|

T2
c:——¢?
where both vertical functors are full inclusions.

Proposition 1.2. The reflection T is simple if and only if U: T-Iso — C? is a
coreflective subcategory.

One way of expressing the construction of the OFs from T is the following. On
any category A we have the OFs (Iso, Mor), with left class the isomorphisms and
right class all morphisms. Isomorphisms are the coalgebras for the idempotent
comonad L’ on A? given by L'(f) = lgom(s)- If F 4 U: A — C is the adjunction
induced by the reflection T, the copointed endofunctor (L, ®) defined by pullback
along the unit of the adjunction satisfies the property that the rectangle on the
right hand side below is a pullback. In other words, (L, ®)-coalgebras are those
morphisms that are inverted by F; equivalently (L, ®)-Coalg =~ T-Iso.

L——U?L'F? (L, ®)-Coalg —— (L', ®')-Coalg
@l lqy l p.b. l
1 —— U2F? C? —— A2

Any morphism that is inverted by 7" is orthogonal to T'f and therefore to its pullback
Rf; in particular, Lf satisfies this if the reflection is simple. Therefore, we obtain
an OFS when T is simple, with left class those morphisms that are inverted by 7.

Simple 2-adjunctions and AwWFss. The above analysis can be adapted to the case
where categories are substituted by 2-categories and OFss by lax orthogonal AWFSs.
Reflections are substituted by lax idempotent 2-monads, idempotent (co)monads
by lax idempotent 2-(co)monads, the simple reflections by appropriately defined
simple 2-adjunctions or simple 2-monads. The reflective subcategory Iso of the
arrow category is substituted by the lax idempotent 2-comonad whose algebras
are coretract left adjoints, while Mor is substituted by the free split opfibration
2-monad. A version of the main theorem of Section [T} appropriately modified for
this introduction, states:

Theorem. If the 2-adjunction FF o U: X — o is simple, and JH , o/ are 2-
categories with enough finite limits, then there is a lax orthogonal AWFS (L,R) on

J whose L-coalgebras are morphisms f of & with a coretract adjunction F'f - r
in of.

The notion of simple 2-adjunction is central to the theorem, and occupies most
of Sections [I(] and [l
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A simple 2-monad is one whose associated free algebra 2-adjunction is simple.
When all the 2-categories involved are in fact categories, lax idempotent 2-monads
reduce to reflections and our concept of simple 2-monad to the one of simple re-
flection. Therefore, we know that there are lax idempotent 2-monads that are not
simple, as [?] gives examples of reflections that are not simple.

Examples and further work. The main example treated in the present article
arises from categories with colimits. Given a class of colimits, there exists a 2-
monad on Cat whose algebras are categories with chosen colimits of that class.
We show that these 2-monads are simple, giving rise to lax orthogonal AWFSs on
Cat. Even though the left morphisms of this factorisation system are described in
general in the theorem above, the right class of morphisms is more difficult to pin
down. We carefully investigate the right class of morphisms and show that they do
not coincide with the obvious candidates: the opfibrations whose fibers have chosen
colimits of the given class and whose push-forward functors between fibres preserve
them.

There are a number of examples of lax orthogonal AWFSs on locally preordered
2-categories, including that on the (2-)category of Ty topological spaces mentioned
earlier in this introduction, that we have had to leave out of this article for reasons
of space. These will appear in a companion paper that will concentrate in the
case of locally ordered 2-categories, which is still rich enough to encompass a large
number of examples and relates to a rich literature on the subject of injectivity in
order-enriched categories.

Description of sections. Sections [2[ and [3| can be regarded as a fairly self-
contained recount of the basic definitions and properties of AWFSs.

We put together at the beginning of Section [4 some facts about lax idempotent
2-(co)monads, one of our main tools, before introducing lax orthogonal AWFS, our
main subject of study.

Section [5] proves that in order for an AWFS to be lax orthogonal it suffices that
either the 2-monad or the 2-comonad be lax idempotent.

Sections [6] and [7] recount the notions of lifting operations and diagonal fillers,
with their relationship to AWFss. Our approach uses modules or profunctors and
appears to be novel. In a 2-category one can consider the usual lifting operations,
but also lax natural ones. We define lax natural and Kz diagonal fillers in Section 3]
and prove that lax orthogonal AWFSs give rise to KZ diagonal fillers. Lax orthogonal
functorial factorisations are briefly considered.

In Section 9] we characterise lax orthogonal AWFSs as those AWFS (L, R) for which
R-algebras are algebraically Kz injective to all L-coalgebras, or equivalently, for
which natural Kz diagonal fillers exist for squares from L-coalgebras to R-algebras.

Section [10] introduces the concept of simple adjunction of 2-functors. One of our
main results, the construction of a lax idempotent AWFS from a simple adjunction,
can be found in Section [[1l

Section [12] studies the case when the simple 2-adjunction is the free algebra
adjunction induced by a 2-monad, that we call a simple 2-monad, as it generalises
the notion of simple reflection [?]. Conditions that guarantee that a lax idempotent
2-monad is simple are provided.

Section [I3] studies the example of — enriched — categories and completion under
colimits. We show that for a class of colimits ®, the 2-monad whose algebras
are categories with chosen colimits of that class is simple, whence inducing a lax
orthogonal AwWFs (L, R). We prove in Section that R-algebras are always split
opfibrations with fibrewise chosen ®-colimits and that the converse does not always
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hold. The article concludes with a short section that comments on further work
and examples.

2. BACKGROUND ON ALGEBRAIC WEAK FACTORISATION SYSTEMS

In the last few years there has been much interest in algebraic weak factorisation
systems (AWFSs) mainly due to their connection to Quillen’s model categories and
the small object argument, but also due to the homotopical approach to type theory
(homotopy type theory). The basic theory of AWFSs appeared in [?] with the name
of natural weak factorisation system, and was later expanded in [?], especially with
respect to the construction of cofibrantly generated AWFs. Further study appeared
recently in [?]. From Section {4| onwards, the present paper expands the theory in
another direction, that of AWFS in 2-categories whose lifting operations, or diagonal
fillers, satisfy a universal property with respect to 2-cells. Before all that we need
to collect present basics of the theory of AWFs, mostly following [?, ?].

2.a. The definition of AWFS. We denote by 2 the category with two objects
0 and 1 and only one non-identity arrow 0 — 1, and by 3 the category with
three objects and three non-identity morphisms 0 — 1 — 2. Given a category C
consider the functors dy, d, dz: C® — C? that send a pair of composable morphisms
(ft A—> B,g: B— C)inC to: do(f,g9) = f, di(f,9) =g f, d2(f,9) = g

When displaying diagrams, we shall denote an object f € C2 by a vertical arrow
and a morphism (h,k): f — g in C2 by a commutative square, as shown.

N

Definition 2.1. A functorial factorisation in C is a section of the composition
functor dy: C3 — C2. This means that for each morphism (h,k): f — g in C? we
have a factorisation, functorial in (h, k), as depicted.

. j{l# C
A——C Lf Lg
! o —  KpEOH %g (2.2)
B——D Ry | 7o
B—f D

A functorial factorisation as above induces a pointed endofunctor A: 1 = R and
a copointed endofunctor ®: L = 1 on C2. The endofunctor L is given by f + Lf,
and the component of the copoint ® at the object f is depicted on the left hand
side of . Similarly, f — Rf, and the component of the point A at the object
[ is depicted on the right hand side of (2.a). We note that the domain component
of ® and the codomain component of A are identities, which implies domL = dom
and codR = cod, as functors C?2 — C. We say that (L, ®) is domain preserving and
that (R, A) is codomain preserving.

A=——4 AL gy
Lfl if fi lRf
Kf % B B——B

Conversely, either a domain preserving copointed endofunctor (L, ®) or a codomain
preserving pointed endofunctor (R,A) on C? define a functorial factorisation, in
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the first case by setting Rf = cod(®y), and in the second case by setting Lf =
dom(Ay).

Definition 2.3. An algebraic weak factorisation system [?, ?] is a functorial fac-
torisation where the copointed endofunctor ®: L = 1 is equipped with a comul-
tiplication ¥: I = L2, making it into a comonad L, and the pointed endofunctor
A: 1 = R is equipped with a multiplication II: R? = R, making it into a monad
R, plus a distributivity condition. The components of this comultiplication and
multiplication will be denoted as follows.

A=———=A KRf S Kf
Zf = Lfl \LL f Hf = szl lRf
KfHKLf B———8B

Furthermore, the monad and comonad must be related by the distributivity con-
dition introduced in [?] that asserts that the natural transformation A: LR = RL

with components
Af = LRfl\JRLf (2.4)
. *> .

is a distributive law, ie that the diagrams shown below commute. In fact, the
two triangles automatically commute as a consequence of the comonad and monad
axioms for L and R.

LR——2 LRI

L
LA AL
o / LR@RL
A

AR RA

LR RL  LR? RLR R2L
ZR\L lRZ Ll'[l ll‘[L
2R L2, LRI 2L, RL? A RL

One of the ideas behind this definition is that the L-coalgebras have the left
lifting property with respect to the R-algebras, as explained below. An L-coalgebra
structure on a morphism f: A — B, respectively, an R-algebra structure on f, is
given by morphisms in C2 of the form

A—1 Kf s
fl lLf and Rfl J«f
B——Kf B——28

The domain and codomain components depicted by equality symbols are identity
morphisms as a consequence of the counit axiom of the comonad L, respectively
unit axiom of the monad R. These axioms also imply Rf-s =1g and p- Lf = 14.

Continuing, given a morphism (%, k) in C? as in (2.2), we get a diagonal filler as
depicted.

- h C C
\ Lgl /
Kf—=0Y kg (2.5)
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Remark 2.6. Every AWFs (L, R) has an underlying Wrs (£, R), where £ consists of
those morphisms of C that admit a coalgebra structure for the copointed endofunc-
tor (L, ®) and R consists of those morphisms that admit an algebra structure for
the pointed endofunctor (R, A). To verify this, one can observe that both £ and
R are closed under retracts, and that each morphism f factors as f = Rf - Lf,
where Lf admits the (L, ®)-coalgebra structure y: Lf — L?f and Rf admits the
(R, A)-algebra structure I¢: R?f — Rf.

2.b. Orthogonal factorisations as AWFSs. We continue with some more back-
ground, in this case, the characterisation of orthogonal factorisation systems in
terms of the associated AwFs. Clearly, any orthogonal factorisation system (€, M)
in a category C induces an AWFs. This is a consequence of the uniqueness of the
factorisations. One can easily characterise the AWFS obtained in this way.

Proposition 2.7 ([?, Thm 3.2]). The following are equivalent for an AWFs (L,R):

e The comonad L and the monad R are idempotent.
o The underlying WFS is an OFS.

Furthermore, if R is idempotent, then so is L, a proof of which can be found
in [?].

2.c. Right morphisms form a fibration. This section collects some of the ma-
terial of [?, §3.4] that will be crucial later on.

A functor P: A — C2 is a discrete pullback-fibration if it is just like a discrete
fibration except that only pullback squares have cartesian liftings. More explicitly,
for each a € A and each pullback square (h,k): f — P(a) — f is the pullback of the
morphism P(a) along k — there exists a unique morphism «: a — a in 4 such that
Pa = (h, k).

Lemma 2.8. Suppose the category C has pullbacks. For any codomain preserving
monad R on C2, the codomain functor exhibits R-Alg as a discrete pullback-fibration
over C.

