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Abstract

Operation of Gas Electron Multiplier (GEM) in ultra-pure xenon was studied for gas at 25 °C, cold but not saturated gas at —90 °C
and saturated xenon vapour at —102 °C. The most stable operation was observed at —90 °C for which the maximum visible gain of 150
was obtained from a single GEM. The maximum gain of ~40 was achieved for saturated xenon vapour at —102 °C and of ~25 for two-
phase configuration at the same temperature. Continuous operation of a GEM in two-phase mode for periods of several hours was

routinely achieved.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Two-phase xenon (gas/liquid) detectors are being devel-
oped and used for several applications such as dark matter
searches [1], neutrino detection [2] and medical imaging [3].
Detection of low-energy signals in those detectors requires
internal amplification of the signal in the detector. The
existing designs rely mostly on the production of electro-
luminescence in the gas by electrons extracted from the
liquid.

An alternative approach is to multiply the extracted
electrons in saturated vapour by means of a micro-pattern
detector, such as Gas Electron Multiplier (GEM) [4].
Recently, successful operation of a triple-GEM structure in
a two-phase xenon detector with gain of 200 was reported
[5]. However, resolution was poor due to insufficient
temperature stabilization and purity of the liquid.

We present the results on GEM operation in pure xenon
gas at room temperature, at —90°C and in saturated
vapour at —102 °C, including the double phase mode, in a
well-controlled environment and at a constant gas density.
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2. Experimental set-up and results
2.1. Gas

The measurements were carried out using the gridded
ionisation chamber shown in Fig. 1. The stainless steel
cathode with an **' Am «-source mounted on top of it was
separated from the Frisch grid by ceramic spacers. A 50 um
thick GEM foil was placed between the Frisch grid and the
collector grid. The GEM, manufactured by 3 M [6], has
holes of 70 pm in diameter at 140 um pitch. Electrons from
a-tracks were drifted to the bottom face of the GEM, kept
at ground potential, by applying negative voltage to the
cathode plate, high enough to ensure full electron extrac-
tion from the a-tracks. The Frisch grid was kept at a
constant fraction of the cathode voltage by means of a
voltage divider (see Fig. 2) to ensure constant transparency
for drifting electrons of ~95%. Low-noise charge-sensitive
preamplifiers (Cremat-110) were connected to the bottom
face of the GEM and to the collector grid. The output
signals of the preamplifiers were amplified and shaped by a
spectroscopy amplifier (Canberra 2021) and analysed by a
multi-channel analyzer.

Two modes of operation were used. In the first mode, the
top face of the GEM and the collector grid were grounded.
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In this case all the charge was collected at the bottom face
of the GEM. This allowed to measure the initial charge
(Qp) arriving to the GEM. In the second mode, the initial
charge was amplified in the GEM and partially extracted to
the collector grid (Qey) by applying positive voltage to the
GEM and collector grid. The amplification factor Q./Qq
was recorded as a function of the voltage applied to the
GEM (Vgem) and the strength of the extraction field.
The electrodes were mounted on a stainless steel flange
with ceramic feedthroughs and put inside a cylindrical
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Fig. 1. The ionisation chamber used in the measurements (5.49 MeV

a-particles, emitted by >*' Am, have range of 11 mm in Xe gas with density
49 %10 cem™).
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stainless steel chamber, 100 mm diameter and 70 mm high.
Only high-vacuum compatible materials were used. The
chamber was helium leak tested, pumped to 10~" mbar and
baked at 75 °C for three days. Then it was further cleaned
by passage of xenon gas purified by Oxisorb column.

The chamber was placed inside a liquid nitrogen
cryostat. Special care was taken to ensure temperature
stability and uniformity along the chamber. By using
copper screens around the chamber it was possible to
maintain the temperature gradient between the top and the
bottom of the chamber, as well as variations of the
temperature during the measurements, within 2°C. The
temperature was measured with precision of 0.5°C by
means of three platinum thermo-resistors distributed along
the body of the chamber.