To give an idea of the proof, suppose that g: C' — D has an R-algebra structure
pg: Kg — C, and that

A"

e s
B——D

is a pullback square. Then, the R-algebra structure on f is given by the morphism
ps: Kf — A induced by the universal property of pullbacks and the equality
displayed below. This is the unique algebra structure that makes (h, k) a morphism
of algebras.

pr h K (h,k) Py

Kf A C Kf Kg C
rs| s lo = n R ls
B B—F 4D B—* p—_p

2.d. Miscellaneous remarks. Before moving to the next section and the subject
of double categories, we collect three observations that will be of use later on. We
use the adjunctions cod — id - dom: C2 — C, the first of which has identity counit
and the second has identity unit.

Remark 2.9. Suppose given a functorial factorisation, with associated copointed
endofunctor (L, ®) and pointed endofunctor (R, A). The identity natural transfor-
mation 1¢ = dom-L - id corresponds under id 4 dom to a natural transformation
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(1, L) with f-component equal to the morphism depicted on the right hand side
below.

id. dom dom f =——=dom f
e_yume 1%
L

Remark 2.10. Given a functorial factorisation in C with associated copointed end-
ofunctor (L,®) and pointed endofunctor (R,A), denote by V: (R, A)-Alg — C2
the corresponding forgetful functor from the category of algebras for the pointed
endofunctor (R,A). Define a natural transformation as the composition of two
transformations, as displayed.

(R, A)-Alg —— 2
vl P }d.dom (1,p): L-V = id- dom-R-V — id - dom -V
2 ———?

The first arrow is the mate of the identity natural transformation cod-L = dom -R
under the adjunction cod — id. The second arrow is the application of the (R, A)-
algebra structure of R -V = V. Explicitly, the component of (1,p) on an (R, A)-
algebra (f,py) is

dom f == dom f

o |

Remark 2.11. The pasting along L of the transformation (1, L) of Remark with
the transformation (1,p) of Remark is the identity. This is a consequence of
the unit axiom for (R, A)-algebras: if (f,py) is an algebra, then py - Lf = 1.

3. DOUBLE CATEGORIES OF ALGEBRAS AND COALGEBRAS

This section collects remarks on double categories and AWFSs, due to R Garner.
The definition of AWFss used in [?] differs of the original one [?] in the requirement
of an extra distributivity condition: the transformation A: LR = RL displayed
in should be a mixed distributive law. This condition is what makes possible
the definition of a composition of R-algebras and of L-coalgebras, as we proceed to
explain.

The standard category object in Cat®® displayed on the left below induces a
category object in Cat, that is, a double category, displayed in the centre, that we
may call the double category of squares and denote by Sq(C). Objects of Sq(C) are
those of C, vertical and horizontal morphisms are morphisms of C, while 2-cells in
Sq(C) are commutative squares in C.

—

R-Alg+——C
«— cod E—
3+—2—1 Cg Cz id c VJ/ cod (31)
S dom T)
C* gom— €
Cdom

The central result of this section is the following.

Proposition 3.2. If R is a codomain-preserving monad on C, there is a bijection
between AWFSs with monad R and extensions of the diagram on the right hand side
of (3.1) to a double functor, by which we mean extensions of the reflexive graph
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R-Alg =3 C to a category object that makes (3.1) into a functor internal to Cat — a
double functor into Sq(C).

Below we give an indication of the proof of this proposition; a more detailed
account can be found in [?, §3].

3.a. From AWFSs to double categories. If (L,R) is an AWFS on C, R-algebras
can be composed, in the sense that if f: A - B and g: B — C are R-algebras,
then an R-algebra structure for g - f can be constructed from the Awrs. Explicitly,
if (pf,1B): Rf — f and (pg,1c): Rg — g are the R-algebra structures of f and
g, with respective domain components ps: Kf — A and p,: Kg — B, then the
R-algebra structure (pg.f,1¢): R(g - f) — ¢ - f is constructed in the following
manner. The reader will recall from Section |2} especially from diagram , that
any morphism f — g from an L-coalgebra to an R-algebra has a canonical diagonal
filler. Counsider the canonical diagonal filler a of the square (f, R(g- f)): L(g - f) —
g, and then the canonical diagonal filler p,.¢ of the square (14,a): L(g- f) — f,
as depicted in the diagram. It can be shown without much problem that this is an
R-algebra structure on g - f.

A A
f

L(g-f) b B
g

K(g-f) e C

We write (g,pgy) ® (f,ps) for the R-algebra (g- f,py. ;) described. This operation on
pairs of composable R-algebras can be shown to be associative and has identities
(14, R14), so there is a double category R-Alg. The forgetful functor from R-
algebras forms part of a double functor, depicted on the right hand of .

3.b. From double categories to AWFSs. Suppose that R is a codomain-pre-
serving monad on C2, with associated codomain preserving copointed endofunctor
(L,®) on C2. Each double category structure on R-Alg =3 C that is compatible
with the composition of morphisms in C induces a comultiplication ¥: L = L?
that makes L = (L, ®,Y) into a comonad and (L,R) an AWFS. In the following we
explain how to construct the comultiplication from the double category structure.

If (f,ps) and (g,py) are R-algebras with cod(f) = dom(g), the double category
structure provides for a vertical composition (g, p,) ® (f,pf) = (g f,pg ® py) with
underlying morphism ¢ - f. The identities for the vertical composition are the R-
algebras (1, R1). Morphisms of R-algebras can be vertically composed too: given
such morphisms (h, k): f — gand (k,£): f' — ¢', then (h, ¢) is a morphism f'e f —
g'ey.

The comultiplication ¥y = (1,04): Lf — L?f can be constructed from the
double category structure in the following manner. Consider the morphism of R-
algebras (of,1): Rf — RfeRLf that corresponds under free R-algebra adjunction
to the morphism (L2f,1): f — Rf - RLf in C2.

Kf—13 KLf
lRLf
Rf Kf of - Lf=L*f
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The detail of the proof that the components o yield a comultiplication for L can
be found in [?, Prop. 4].

4. LAX ORTHOGONAL AWF'Ss

This section introduces the fundamental definition of this work, lax orthogonal
AWFSs, and describes the most basic 2-categorical example. Before all that, we
shall recall some facts about lax idempotent 2-monads.

4.a. 2-monads. We shall assume throughout the paper that the reader is familiar
with the basic notions of 2-category, 2-functor, 2-natural transformation and mod-
ification. Familiarity with 2-(co)monads shall also be assumed, but we can take
this opportunity to remind the reader of the definitions; a complete account can be
found in [?]. A 2-monad T = (7,4, m) on a 2-category % is a 2-functor T': & — &
with 2-natural transformations i: 1, = T, called the unit, and m: T2 = T, called
the multiplication, that satisfy the usual axioms of a monad; in other words, the un-
derlying functor of T' with the underlying natural transformations of ¢ and m form
an ordinary monad on the underlying category of .#". The definition of 2-comonad
is dual.

An algebra for the 2-monad T is, by definition, an algebra for its underlying
monad. This amounts to an object A with a morphism a: TA — A that satisfies the
usual algebra axioms — the 2-cells play no role here. We shall usually be concerned
with the so-called strict morphisms of T-algebras, which are the morphisms of
algebras for the underlying monad of T; ie a strict morphism (A, a) — (B,b) is a
morphism f: A — B in J such that b-Tf = f-a. However, the 2-dimensional
aspect of JZ enable us to speak of lax morphisms, which are morphisms f: A — B
equipped with a 2-cell f: b-Tf = f-a that must satisfy certain coherence axioms.
For example, (lax) monoidal functors are examples of lax morphisms for a certain
2-monad. There is a dual notion of oplaxz morphism, which is a morphism f: A — B
with a 2-cell f: f-a = b-Tf that must satisfy coherence axioms. A lax morphism
(f, f) whose 2-cell f is invertible is said to be a pseudomorphism.

The four types of morphisms described in the previous paragraph are the mor-
phisms of four 2-categories, all with the T-algebras as objects: T-Alg, has the strict
morphisms as morphisms; T-Alg, has the lax morphisms as morphisms; T-Alg, has
the oplax morphisms as morphisms; and T-Alg has the pseudomorphisms as mor-
phisms.

A useful fact about adjunctions and (op)lax morphisms is the so-called doctrinal
adjunction theorem, of which we state the version that we will use later.

Proposition 4.1. Let T be a 2-monad on & . An oplax morphism (f, f): (4,a) —
(B,b) between T-algebras has a left adjoint in the 2-category T-Alg, if and only if
f has a left adjoint in & and f is invertible.

4.b. Lax idempotent 2-monads. An essential part of our definition of lax or-
thogonal AWFS is the concept of a lax idempotent 2-monad, or KZ 2-monad, that we
recount in this section. We begin by introducing some space-saving terminology.
Suppose given an adjunction f — g in a 2-category, with unit : 1 = ¢ - f and
counit £: f-g=>1. We say that f - g is a retract (coretract) adjunction when the
counit (unit) is an identity 2-cell.

Definition 4.2. A 2-monad T = (7,4, m) on a 2-category £ is lax idempotent, or
Kock-Zéberlein, or simply Kz, if any of the following equivalent conditions hold.

(i) T% -4 m with identity unit (coretract adjunction).
(ii) m — 4T with identity counit (retract adjunction).
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(iii) Each T-algebra structure a: TA — A on an object A is part of an adjunc-
tion a - i4 with identity counit (retract adjunction).
(iv) There is a modification §: T% = iT satisfying 6 - =1and m-§ = 1.
(v) The forgetful 2-functor U,: T-Alg, — % is fully faithful.
(vi) For any pair of T-algebras A, B, every morphism f: UA — UB in &
admits a unique structure of a lax morphism of T-algebras.
(vii) For any morphism f: X — A into a T-algebra (4,a), the identity 2-cell
exhibits a - T'f as a left extension of f along ix.
The conditions and appeared in [?] and [?], albeit in a slightly different
context; [?] shows the equivalence of these three conditions. The proof of the
equivalence of the whole list, in the case of a 2-monad, can be found in [?].

Being lax idempotent can be regarded as a property of the 2-monad, since, for
example, there can exist at most one counit for the adjunction in

It may be useful to say a few words about how to obtain a left extension from
the modification §. If f: X — A and g: TX — A are morphisms into a T-algebra
(A,a), and a: f = g -ix a 2-cell, then the corresponding 2-cell a - Tf = g is
constructed as (a-Tg-0x) - (a-Ta).

Definition 4.3. A 2-comonad G = (G,e,d) on J# is lax idempotent, or Kz, if
the 2-monad (G°P,e°P,d°P) on £ °P is lax idempotent. This means that we have
conditions dual to the ones spelled out above for 2-monads; eg adjunctions eG —
d 4 Ge, a modification §: Ge = e, etc. We state one of the conditions in full:
given a morphism f: A — X from a G-coalgebra (A, s), the identity 2-cell exhibits
Gf-s: A— GX as a left lifting of f through ex.

4.c. Definition and basic properties of lax orthogonal AWFSs. A lax or-
thogonal AWFs will be, first of all, an AWFS on a 2-category. We shall start, thus,
with the definition of 2-functorial factorisations and AWFSs on 2-categories.

Definition 4.4. A 2-functorial factorisation on a 2-category £ is a 2-functor that
is a section of the 2-functor #3 — %2 that sends a pair of composable morphisms
to its composition.

A 2-functorial factorisation on J# induces a functorial factorisation f +— Rf-Lf
on the underlying ordinary category of ', and in addition it factorises 2-cells, as
depicted.

h
h S " ¢
Xy l Kt JLQ
| K1 ey
X' /W Y’ Rfl K(h/l’k') JRg
~ h
- X A 3V
x

There is a bijection between the family of 2-functorial factorisations and the
family of copointed endo-2-functors ®: L = 1 of #2 with dom @ = Ldom(y); and
also the family of pointed endo-2-functors A: 1 = R with cod Ay = 1.4q4(y), for all
fex?2

Definition 4.5. An AWFS on a 2-category ¥ consists of a pair (L, R) formed by
a 2-comonad and a 2-monad on .#? satisfying the same properties as AWFSs on
categories. More explicitly,

e the domain of the counit ®: L = 1 is an identity morphism;
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e the codomain of the unit A: 1 = R is an identity morphism,;

e Both (L, ®) and (R, A) must give rise to the same 2-functorial factorisation
on X

e the 2-natural transformation A of must be a distributive law between
the underlying comonad of L and the underlying monad of R on the ordinary
underlying category of JZ".

Definition 4.6. An AwFs (L,R) in a 2-category ¥ is laz orthogonal if the 2-
comonad L and the 2-monad R are lax idempotent.

We will later see in Section [5| that it is enough to require that either L or R be
lax idempotent.

Remark 4.7. It was observed in Remark that the transformation (1,p): L -
V — id - dom-V of Remark [2.10] has as right inverse (1,L) - V, where (1,L) is
the transformation of Remark 2.9 We claim that, when the 2-monad R is lax
idempotent, we also have a retract adjunction in the 2-category 2-Cat(R-Alg,, % 2)
of 2-functors, 2-natural transformations and modifications

(L,p)4(1,L)-V:id- dom-V = L-V.

The counit of this adjunction is the identity modification, and the unit has compo-
nents

wl ] e
Py Lf

Kf——A——Kf

\”fﬁ/

1

for f € R-Alg,, where 7y is the domain component of the unit of the adjunction
(pf,1) 4 (Lf,1) provided by the fact that R is lax idempotent — numeral of
Definition The fact that this defines a modification with components (1,7y)
follows, and clearly satisfies the triangle identities.

4.d. A basic example. There is a lax orthogonal AWFS that will play the role
analogous to the role that the oFs (Iso, Mor) plays in the context of simple reflec-
tions — as explained in Section [I The next few pages give a complete description
of this basic example of a lax orthogonal AWFs.

Every functor f: A — B factors as Lf: A - Kf = (f | B) followed by
Rf: Kf — B, where Lf(a) = (a,1: f(a) — f(a), f(a)), and Rf(a,B: f(a) —
b,b) = b. The associated pointed endofunctor R on Cat? given by f — Rf un-
derlies the free split opfibration monad R. Precisely the same factorisation can be
constructed in any 2-category ¢ with the necessary comma objects. At this point
one could deduce that there is an AWFs (L, R) by observing that split opfibrations
compose and the results cited in Section [3] and furthermore, one could use the
results of Section [5 to prove that the AWFs is lax orthogonal. Instead, we shall
give an explicit description of the comonad and its coalgebras, as they will become
important in later sections.

Given a 2-category # we can perform two constructions to obtain new 2-
categories. The first is the 2-category Lari(.#"), whose objects are morphisms
fin 2 equipped with a right adjoint coretract r¢, ie a left adjoint right inverse or
LARI, in the terminology used in [?]; we may write an object of this 2-category as
(f,r), omitting the unit and counit of the adjunction, since the unit is an identity
2-cell and the counit is, therefore, the unique 2-cell that satisfies the adjunction
triangle axioms for f o r. A morphism (f,r) — (f/,7’) in Lari(.¥") is a morphism
(h,k): f — f"in 22 such that v’ -k = h-r. It is not difficult to show that (h, k) is
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automatically compatible with the counits of the adjunctions: if the counits are
and &', then &’ - k = k - . The 2-cells between morphisms in Lari(.#") are just the
2-cells in between them in .#2. There is a forgetful 2-functor Lari(.#) — #2,
and LARIs can be composed via the usual composition of adjunctions, so if (f,r)
and (f/,r’) are LARIs with f and f’ composable morphisms, then (f’ - f,r -7’/) is
canonically a LARI. In this way, Lari(.#") has a double category structure, and
furthermore, the composition is obviously compatible with 2-cells, so the double
category structure extends to an internal category in the category of 2-categories.

The second construction is a 2-category OpFib(J¢") of split opfibrations in J¢,
by which we mean morphisms f in ¢ such that each functor J# (—, f) is a split
opfibration in [#°P,Cat]. There is a forgetful 2-functor OpFib(.#) — #2
and the composition of two split opfibrations is canonically a split opfibration,
so OpFib(.¢") is an internal category in the category of 2-categories.

If the 2-category ¢ has enough comma objects, then there is an AWFs (L, R)
on ¢ that satisfies OpFib(.#") =~ R-Alg,, and, as we will see in Proposition m,
Lari(#) =~ L-Coalg,. Let us first say a few words about R. The free split opfi-
bration on f is given by a comma object as depicted on the left hand side of .
The unit of R has components Ay = (Lf,1), where Lf: A — K f is the unique
morphism such that Rf - Lf = f, ¢ - Lf =1 and vy - Lf = 1. The multiplication
II; = (my,1) is given by the unique morphism 7¢: KRf — K f satisfying the three
equalities depicted on the right hand side.

Kf-2 A
Rfl Y v, lf 4 -mf =qs-qry  Rf-mp=Rf vy mp=vrs(vs-qry)
B——2RB
(4.8)
We remark that Lf comes equipped with an adjunction Lf — gy with identity
unit, where g¢: Kf — A is the projection. The counit wr¢: Lf - qr = 1 is the
2-cell induced by the universal property of comma objects and the conditions

q'f'wa:1:Qf:>Qf and Rf'wa:Vf:Rf-Lf-q'f:f-q'f:>Rf.

The copointed endo-2-functor L underlies a 2-comonad with comultiplication
¥: L = L?, defined by the following equality and the universal property of comma
objects.

Kf 2 KLf-2 4 Kf-" A
RLfl Vs lLf = H K/walLf (4.9)
Kf——KFf Kf=—=Kf

The 2-monad R is well-known to be lax idempotent. To see that the comonad L is
lax idempotent, one can exhibit an adjunction ® ¢ o X with identity counit. The
existence of an adjunction RLf — o, with identity counit follows from Remark [£.10]
below. The fact that this adjunction yields an adjunction ®1; 4 X in #? can
be readily checked. We leave the verification of the distributivity law between the
2-comonad and 2-monad to the reader.

Remark 4.10. Given a comma object as exhibited on the left below, each adjunction
£ - r induces a retract adjunction p - s, where s is defined by the equality on the
right hand side.

clt—2154 X—=stlt—254 yxy_t.p_ ", 4
T | ]i- N

X——B X——B B
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The unit 7: 1 = s - p is the unique 2-cell satisfying p-n = 1 and

) (lt—1sA—=A4
(e elt—"sa = sy, le}/
—
> X——B

We make a final observation that will be of use later on. Suppose that the unit
of £ - r is an identity and h: Z — ¢ | t is any morphism such that v - h is an
identity 2-cell. Then 7 - h is an identity 2-cell.

Proposition 4.11. Let (L,R) be the AWFS described above in this section.

(1) There is an isomorphism over ¢ 2 between (L, ®)-Coalg (the 2-category of
coalgebras for the copointed endo-2-functor (L, ®)) and the 2-category with
o Objects (f,v,€) where f: A 2 B : v and &: f-v = 1 that satisfy
v-f=14and & f =1 — strong deformation retracts of B.
e Morphisms (f,v,&) — (f',v',€'), morphisms (h,k): f — f' in &2
such that h-v=v"-k and ¢ -k =k-£.
o 2-cells (h,k) = (h,k): (f,v,&) — (f,v,€), 2-cells (a, B): (h,k) =
(h,k) in 2 such that a-v =" - B.
(2) There is an isomorphism over 2 between L-Coalg, and the 2-category
Lari(.%).
(3) Cofree L-coalgebras correspond to the coretract adjunctions Lf — qy.
(4) The double category structure on L-Coalg, induced by this AWFS is that of
Lari(J¢), ie given by composition of coretract adjunctions.

Proof. The reader would recall from the definition of K f as a comma object.
There is a bijection between morphisms s: B — K f such that Rf - s = 1 and
morphisms v: B — A equipped with a 2-cell £: f - v = 1p; the bijection is given
by composing with the comma object vy, ie v = g5 - s and £ = v¢ - s. Under this
bijection, the condition s- f = Lf, which means that (1, s) is a morphism f — Lf,
translates into £ - f = 1. This completes the description of (L, ®)-coalgebras.

Next we translate the condition oy - s = K(1,s) - s, that is the coassociativity
axiom for that makes an (L, ®)-coalgebra into an L-coalgebra. Denote the counit
of Lf 4 gy by wy, and recall that oy is defined by . The morphism oy - s
corresponds under the universal property of the comma object v ¢ to the 2-cell

B Kf-Z o kLf-" 4 B—LKf—2 4
RLF| Yy 1 = e (4.12)
Kf=—=Kf Kf=—=Kf
while K (1, s) - s corresponds to the 2-cell displayed below.
B kf S grp 4 B Kf—A
RLfl Vv lLf = Rfl Y, lf
Kf——Kf B——B—Kf
B # A
= N % (4.13)

Therefore, s is a coalgebra precisely when (4.12)) equals (4.13). These are both
2-cells between morphisms with codomain K f, and as such they are equal if and
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only if their respective compositions with the projections Rf and gy coincide. Their
composition with Rf yield respectively

Rf -wpy-s=vj-s=¢ and Rf-s-£€=¢
while their composition with g7 yield respectively

qr-wy-s=1 and qgr-s-§=v-&.

It follows that s is coassociative if and only if v - £ = 1, completing the description
of L-coalgebras as coretract adjunctions f - v.

We now describe the morphisms of (L, ®)-coalgebras from (1,s): f — Lf to
(1,s'): f — Lf’. Such a morphism is a morphism (h,k): f — f’ in 22 satisfying
s’ -k = K(h,k)-s. Composing with the comma object v/, this equality translates
intov' -k=~h-vand -k =k-& A morphism of L-coalgebras is just a morphism
between the underlying (L, ®)-coalgebras.

A 2-cell between morphisms (h, k), (h,k): (f,s) — (f',s") of (L, ®)-algebras is
a pair of 2-cells a: h = h and 3: k = k satisfying K (o, 8) - s = ' - . This is an
equality of 2-cells between 1-cells with codomain K f’, so it holds if and only if it
does after composing with the projections Rf’ and gy. The composition of this
equality with Rf’ yields § = 5 — no information here — while its composition with g
yields a-v = B-v'. This completes the description of (L, ®)-Coalg. When (f, s) and
(f',s') are L-algebras, with associated coretract adjunctions (f,v,£) and (f',v’,&’),
this latter equality is void too, since its mate automatically holds. Explicitly,

(h~v%i_1~v)=(h~v=v'~kv,—ﬂ>v'~l;:=i_z~v)

holds if and only if it does after precomposing with f and composing with the unit
l=v-fof fHu:

a=a-v f=(h=hvf=v k fE2h k. f=h-v f=h).

But this latter equality automatically holds, by 5 - f = f’ - «. This shows that
2-cells in L-Coalg, are simply 2-cells in #2.

Finally, we prove the fourth statement of the proposition. The 2-category of L-
coalgebras is equipped with an obvious composition: that of coretract adjunctions.
Any such composition corresponds to a unique multiplication II: R? — R that
makes (R, A,TI) a 2-monad and satisfies the distributivity condition — see Section
for the details. We have to show that II equals the multiplication IT of the free split
opfibration 2-monad.

By the comments at the end of Section [3.b] or rather the dual version of those
comments, 1:If = (7y,1) is defined by the property that (1,7y) is the unique mor-
phism of L-coalgebras from L(Rf) e Lf to Lf that composed with the counit
@ = (1,Rf): Lf — f yields the morphism (1, R*f): LRf - Lf — f in J#2.

A=——-— 4
Lfl
Kf Ly (4.14)
LRf| B
KLf 2 Kf

By the previous parts of the present proposition, to say that (1,7¢) is a morphism
of L-coalgebras is equivalent to saying that 14 and 7 form a commutative square
with the right adjoints of Lf and of LRf - Lf. It is worth keep in mind that
composition of L-coalgebras that induces 7y is the usual composition of coretract
adjunctions, so the right adjoint of Lf is gy and the right adjoint of LRf - Lf
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is q¢ - qry. It follows that, to say that (1,7f) is a morphism of L-coalgebras is
equivalent to requiring the following equality.
ar - Tp =ds 4Ry

So far we have unravelled the definition of 7;. In order to deduce that 7y equals
the multiplication 77 of the free split opfibration 2-monad, it suflices to verify that
(1,7¢) is too a morphism of L-coalgebras of the form (4.14) and @y - (1,75) =
(1, R?f). The latter equation always holds, as it is Rf - 7 = R%f, as remarked in
the equation (4.8). The fact that (1,7;) is a morphism of L-coalgebras is, by the
same argument applied to 7¢, the condition ¢y - 7y = ¢y - gry, which holds again

by (4.8)). By uniqueness of 7y, we obtain 7y = 7y and thus the vertical composition
of LARIS coincides with that of L-coalgebras. O

Remark 4.15. In general, for a copointed endofunctor (G, ¢) on a category C, and
a retraction r: Y — X with section s in C, each (G, €)-coalgebra structure §: ¥ —
GY onY induces another on X. This induced coalgebra structure is (Gr)-d-s: X —
GX. Later, in the proof of Proposition [8.19] we shall need the description of this
construction in the case of the copointed endo-2-functor (L, ®) of Proposition
Let (f,v,€) be a coalgebra and (rg,r1): f — f a retraction on .#2 with section
(50, 51). The induced coalgebra structure (f,v,€) is given by © = 7 - v - 51 and

f—@:f-ro-v~sl:rl-f-v-slf.l.T.g'sgrl-sl:l.

5. THE 2-COMONAD IS LAX IDEMPOTENT IF THE 2-MONAD IS SO

In this section we show that, in order for an AWFS on a 2-category to be lax
orthogonal, it suffices that either its 2-monad or its 2-comonad be lax idempotent.
This result can be seen as a two-dimensional generalisation of the fact that an AWFS
on a category is orthogonal if either its monad or its comonad is idempotent — a fact
that is explained in [?]. However, the proof, as it is to be expected, is more involved.
Incidentally, our proof uses the double category structure on R-Alg, mentioned in
Section [3l

Theorem 5.1. The 2-comonad of an AWFS on a 2-category is lax idempotent pro-
vided the 2-monad is lax idempotent.

Proof. Denote the AWFS on the 2-category ¢ by (L,R), where L is a 2-comonad
with counit ®: L = 1 and comultiplication ¥: L = L2, and R is a 2-monad
with unit A: 1 = R and multiplication II: R? = R. We will verify one of the
equivalent conditions that make L a lax idempotent 2-comonad — the corresponding
conditions for a 2-monad are mentioned in Section [f.b] - namely, that there exist
coretract adjunctions ¥y - L®; whose counits form a modificationin f: A — B. In
Section[3.b|we mentioned that (o, 1) is a morphism of R-algebras Rf — RfeRLf,
where the codomain is the vertical composition of the R-algebras RLf and Rf.
Consider the morphism

RLf 220, pr 1), pro RLY

which is, by Section [£.B] a left extension along AL of its composition with the unit
ALf
(O’f, ]-B) . Rq)f ~ALf = (O’f, lB) . Af . (I)f = (sz,Rf) Lf I Rf . RLf
The morphism (11, Rf): RLf — Rf-RLf in J¢? satisfies (1xrs, Rf) ALy =

(L?f, Rf) too, therefore the universal property of left extensions gives a unique 2-
cell (6f,1)-R®f = (1gry, Rf) in % whose composition with Ap ¢ is the identity
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2-cell. This forces the 2-cell to be of the form
(ef:11p): (05, 1) - ROy = (lkirs, Rf) (5.2)
for a 2-cell in &
epro5-K(1a,Rf) = 1krs: KLf - KLf

since the codomain component of Ay is an identity. This definition makes (e, 11,),
and hence €, a modification in f, a fact that can be verified by using the universal
property of left extensions.

We now proceed to prove that € is the counit of a coretract adjunction oy
K(14,Rf) in 2, for which we must show three conditions:

eprop=1  K(1a,Rf)-ep=1 e - L*f=1 (5.3)

The first two conditions are the triangle identities of the adjunction, while the last
one means that e is a 2-cell in 2.
Consider the morphism of R-algebras

(Rf,lB)ORq>f 1B . 1B'(UfalB)

Rf 90, preRLY Rf 1peRfeRLS
that can be depicted in the way of the following diagram — of solid arrows — where,
as always, objects of %2 are represented by vertical arrows and morphisms of J# 2

by commutative squares.

of Ted
Kf KLfK(lA,Rf)Kf o ngLf
RLf Rf Kf (5.4)
Rf Rf

Rf l
Kf—%Y . p——p
n) 1 b
B B B B

This morphism is equal to (o, 1g), since K(14,Rf)- oy = 1. Now consider the
dotted identity arrow and the 2-cell € in (5.4]), observing that it defines a 2-cell

(Ef,l): (0’f71) -R(I)f =1
in 2, and, upon precomposing with o¢, a 2-cell
(ef o l1p): (0f,1p) = (0p,1B) (5.5)

with equal domain and codomain. This 2-cell precomposed with A¢: f — Rf
equals the identity, for of - Lf = L?f and €7 - L?f = 1 by definition of £;. Since
(0f,1) is a left extension of (o¢,1) - Ay along Ay, we must have (e - 0¢,11,) = 1,
the first of the equalities .

In order to prove the second equality of (5.3), consider the morphism of R-
algebras

RLf Rq>f RL (Uf,IB) Rf.RLf (Rf,lB).R(I:‘f

lpe Rf
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that can be depicted as in the following diagram — of solid arrows.

KLf Kf KL OAarD gy
KA RD o
RLfl . lRf
RLf Rf Kf— ,p

o Ry % B

Kf—21 B B

This morphism equals (K(14, Rf), 1), since K(14,Rf)-0f = 1 by the counit axiom
of the comonad L. If we now consider the dotted identity arrow, the 2-cell €  induces
an endo-2-cell

(K(1a,Rf) €5, 1ry): (K(1a,Rf),Rf) = (K(14,Rf),Rf), (5.6)

which, by definition of ¢ , equals the identity when precomposed with Ap¢.
The morphism (K (14, Rf), Rf) is a morphism of R-algebras, and hence a left ex-
tension along Ary, from where we deduce that (5.6) must be the identity 2-cell.
That is, K (14, Rf) - = 1, the second equality .

All that remains to verify is e¢ - L2f = 1, but this is part of the definition of £,
completing the proof. O

6. LIFTING OPERATIONS

We turn to the second part of the article where we put the emphasis on lifting
operations and their relationship to AWFSs. In this section and the next we leave
the case of 2-categories and return to the framework of ordinary categories. After
setting out our own approach to lifting operations, we recall a number of notions
known for ordinary AWFS. This is a necessary step previous to extending these
notions to lax idempotent AWFSs from Section [§ onwards.

6.a. Background on modules. As a preamble to the next section, let us briefly
remind the reader about the language of modules or profunctors, which will be
heavily used henceforth.

Definition 6.1. A module or profunctor ¢ from a category A to a category B,
denoted by ¢: A — B, is a functor B°? x A — Set, and a module morphism is a
natural transformation. Given another module ¥ : B — C, the composition 9 - ¢ is
defined by the coend formula (¢ - ¢)(c,a) = SB (e, b) x ¢(b, a); the identity 14 for
this composition is given by 1 4(a,a’) = A(a, a’). In this way we obtain a bicategory
Mod.

Each functor F: A — B induces two modules Fy, and F* given by Fy(b,a) =
B(b, Fa) and F*(a,b) = B(Fa,b). Furthermore, there is an adjunction Fy, — F*
with unit and counit given by components

Ala,d') 5> B(Fa, Fa') =~ F* - Fy(a,d)

A
Fy - F*(b,V) =J B(b, Fa) x B(Fa,b') =22 B(b,b).

The coend form of the Yoneda lemma implies that (¢ - Fy)(a,c) = 9(c, Fa) and

F* . x(a,d) = x(Fa,d), whenever these compositions of modules are defined.
Similarly, if a: F' = G is a natural transformation between functors A — B, then

there are morphisms of modules ay : Fy — G4 and o* : G* — F* with components

ax(b,a) = B(b, o) a*(a,b) = B(ag,b).
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6.b. Lifting operations. Fix a category C. Recall that there are adjunctions
cod - id 4 dom: C? — C (6.2)

the first of which has identity counit and the second of which has identity unit.
Define a module (profunctor) Diag: C2 — C2 in the following way. Given two
morphisms f, g in C, Diag(f, g) is the set of commutative diagrams of the form

A"

fl % L" (6.3)

BT>D

The action of C2? on either side is simply by pasting the appropriate commutative
square.

Lemma 6.4. There are isomorphisms of modules between Diag and the following
four modules C% — C2.

cod™ - dom, idy - id* (id - dom)s (id - cod)*

Proof. The bijection Diag(f,g) =~ (cod®-domy)(f,g) = C(cod(f),dom(g)) is the
obvious one, that sends a commutative square with a diagonal filler d as in (6.3) to
the morphism d. Due to the adjunctions (6.2), cod™ = id, and id* =~ dom,, and we
obtain isomorphisms of cod™ - dom, with (id - dom),, and with id, - id*, and with
cod™ -id* =~ (id - cod)*. O

The second isomorphism is the one induced by the fact that id* ~ dom,, as seen
in (6.2). The isomorphism Diag(f, g) = (id- dom)«(f,g) = C2(f, Llaom¢) is given by

h h
. 4> . . 4) .
fl%lg — fl lldomg
. *> . . 4) .
k d

The counit of idy — id™ is a module morphism
Diag — 1¢2 (6.5)

whose component at (f, g) sends the element (6.3]) to the outer commutative square.
It corresponds, under Diag = (id - dom)y, to the module morphism induced by the
natural transformation with f-component

id - dom = 1¢2 1dome/ lf

Definition 6.6. Let (A, U), (B,V) be two objects of Cat/C?, and define a module
Diag(U, V): B %, ¢ 2%, 02 V%, 4 (6.7)

The module morphism Diag — 1 induces another Diag(U, V) — U* - V.. A lifting
operation for U, V is a section for this module morphism, and amounts to a choice,
for each square in C of the form

A—"lsc
Ual lVb ac A beB (6.8)

B — D
of a diagonal filler d(h, k), in such a way that it is natural with respect to compo-
sition on either side. To expand on this point, suppose given morphisms a: a’ — a
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in A sent by U to the square Ua = (x,y): Ua’ — Ua, and S: b — V' in B sent by
V to VB = (u,v): Vb — V. The naturality of d(h, k) means that the equality
below holds.

T h u ) u-h-x

Ua’l Ual%h,glVb lvb’ = Ua'lym,v-k-y) lvb'
Y k v v-k-y

Example 6.9. A functorial factorisation system, with associated copointed endo-
functor (L, ®) and pointed endofunctor (R, A), gives rise to a lifting operation for
the forgetful functors U: (L, ®)-Coalg — C2 and V': (R, A)-Alg — C2. The section
to the module morphism Diag(U, V) — U* - V, has component at an object (f,g)
of (L, ®)-Coalg x (R, A)-Alg described in the following terms. If (1,s): f — Lf
is the coalgebra structure of f and (p,1): Rg — g the algebra structure of g, the
component is given by

C2(s,1 c%(1,(1,
C2(f,9) L C2(Lf, Lg) 0 ¢2(f, Lg) S8 0205 1,000)  (6.10)

h
g»—»fl

1] b
. 4> .
k p-K(h,k)-s

.
The reader would have noticed that the diagonal filler p - K (h, k) - s so obtained is
the same one mentioned in Section [2.a] and that we reproduce below.

A = h y C C
\ K(h,k) Lgl /
! Kf Kyg g

There is an equivalent description of ([6.10]) that, instead of using C2(f, Ldom(qg)) =
Diag(U,V)(f, g), uses Cz(lcod(f), g) = Diag(U,V)(f,g). From this point of view, the
section takes the form

R c2(1, C2((s,1),1
C?(f,9) 1> C2(Rf, Rg) =2 (R, 9) Y, €2(1a0a(s) 9)

h p-K(h,k)-s
L . 5.
fl lg — 1l lg
. *>k . . 4)1@ .

Example 6.11. A functorial factorisation corresponds to an orthogonal factorisation
system when Diag(U, V) — U* -V, is invertible.

Remark 6.12. Let us now assume that in Definition [6.6] U has a right adjoint G.
Then, the module is isomorphic to (G -id - dom-V),, U* - V,. is isomorphic
to (G- V)4, and the module morphism U* - Diag - Vi, — U* - V;, corresponds to the
natural transformation

G-id-dom' V=G -V (6.13)
induced by the counit of the adjunction id - dom, ie the transformation with
component at b e B

G(l, Vb) Gldom(Vb) — GVb.
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Now suppose that the functor U is the forgetful functor U: L-Coalg — C2, for a
comonad L, and still denote by G its right adjoint. Denote by Fi : C? — KI(L) the
Kleisli construction of L. The natural transformation , belonging to the full
image of G, can be described as a morphism in [B, KI(L)]

F -id- dom-V = F_ - V. (6.14)

Proposition 6.15. Given a comonad L on C2, lifting operations for the functors
U: L-Coalg — C2 and V: B — C? are in bijective correspondence with sections of
the natural transformation (6.14)).

Proof. The proof is an application of Remark to the case when the right adjoint
is the universal functor into the Kleisli category of the comonad. O

Example 6.16. As we saw in Example each AWFs (L,R) on C induces a lifting
operation which corresponds to a section of , by Proposition We can
describe in explicit terms this section as follows.

If V: R-Alg — C2 is the forgetful functor, consider the transformation (1,p): L -
V = id- dom-V as in Remark 2.10] and denote by 6: F{V — Fid - dom-V the
associated morphism in [R-Alg, KI(L)]. It is easy to check that 6 is the required
section: F(1,9) -0, is, as a morphism in C?,

(179) : (Lp) = (I’Rg) = CI)g_
7. THE UNIVERSAL CATEGORY WITH LIFTING OPERATIONS

R. Garner defined in [?] for each functor U: A — C2 a category A™ and a functor
UM: AM — C2 as follows. The objects of A" are pairs (g, ¢7), where g € C% and ¢9
is an assignment of a diagonal filler for each square

h

. ﬂ .
Ual ¢ (a,h.k) lg (7.1)
which are compatible with morphisms Ua: Ua’ — Ua, in the sense that
¢?(a,h,k) - cod(Ua) = ¢?(a’,h - dom(Ua), k - cod(Ua)).

A morphism (g,¢9) — (e, ¢°) is a morphism (u,v): g — e in C? such that u -
¢9(a, h, k) = ¢°(a,u- h,v- k), for all (h,k).
The functor U™ just forgets the lifting operations, or in other words, U™ (g, #9) =
g. There is a canonical lifting operation from U to U™, namely the lifting operation
that given a commutative square (h, k): Ua — U™ (g, #9) = g picks out the diagonal
@9 (a, h,k), as in the diagram . Furthermore, U™ equipped with this lifting
operation is universal among functors into C? that are equipped with a lifting
operation against U.
The category A™ and the functor U™ can be constructed as a certain limit in
Cat, of the form
P AN — 5 P(c?) @)P
2P
U —— P(C?) P
Diag.
where P(X) denotes the presheaf category on X', and Ea\gc is the functor associated
to Diag. Equally well, U™ is a certain enhanced limit, in the sense of [?].
We continue with some further observations from [?]. The universal property of
U™ implies that lifting operations for the pair of functors U: A — C% «— B: V are
in bijection with functors B — A™ over C2. In particular, each AWFs (L,R) in C
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gives rise to a canonical functor R-Alg — L-Coalg™. Furthermore, this functor is
fully faithful, as we proceed to show. Let (p,1): Rg — g and (p’,1): Rg’ — ¢’ be
two R-algebra structures, and (u,v): ¢ — ¢’ a morphism in L-Coalg™. We know
that the chosen diagonal filler of the square (1, Rg): Lg — g is p, and similarly for
g’ and p’, so we have u-p = p' - K(u,v). Hence, (p',1) - R(u,v) = (u,v) - (p, 1), so
(u,v) is a morphism of R-algebras.

Lemma 7.2. Given a functor U: A — C2%, an adjunction U - G, and g € C2,
there is a bijection between the structure of an object (g,$9) € A™ and sections s
of G(1,9): G(laomg) — Gy in A. If (f,¢') € A® is another object, with associated
section t, morphisms (g,¢9) — (f,¢7) in A% are in bijection with morphisms
(hyk): g — f in C? such that G(h,h)-s =t G(h,k).

Proof. See discussion before Proposition [6.15} O

Lemma 7.3. Assume the conditions of Lemma[7.9. Then, for any full subcategory
F < A containing the full image of G, the functor A" — F* induced by the
inclusion is an isomorphism.

Proof. Denote by J: F — A the fully faithful inclusion functor, and by H the right
adjoint to UJ, observing that JH = G. An object of F™ is a lifting operation for the
functors UJ and g: 1 — C2, ie a section to the module morphism (U.J)*-Diag-gsx —
(UJ)* - g4. The same data can be equally given by a section to the morphism
H(1,9): H(l4om(g)) — Hg in F; or a section to the image of this morphism under
the fully faithful J. But JH = G, so we simply have a section of G(1, g), which is
precisely an object of A" by Lemma This shows that A" — F® is bijective
on objects. The proof that it is fully faithful is along the same lines, and is left to
the reader. (]

Corollary 7.4. IfL is a domain preserving comonad on C2, the category L—Coalgm
can be described as the category with objects pairs (g,d9) satisfying the commuta-

tivity of
w2 ] 75)
. ?g) .

and morphisms (g,d?) — (f,d’) morphisms (h,k): g — f in C% such that h -d9 =
df - K(h,k). If F = L-Coalg is a full subcategory containing the cofree L-coalgebras,
the induced functor L-Coalg™ — F™ over C2 is an isomorphism.

Proof. An object of L-Coalg™ can be described, by Lemma[7.2] as a morphism g of
C equipped with a section s = (sg,s1) to L(1,9): Lldom ¢ — Lg that is a morphism
of L-coalgebras. In fact, sg = 1 since L(1, g) has identity domain component. The
morphism of coalgebras (1,s): Lg — Llgomg corresponds to a unique morphism
(1,d9): Lg — ldomg in C?, where d9 = Rldomg - 51, by the cofree coalgebra ad-
junction. Similarly, the equality of coalgebra morphisms 1, = L(1,g) - s can be
translated into
q)g = (I:’g : L(l’g) tS8 = (Lg) ' (Dldoxng S5

the domain component of each morphism in this string of equalities is an identity
morphism, while the codomain component yields Rg = g - Rldomg - 51 = g-d9. So
far we have proven that 1 = L(1,g) - s is equivalent to the commutativity of the
bottom triangle in . Again by the free coalgebra adjunction, the top triangle
in (7.5), namely d9 - Lg = 1, is equivalent to s; - Lg = L(ldom¢), which says that
(1, s1) is a morphism Lg — Llgom . This completes the description of the objects
of L-Coalg™.
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We now prove the part of the statement relating to morphisms. Suppose that
(h,k): (g,¢9) — (f,¢') is a morphism in L-Coalg™ and s: Lg — Llgom, and
t: Lf — Llgom s the sections of L(1,g) and L(1, f) provided by Lemma By
the same lemma, the condition of (h, k) being a morphism in L-Coalg™ is equivalent
to the equality L(h,h)-s =t- L(h,k), which is equivalent to

(hyh)-®g-s5=®f-L(hh)-s=®s-t-L(h k).

The domain component of this equality is trivial, and so it is equivalent to the
equality of its codomain component, which is

The last sentence of the statement follows from Lemma completing the proof.
O

8. KZ LIFTING OPERATIONS

Section [6.D] described the algebraic structure that provides a lifting operation,
and the category A®, in terms of modules. This section introduces variations of
these notions that are suitable to lax orthogonal factorisations.

8.a. Lifting operations in 2-categories. Before introducing the main definitions
of this section, let us remind the reader about some facts around Cat-modules. A
Cat-module ¢ from a 2-category o/ to another %, denoted by ¢: & — A, is a
2-functor #°P x o/ — Cat. A difference with the case of modules between ordinary
categories is that for Cat-modules there is a 2-category Cat-Mod(«7, %) of Cat-
modules & —— %8: the morphisms are 2-natural transformations and the 2-cells
are the modifications.

Given a Cat-module ¢: & — ¥, and 2-functors F': &/ — % and G: I — €,
we write ¢ - Fy: of — € and G* - ¢: B — 2 for the modules defined by the
formulas

(¢ : F*)(C, a’) = (;5(0, Fa) and (G* ’ ¢)(d7 b) = (b(Gd» b)‘

In a completely analogous way to the case of Set-modules or profunctors ad-
dressed in Section we have the following facts:

e Each 2-functor F': & — 2 induces a pair of Cat-modules F,: &/ —— %
and F*: B — o/, by the formulas Fy(b,a) = A(b, Fa) and F*(a,b) =
PB(Fa,b).

e FEach 2-natural transformation a: FF = G induces a morphism of Cat-
modules au: Fiy — Gy by ax(b,a) = B(b, o).

o If F, G: of — A are 2-functors, each morphism of Cat-modules F, — G
is of the form a for a unique 2-natural transformation «: F = G.

The forgetful 2-functor from Cat-Mod(«7, %) to Cat!®*1¥| that sends a mod-
ule ¢ to the family of categories {¢(a,b)|a € |&|,b € |B|} is 2-monadic, by the
usual argument: its left adjoint is given by left Kan extension along the inclusion
of objects | B| x || — FB°P x o/, and it is conservative. We denote the associated
2-monad by T.

We now substitute the category C in Section[6.b|by a 2-category %", and make the
modules into Cat-enriched modules. So Diag(f, g) is now the category with objects
commutative squares with a diagonal filler as depicted in , with morphisms,
from an object with diagonal d to another with diagonal d’, given by 2-cells d = d’
in JZ; in other words, Diag(f,g) is isomorphic to the category £ (cod f,dom g).
Given 2-functors U: & — #2 and V: B — # 2, we define Diag(U, V) in the same
way as we did in Sectionin the case of ordinary categories, ie Diag(U, V)(a,b) =
H2(Ua, Vb), with the difference that now the modules are Cat-enriched.
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Definition 8.1. (1) A lifting operation for a pair of 2-functors U, V into %2
is a Cat-module that is a section of Diag(U,V) — U* - V4; in other words,
it is a section in Cat-Mod (<7, &) — the reader may want to compare with
Definition

(2) A lazx natural lifting operation for U, V is a section of Diag(U,V) — U* - V,
in T-Alg,, the 2-category of T-algebras and oplax morphisms, also known
as colax morphisms, for the 2-monad T on Cat!?*11 whose algebras are
Cat-modules — an explicit description can be found below.

An object of the 2-category T-Alg, is a Cat-module ¢: & —— 2, while a mor-
phism ¢: ¢ — 9 is a morphism of the underlying matrices that is oplax with respect
to the action of .« and 4. This means that, given a morphism f: a — d’ in &,
and g: b — b in &, there is extra data

b, ") 2 (b, o)

w(gj)l oy lw(g,n

/ /
PlV.0) o V(0a)
satisfying coherence axioms.

Each component U* - Vi (a,b) — Diag(U, V)(a,b) of the section of Definition
gives a diagonal filler for each square Ua — Vb in #2. The oplax morphism struc-
ture on the section can be described as follows. Suppose the morphisms a: a’ — a
in & and 8: b — b in % are mapped by U and V' to commutative squares in %~

A2 A c =
Ua'l an and Vbl lVb’
BB D——1D

Consider the diagonal fillers given by the respective components of the section:

A"l A, o
Ual / lVb and l / lVb’
B—— C B’ s D’

Then, the oplax morphism structure on U* - V,, — Diag(U, V') provides a 2-cell w =
w(a, B): j = u-d-y, satisfying (V') -w = 1, w-(Uda’) = 1, and coherence conditions
that we proceed to describe. Suppose given an object d of Diag(U, V')(a, b) as above,
and morphisms in & and %

!’ ’
' Sad Sa and by L

we have the following diagram, where the dashed arrows are chosen diagonal fillers.

A” «! A/ z d A h C “ % Cl w % C”
d - .

Ud'
Ua” Vb vy %

B = e B/ o - B L D ) D' D"

y/ Yy v’

The condition corresponding to the associativity axiom of the oplax morphism
U* -V, — Diag(U, V) says that

(e 2T, 1y ) = (o S iy KDY gy )
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The axiom corresponding to the unit axiom of the oplax morphism U* -V, —
Diag(U, V) says that w(1,1) = 1.

8.b. KZ lifting operations. Having introduced in the previous section lifting
operations and lax natural lifting operations, we now introduce a version of lifting
operation that corresponds to lax orthogonal AWFSs, namely, Kz lifting operations.

Definition 8.2. A Kz lifting operation in £ for the 2-functors U, V is a left adjoint
section to the morphism Diag(U, V) — U* -V, in the 2-category Cat-Mod(</, £).

In more explicit terms, a Kz lifting operation is given by, for each square
in ', a diagonal filler d(h, k), with the following universal property. For any
d': B — C and any pair of 2-cells «, 3 satisfying

h k
A YD =AY BT 5D
~_ ~_
d-Ua Vb-d

there exists a unique 2-cell v: d(h, k) = d’' such that v-Ua = a and Vb -y = .
A b B

d(hk)
U{ ﬂlvz) (8.3)
N

This universal property makes, by the usual argument, d(h, k) functorial in (h, k):
for any pair of 2-cells u: h = b/ and k: k = k’ such that Vb-u = k- Ua, there is a
2-cell d(p, k): d(h,k) = d(I',k"). Furthermore, the diagonal fillers d(h, k) must be
2-natural in a and b, in the following sense. Suppose that I' is a 2-cell in &/ and ©
a 2-cell in %, sent by U and V to 2-cells in ¢ 2 as depicted.

@ B
A %UP A Vbj\u'/[w
NS v I v
o . /@? . B . /P .
\_//\( A
Y v

The 2-naturality of the lifting operation means that there is an equality of 2-cells
0-dh,k)-d=d@ -h-~,7-k-9).

xr u
. /ﬂ/? . L} . /U/\g( . . d(u-h-z,v-k-y .
Ud' 9 d(h,k) l bt lVb’ = Ual d(6-h-ry,T-k-5) lybf
TR / R
Ao A AW/ h-a' v’ key) '
' v’

Definition 8.4. A lax natural Kz lifting operation in J£ for the 2-functors U, V

is a left adjoint section to the morphism Diag(U,V) — U* -V in the 2-category
Cat!Z21*11

This means that a lax natural Kz lifting operation is given by a left adjoint
section for each component
Diag(U,V)(a,b) — #?*(Ua,Vb) aec., be B.
More explicitly, it is given by a choice, for each square (h,k): Ua — Vb, of a

diagonal filler d(h, k): cod(Ua) — dom(Vb) with the property that 2-cells d(h, k) =
d': cod(Ua) — dom(Vb) are in bijection with 2-cells (h,k) = (d’' - Ua,Vb-d'). In
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other words, the same universal property of Kz lifting operation, except that the
chosen diagonals d(h, k) need not be natural in a, b.

Remark 8.5. A lax natural Kz lifting operation equates to providing, for each a € &
and b € A, with Ua: A — B and Vb: C — D, a left adjoint section of the usual
comparison functor

%(B,C) —> %(A,C) X%(A,D) %(B7D)

However, the presentation using modules effortlessly yields more, as discussed be-
low.

Proposition 8.6. (1) Fach Kz lifting operation is also a lax natural Kz lifting
operation.
(2) Each lax natural Kz lifting operation is also a laz natural lifting operation.

Proof. The first part of the statement follows from the existence of a forgetful
2-functor

Cat-Mod(«/, ) —> Cat!“*1%l, (8.7)

Then, given 2-functors U: &7 — #2 and V: B — 2, a left adjoint section to
the canonical morphism Diag(U,V) — U* -V, in Cat-Mod (<, %) is also a left
adjoint section in Cat!“*1#!,

For the second part of the statement, one needs to use the fact that the 2-
functor is monadic; this means that there is a 2-monad T on Catl1*1%l and
that Cat-Mod (&7, %) is the 2-category T-Alg, of T-algebras and strict morphisms.
A lax natural Kz lifting operation is a left adjoint section of in the 2-category
Cat!”*1ZlSince is a strict morphism of T-algebras, the doctrinal adjunction
Proposition[4.1]ensures that has a left adjoint in T-Alg,, which is the definition
of lax natural lifting operation — Definition [81] O

Lemma 8.8. Kz lifting operations are unique up to canonical isomorphism. More
precisely, if the diagonal filler d(h,k) and d'(h,k) define two Kz lifting opera-
tions between 2-functors U: of — K2 «— ZB: 'V, then there exists a unique 2-cell
v(h,k): d(h,k) = d'(h, k) such that Vb-y(h,k) = 1 and y(h,k)-Ua = 1, as depicted
n . Furthermore, 7y is invertible.

Proof. This is a direct consequence of the universal property of Kz lifting opera-
tions. 0

Proposition 8.9. kz lifting operations for the 2-functors U: o — #? and
V:%B — 2 are, if U has a right adjoint G, in bijective correspondence with
left adjoint sections of the morphism G -id - dom -V — G -V induced by the counit
of id 4 dom — with components G(1,Vb) — in the 2-category [B, o] of 2-functors
B — .

Proof. By the comments about Cat-modules at the beginning of Section and
same argument deployed in Remark the Cat-module transformation

U*.Diag-Vu — U* -V, (8.10)
corresponds to the 2-natural transformation of the statement
G-id- dom-V = G - V. (8.11)

Since the 2-functor from [8, /] to Cat-Mod(4%, «7) that sends F to F is full and
faithful — an isomorphism on hom-categories — (8.10]) has a left adjoint coretract if

and only if (8.11) does. O
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Proposition 8.12. Given a lax orthogonal AWFS (L,R) on J&, the 2-natural trans-
formation F--id - dom -V = FY .V induced by the counit of id - dom has a left
adjoint section in [R-Alg,, L-Coalg,], where F-: 2#2 — L-Coalg, is the cofree coal-
gebra 2-functor and V' the forgetful 2-functor from L-Coalg,.

Proof. Given an R-algebra structure (pg,1): Rg — ¢ we need to exhibit a coretract
adjunction in L-Coalg, with right adjoint L(1,9): Llgom(g) — Lg. We know from
Remark that there is a coretract adjunction (1,p,) - (1,Lg), whose unit we
denote by 74; the same remark points out that these adjunctions are 2-natural in
(9,pg). Together with the adjunction £, 4 L®, that exhibits L as lax idempotent,
we obtain

The unit of this composition of adjunctions is

Ldg-L(ng):
—_—

1=Ld, 3, 0, Ld, - L(1,Lg) - L(1,p) - 5, = 1,

which is the identity since ®, -7, = 1 — again by Remark [£.7] O

Theorem 8.13. FEach lax orthogonal AWFS (L,R) on the 2-category ¥ induces
(1) A Kz lifting operation for L-Coalg, — #? and R-Alg, — 2.
(2) A laz natural Kz lifting operation for U,: L-Coalg, — %2 and V,: R-Alg, —
H2.
Moreover, the diagonal fillers are those given by the AWFS in the usual way — (2.5).

Proof. The first part is a direct consequence of Propositions and The
second part means that there must exist a left adjoint coretract to each functor

Diag(Ur, Vo) (£, 5), (9,p)) = H# (cod(f), dom(g)) — (. g) (8.14)

where (f,s) is an L-coalgebra and (g,p) an R-algebra. We know that such a left
adjoint coretract does exist, by the first part of the statement, and the proof is
complete. O

Remark 8.15. It may be useful to exhibit the counit of the coretract adjunction in
the proof of Theorem in which (8.14) is the right adjoint, even though it is
not necessary to prove that result. Let d be a diagonal filler for a square

Ao
1l L

B—*.p

from an L-coalgebra (f,s) to an R-algebra (g,p). The diagram on the left below
shows the equality K (h,k) = K(1¢, Rg) - K(1¢, Lg) - K(h,d), while the diagram
on the right shows that p = Rlc - K(1¢,p) - og4.

h
—_ s

I P
K(h,d) ¥ K(lc,Lg) v K(1c,Rg) ¥ oy ¥ Klcp)

.—>.
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Using these equalities, one can show that the counit p- K (h, k) -s = d given by the
K7 lifting operation can be described by

p-K(h,k) -s=Rlc-K(lc,p) 04 - K(1c,Rg) - K(1¢, Lg) - K(h,d) - s =
= Rlc - K(l¢,p) - K(1¢,Lg) - K(h,d)-s = Rlc - K(h,d)-s=d-Rf-s=d
(8.16)

where the unlabelled arrow is the one induced by the counit o4 - K (1, Rg) = 1x4
that endows the comonad L with its lax idempotent structure.

Theorem can be rephrased by saying that the usual lifting operation for
(L,R) is, when both L and R are lax idempotent, lax natural with respect to all
morphisms in .

8.c. Lax orthogonal functorial factorisations. We have seen in the previous
sections that the lifting operation of a lax orthogonal AWFS has the extra structure
of a Kz lifting operation. One could ask what extra structure is inherited from a lax
orthogonal AWFS to its underlying WFs. Since we work with algebraic factorisations,
we have at our disposal not only mere Wrss but functorial factorisations, and it is
for these that we answer the question.

Let o, # be 2-categories and 2 be Cat-Mod(%, «7). Denote by M the 2-
monad (M, AM TIM) on 22 whose algebras are morphisms in 2" equipped with a
left adjoint coretract. A dual of M has been described in Section[d.d} more precisely,
if L is the 2-comonad of Proposition [4.11] whose algebras are morphisms equipped
with a right adjoint retract defined on the 2-category (2°°P)2 =~ (2°2)°P, then M is
L°P. An algebra for the pointed endo-2-functor (M, AM) is a morphism «a: ¢ — ¥
equipped with a coretract o: ¢ — ¢ and a 2-cell m: o - a = 1 such that o -m = 1.
This is a dual form of Proposition .

Definition 8.17. Consider 2-functors U and V from &/ and % into #2. A laz
orthogonality structure on U, V is an (M, AM)-coalgebra structure on the morphism
of Cat-modules U* - Diag - V, — U* - V,.. Consider a functorial factorisation on
J with associated copointed endo-2-functor (L, ®) and associated pointed endo-2-
functor (R, A). A lax orthogonality structure on the functorial factorisation is one
on U, V, for U the forgetful 2-functor from (L, ®)-coalgebras and V the forgetful
2-functor from (R, A)-algebras.

Explicitly, a lax orthogonality structure as in the definition is a choice of 2-
natural diagonal fillers d(a,b)(h,k): cod(Ua) — dom(Vb) that is functorial on
squares (h,k): Ua — Vb, and 2-natural in a € &, b € 4. Furthermore, for any
diagonal filler e of (h, k) we are given a 2-cell 6(a,b)(e): d(a,b)(h,k) = e that is
2-natural in e and a modification on a, b.

h

E
The 2-cells 6(a, b)(e) must satisfy (Vb) - 6(a,b)(e) = 1x and 0(a,bd)(e) - (Ua) = 1.
Naturality in e means that for each 2-cell €: e = e the equality

(6(a,b)(€)) (d(a,b)(e-Ua,Vb-€)) = eb(a,b)(e)

holds. The modification property for # means that, if a: @’ — a and 5: b — b’ are
morphisms in & and 4, then

dom(V 3) - 0(a,b)(e) - cod(Ua) = 6(a’,b")(dom (V) - e- cod(Ua)).
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dom U« h dom Vg3 dom V B-h-dom U«
d

\\fe

v
dom VB-e-cod U

Ud' vy = Ud

codUa ’ k ' cod V3 ’ ' cod VB-k-cod Ux

Observe that there is no reason why 6 should satisfy the extra property that the
endo-2-cell 6(a,b)(d(a,b)(h, k)) of d(a,b)(h, k) be an identity 2-cell.

Remark 8.18. In the particular instance when & = # = 1, the 2-functors U and V'
pick out morphisms f: A - B and g: C' — D in J#, and a lax orthogonality struc-
ture for f, g can be described simply as a functor D that is a section of the canoni-
cal comparison functor H into the pullback, together with a natural transformation
0: DH = 1 that satisfies Hf = 1. This structure can be described as a choice of a
diagonal filler D(h, k) for each square (h, k) and a 2-cell 8(e): D(h, k) = e for any
other diagonal filler e, that satisfies g-6(e) =1 and f(e) - f = 1.

H
%(B,C) <Tjff(A,(j) XJ{(A,D) %(B,D)

Proposition 8.19. The underlying 2-functorial factorisation of a lax orthogonal
AWFS carries a canonical lax orthogonal structure, whose diagonal fillers are those
induced by the 2-functorial factorisation in the usual way — as in Ezample[6.9

Proof. For an awrs (L,R), consider the forgetful functors U and V from, re-
spectively, the 2-categories of (L, ®)-coalgebras and (R, A)-algebras. Denote by
¥ = (1,s): U = LU the L-coalgebra structure of U, and IT = (p,1): RV = V the
R-algebra structure of V. In this proof we use the notation introduced in the sec-
ond paragraph of this section: 2" is the 2-category of Cat-modules from L-Coalg,
to R-Alg,, and M = (M, AM TIM) the 2-monad on 22 whose algebras are right
adjoint retracts.

We can form two objects of 22 depicted as the vertical arrows in the square
below, induced by the Cat-module morphism Diag — 1 introduced in . The
morphisms of Cat-modules ¥*: (LU)* — U* and Ay: (RV)s — Vi induce a
morphism in 22, depicted as the commutative diagram in 2" below.

ot
U* L*DiagRy Vi — 5%, [1*DiagV,

l - l (8.20)
SHIT

U*L*RyVy ———= S U*V,

This morphism is a retraction in 2°2, since £* and II, are retractions with respec-
tive sections ®* and A,. Theorem implies that the object of 22 depicted by
the leftmost vertical arrow in the diagram carries a structure of an M-algebra. Hence
the object on the right hand side, as a retract of an M-algebra, carries an (M, AM)-
algebra structure that makes the retraction a morphism of (M, AM)-algebras.
It remains to show that the section of U* - Diag - Vi, — U™ - V, so obtained is equal
to that induced by the functorial factorisation, as described in Example for
which we appeal to Remark The induced section is

* pk s)*Dia

UV, L8 Ve e RV, s U L*Diag y Ry Vi 2 2280 D%, 1ripyiagy,
where the middle morphism is the Kz lifting operation for LU, RV. One can
verify that the diagonal filler of a square (h,k): f — g, where (f,s) is an (L, ®)-
coalgebra and (g,p) and (R, A)-algebra, is p - d - s where d is the diagonal filler of
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(Lg-h,k-Rf): Lf —> Rg. But d = K(h, k), so p-d- s is precisely the diagonal filler
induced by the functorial factorisation. O

9. ALGEBRAIC KZ INJECTIVITY

In previous sections we have visited the construction of the universal category
A® with lifting operations against a functor A — C2, and the fact that, for any
AWFS (L,R) on C, each R-algebra comes equipped with a lifting operation against
L-coalgebras; in other words, the existence of a functor R-Alg — L-Coalg™. In this
section we concentrate in the analogous constructions adapted to the case of lax
orthogonal AWFSs, where Kz lifting operations will play an important role.

The reader would recall from Section |7} and originally from [?], the definition
of the free category with a lifting operation U": A" — C2 for U: A — C2. If
U: o/ — #?is a 2-functor instead, /™ has objects (g, ¢) where ¢ is a section of
the morphism U* - Diag - g — U* - g4 in the 2-category Cat-Mod(1, /), which
is isomorphic to [«&/°P, Cat]. Morphisms (g,¢) — (¢’,¢') are those morphisms
(u,v): g — ¢' in #? that are compatible with the sections, while 2-cells (u,v) =
(u,v) are pairs of 2-cells a: v — w and 5: v — v in J such that the equality below
holds — we omit the dots that denote composition to save space.

. U* Diag(u,v) % U™ (u,0) % &
U*g —> U*Diaggx ||  U*Diagg, = U*gx | U¥g, — U*Diagg
U* Diag(,) U*(1,0) 4

In more elementary terms, a - ¢(a,h, k) = ¢'(a,a - h, 3 - k), for each a € & and
each square (h,k): Ua — g. The 2-functor U™: &/ — #?2 is the obvious one,
analogous to the case of ordinary categories.

Next we introduce a different construction, the universal 2-category with a Kz
lifting operation.

Definition 9.1. Given a 2-functor U: &/ — #2 define another U™ : of M — 2
in the following manner.

e Its objects are morphisms g € J#2 that are algebraically Kz injective to U, by
which we mean that they are equipped with a Kz lifting operation for the 2-
functors U, g: 1 — #'2; ie a left adjoint coretract to the morphism of Cat-
modules U* - Diag - g4 — U* - g4. Hence, an object of /™ is an object of 7™
equipped with the extra structure of a coretract adjunction.

e A morphism g — ¢/ in &/ ™ is a morphism (h, k) in .#2 such that in the diagram
below not only the square formed with the right adjoints commutes — this always
holds — but moreover the diagram represents a morphism of adjunctions; ie the
square formed by the vertical arrows and the horizontal left adjoints commutes,
and the vertical morphisms are compatible with the counits.

U U* - g4

*. Diag - g I
U*~Diag-(h7k)*l J/U*-(h,/c)* (9.2)
U* - Diag - g, I U* - g,

e The 2-cells in &7 ™ are those of J#2. Observe that any such 2-cell is automati-
cally compatible with the left adjoints in (9.2]) — by Proposition (). There
are obvious forgetful 2-functors &7 ™ — o™ and &7 ™ — # 2, the first of which
is locally fully faithful.

Dually, given a 2-functor V: Z — #2 define ™V: "z — #2 by Mg =

(°P)P and ™V = (VoP)hw . Here we use the obvious isomorphism (% 2)°P

10
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(£°P)2. More explicitly, objects of ™2 are f € #2 equipped with a Kz lifting
operation for the 2-functors f: 1 — #2 V.

Remark 9.3. There is a concise way of describing .&7™<. Let M be the 2-monad
on the 2-category (/)% whose algebras are right adjoint retract morphisms in
P () = [o/°P, CAT]. This 2-monad can be described by performing the construc-
tion of the 2-monad of Section starting from the 2-category &?(«7)°P. More
explicitly, if ¢ is a morphism in & (&), then M¢ is the morphism with domain the
co-comma object depicted and whose composition with this co-comma object is an
identity 2-cell.

The Cat-module morphism Diag — 12 can be equivalently described as a 2-
functor

E: % — 2(x?)?
that sends g € .#2 to Diag(—,g) — #2%(—,g). Then &/ ™ is the pullback of the
2-category of M-algebras along Z2(U*)2E.

o M M-Alg,

| |

2L () P ()2

G P(U*)?
—5

Remark 9.4. One can express the compatibility of the morphism (h, k) in .o M+
with the counits required in Definition [0.1] in terms of diagonal fillers. Given a
diagonal filler j as on the left hand side below, the counit provides for a 2-cell
gj: ¢(a,u,v) = j. The compatibility means that h-e; = ep.;.

u u h h-u
Ual/lg Ua /%Q lg/ — Ual : Q i J{gl
T> TJ)T) . k.vh‘J .

These constructions are functorial, in the sense that if F': (&, U) — (£,V) is a
2-functor over .# 2, there is another 2-functor FMw: (M Vi) s (g7 T [z,
which sends g € J#2 equipped with a Kz lifting operation for V, g to the induced
choice for U = VF,g. A 2-functor ™ F can be similarly defined.

Remark 9.5. Given V: % — 2, there is an isomorphism of categories between
2-functors B — o ™ over #? and Kz lifting operations for the pair of 2-functors
U,V. Similarly, there is an isomorphism of categories between 2-functors &/ —
e B over #2 and Kz lifting operations for the pair of 2-functors U, V. We hence
have a natural isomorphism of sets

2-Cat/ *((,U), (8", V™)) = 2-Cat/H *((#,V), (", "U))

and an adjunction between (—)*= and ™ (—).

The unit and counit of this adjunction — or rather, both units — are 2-functors
Ny: of — rh“Z(,sa/"““z) and My : o — (™o)™ commuting with the functors into
2. The first one corresponds to the tautological Kz lifting operation for the pair
of Qr;functors U, UM, and the second one to the tautological Kz lifting operation
for ™U,U.



LAX ORTHOGONAL FACTORISATION SYSTEMS 33

Ezample 9.6. In the case when U is the 2-functor f: 1 — #2 that picks out a
morphism f, the objects of the 2-category f™< are morphisms algebraically Kz
injective with respect to f. This is a slight abuse of language, as a morphism can be
algebraically Kz injective to f in more than one way — but two such are, of course,
isomorphic.

Lemma 9.7. Given a 2-functor U: & — 2, a 2-adjunctionU - G and g€ H'2,
there is an isomorphism of 2-categories over # % between o/ ™ and the 2-category
described by:

e Objects are coretract adjunctions £y 4 G(1,9): G(lgom(g)) — Gg in <.

o Morphisms from £, 4 G(1,9) to {5 4 G(1,g) are morphisms (h,k): g — g
in X2 such that G(h, k) defines a morphism of adjunctions: G(h, k)£, =
ls - G(h, k) and G(h,k) commutes with the counits.

o 2-cells (h,k) = (h, k) are 2-cells in 2, with no additional conditions.

Proof. By Propositionthere is a bijection between objects of &7 ™ and coretract
adjunctions as in the statement. The description of the morphisms and 2-cells is a
direct translation from the ones of &7®< — Definition [0.1] O

Lemma 9.8. Assume the conditions of Lemma [9.7 Then, for any full sub-2-
category F < o containing the full image of G, the functor o/ M — F M induced
by the inclusion is an isomorphism.

Proof. If we denote by J: % < &/ the inclusion and H = JG: &/ — % the
right adjoint of UJ, Lemma allows us to describe .Z < as the 2-category with
objects coretract adjunctions £, < H(1,9): H(lgom(g)) — Hg in #. But to give
this retract adjunction in % is equivalent to giving a retract adjunction £, 4 G(1, g)
in &7. The rest of the proof is similarly easy. O

Corollary 9.9. If (L,R) is a lax orthogonal AWFS on JZ, there exists a 2-functor
R-Alg, — L-Coalg™* over L-Coalg,.

Proof. Proposition [8.12] together with Lemma [9.7] imply that, in order to define
the 2-functor on objects, we may send an R-algebra (p,1): Rg — ¢ to a corectract
adjunction £ 4 L(1, g) in L-Coalg,. The adjunction is L(1,p) - £, 4 L(1, g), which
is the composition of the adjunctions ¥, 4 L®, and L(1,p) - L(1,Lg). On
morphisms and 2-cells, the 2-functor is defined by the identity. O

Theorem 9.10. The following are equivalent for an AWFS (L,R) on a 2-category.

(1) (L,R) is a lax orthogonal AWFS.

(2) There is a KZ lifting operation for the forgetful 2-functors from L-coalgebras
and from R-algebras.

(3) There is a 2-functor R-Alg, — L—Coalg';"“Z making commutative.
Furthermore, this 2-functor is essentially unique.

(4) There is a 2-functor R-Alg, — F ™ making the outer diagram in
commutative, for any full sub-2-category F < L-Coalg, containing the
cofree L-coalgebras. Furthermore, this 2-functor is essentially unique.

R-Alg, — — »+ L-Coalg™ —— Fhw

~, | l

L-Coalg® —— .7

Proof. There is a bijection between structures in and those in , by definition
of &/ ™ in which case both are essentially unique since Kz lifting operations are
unique up to isomorphism — Lemma The equivalence of and follows
from Lemma while that of and (3)) was already explained above.
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‘We now proceed to prove =>. As it has been our convention, we will denote
by J the base 2-category, and by U and V the forgetful 2-functors from the 2-
categories of L-coalgebras and R-algebras, respectively.

Let (g, p) be an R-algebra. Its image in L—Coalg: can be given as in Corollary
again by (g, p). By hypothesis, (g, p) carries a structure of an object of L-Coalgy™*.
By definition p- Lg = 1 and g - p = Rg. Consider the diagonal

Lg

Lgl Lg-p lRy

and note that Rg is an object of L-Coalg?™, and that the chosen diagonal filler of
the outer square is the identity morphism. It follows the existence of a unique 2-cell
n: 1= Lg-psuch that n- Lg =1 and Rg-n = 1. The first of these two equalities
is one of the triangle identities required to obtain a retract adjunction p o4 Lg. The
second of these equalities tells us that, if we can prove the other triangle identity,
we obtain not only an adjunction in J¢ but also a retract adjunction (p, 1) 4 A, in
K2,
We now show that p-n = 1. Consider the pasting below.

Rg

The chosen diagonal filler of the outer diagram is p, and p - is an endo-2-cell of
p. In addition, g-p-n=Rg-n=1and p-n-Lg = 1. By the universal property
of Kz lifting operations spelled out immediately after Definition [B:2] it must be
p-n = 1. This finishes the proof that R-algebra structures are left adjoint retracts
to the components of the unit of R, ie that R is lax idempotent.

One can show that L is lax idempotent either by appealing to Theorem or by
a duality argument. By taking opposite 2-categories, and taking into account the
isomorphism (#°P)2 = (#2)°P, the 2-functor L-Coalg, — ™*R-Alg,, which exists
by Remark transforms into a 2-functor L°P-Alg, — ROP—Coalg?“Z that com-
mutes with the 2-functors into ROP—Coalg?. By the proof above we know that L°P
is a lax idempotent 2-monad on (.#2)°P| which is to say that L is a lax idempotent
2-comonad. O

Theorem has a dual statement of the following form: an AWFSs (L, R) is lax
orthogonal if and only if there exists an — essentially unique — 2-functor L-Coalg, —
iz R-Alg, commuting with the respective forgetful functors into mR—Algs.

Remark 9.11. For a lax orthogonal Awrs (L,R), objects of L—Coalgg“KZ are in bi-
jection with normal pseudo-R-algebras. Indeed, the proof of Theorem [9.10] shows
that they are in bijection with retract adjunctions (p,1) o A, in 2#2, which are
precisely normal pseudo-R-algebras

10. SIMPLE 2-ADJUNCTIONS AND LAX IDEMPOTENT 2-MONADS

This section introduces the notion of simple 2-adjunction, which can be thought
as a lax version of that of simple reflection studied in [?].

In the same way that one can define a strict monoidal category as a category
with a bifunctor (— ® —) that is associative and has a unit object, we may define
a strict monoidal 2-category as a 2-category & with a 2-functor ®: & x & — &
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that is associative and has a unit object I. A monoid in &/ is a monoid in its
underlying strict monoidal category, ie an object 7" with a multiplication and unit
morphisms that satisfy the usual monoid axioms. The main example for us will
be &/ = End(#), the endo-2-morphisms of a 2-category %, where a monoid is a
2-monad.

Definition 10.1. A lax idempotent monoid in a strict monoidal 2-category & is
a monoid j: I — T <« T ® T: m that satisfies conditions analogous to those of

Definition numerals and These are, in turn,
o T'®j - m with identity unit;
e m - j®T with identity counit;
e thereisa 2-cell 0: T®j = jQT: T — T ®T that satisfies § - j = 1 and
m-§ = 1.

We can now make our first statement of the section. The reader would have
noticed that the monoidal 2-categories need not be strict in order for the results to
hold, but we keep the strictness hypothesis for simplicity.

Lemma 10.2. Let o/ be a monoidal 2-category and € < < a coreflective 2-
category, closed under the monoidal structure, and (T,i,m) a monoid in <. If
a: S — T is the coreflection of T into €, then S carries a structure of a monoid
(S, 7,m) making o a monoid morphism. Assume further that a®S: S®S > T®S
is the coreflection of T ® S. Then S is lax idempotent if there exists a coretract
adjunction
T TR8) 4 (Tes S TeT 2 T). (10.3)

Proof. The unit j: I — S and multiplication n: S® S — S are defined by a-j =i
and a-n =m- (a®«a). We shall define a 2-cell 6: S®j = j®S5: 5 > S®S.
From the fact that a® .S is a coreflection, it follows that to give d is equally well to
give a 2-cell ': (T®j) - a=1i® S, and by the adjunction , to give a 2-cell
:a=m- - (T®a)-(i®S), which we choose to be the identity.

The axiom §-j7 = 1 of a lax idempotent monoid follows from the triangle identity
e (T'®j) =1, where ¢ is the counit of : we show that &’ - 7 = 1 below.

§-j=(T®)) m-(T®a)-§ j)e- (j©8)-j) = (T®j)-i=1L

It only rests to verify the axiom n-§ = 1. By the coreflection «, we have to show
l=an-d=m- (a®a)-0 =m-(T®«)-§ =", which holds by our choice of
6", O

Before continuing, it is convenient to introduce some notation. Each endo-2-
functor S of #2 corresponds under the isomorphism End(#2) = [#2, ¢ 2] ~
[£2, ]2 to a pair of 2-functors Sy, S1: C2 — C with a 2-natural transforma-
tion Sy = S1. We denote the component of this natural transformation at f by
Sf: Sof — Sif. A morphism S — T in End(2#2) corresponds to a pair of 2-
natural transformations Sy = Ty and S; = Tj, compatible with Sy = S; and
TO = Tl-

A version for categories and functors, as opposite to 2-categories and 2-functors,
of the following lemma is contained in [?, Prop 4.7].

Lemma 10.4. If 7 has pushouts, then the category of codomain-preserving pointed
endo-2-functors 1\Endcoq(#2) is a coreflective sub-2-category of the 2-category of
pointed endofunctors 1\End(#2). The coreflection of a 2-monad has a canonical
structure of a codomain-preserving 2-monad that makes the coreflection counit a
monad morphism.
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Given a pointed endo-2-functor (T, ©), its codomain-preserving coreflection (R, A)
is given by the following pullback square, while the point A: 1 = R is induced by
the universal property. The natural transformation R = T with components given
by the pullback square is the counit of the coreflection.

@of
Rof Tof
LRrf b |rs

B—— STVf
@1/‘

Remark 10.5. For future reference, we state that the coreflection R = T of a monad
T on C? into a codomain-preserving monad R is a monad morphism.

Definition 10.6. Suppose given the following data.
e A 2-adjunction F 4 U: of — £, who