Operation of a single GEM in xenon gas was studied at
two gas densities (see Table 1). When determining the
maximum amplification, the point was considered valid if it
was possible to record a pulse height spectrum during at
least one minute without discharges.

The results of measurements in gas are presented in
Fig. 3 for gas density of 4.9 x 10" cm ™. The solid and the
open symbols correspond to temperatures of 25 and
—90°C, respectively. The amplification is similar for the
two temperatures, but the overall stability of operation is
better at lower temperature, allowing extraction of much
higher fraction of the multiplied charge from the GEM by
applying higher extraction field. The data regarding the
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Fig. 2. The readout schematic.

Table 1

Maximum amplification factor reached at different conditions and corresponding Vgem

Density (cm ™) T=25°C T=-90°C Saturated vapour at —102°C Two phase at —102°C

p (bar) Oexi/ Qo Veem  p (bar) Oext/ Qo Voem  p (bar) Oext/ Qo VGem p (bar) Oecxi/ Qo VGem
49 % 10" 2.0 80 650 1.2 150 625 - - - - - -
6.1x 10" 2.5 45 700 1.5 110 715 1.4 45 650 1.4 25 650
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Fig. 3. Dependence of amplification Qey/Qo in xenon gas on the
extraction field for several values of Vggm. Solid and open symbols

correspond to 25°C and —-90°C, respectively. Gas density is
4.9 %10 cem ™.
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Fig. 4. Dependence of amplification Q.. /Qp on the extraction field for
several values of Vgpy at p = 6.1 x 10" em=3. Gray symbols—saturated
gas, black symbols—two phase mode, open symbols—gas at —90 °C.

maximum amplification reached at different conditions are
summarized in Table 1.

2.2. Saturated vapour and two-phase mode

The measurements were also performed for saturated
xenon vapour at —102°C. To do this, xenon was
condensed into the chamber until the liquid level was
about 1 mm below the cathode. Then the temperature was
stabilized until the gradient along the chamber was less
then 1°C. It was found that the operation of the GEM in
saturated xenon vapour differs considerably from opera-
tion in cold gas of the same density, showing higher gain at
the same voltage (Fig. 4). This is probably due to higher

concentration of dimers Xe, with lower ionization poten-
tial. However, the stability in vapour is lower and the
maximum amplification of only 45 was reached for vapour
at —102 °C, compared to Qex/Qp~ 110 obtained in gas at
-90°C.

In the two-phase mode, the electrons extracted from a
particle track in the liquid phase must be transported to the
liquid—gas interface and ““pushed” into the gas phase by a
strong electric field [7]. To provide the conditions for
efficient and uniform emission of electrons into the gas, the
chamber was slightly modified. In particular, the Frisch
grid was removed in order to ensure better field uniformity
at the surface of the liquid and the distance between the
cathode and the GEM was reduced to 11.0 mm.

The chamber was filled with liquid xenon up to a level of
7mm above the a-source. The voltage applied to the
cathode was increased to 6 kV resulting in a field of ~4kV/
cm in the liquid, at which about 80% of electrons reaching
the liquid—gas boundary are emitted into the gas phase [8].
It is worth mentioning that due to strong recombination,
the charge that is extracted from an a-track in the liquid by
a field of 4 kV/cm is only about 5% of that in the gas [9]. In
our case, the total charge transported to the GEM at these
conditions was found to be 2.7 fC per a-particle.

The dependence of amplification on Vggym and the
extraction field in two-phase mode is practically identical
to that observed for saturated vapour (Fig. 4). The pulse
height spectrum of signals taken from the collector grid at
Voem = 625V and E. = 5.7kV/cm is shown in Fig. 5.
The amplification factor is about 15 at these conditions.
For the peak on the right, which is due to a-particles, the
FWHM of 16% is found. The right side of the peak seems
to be distorted, most probably due to simultaneous
detection of 60keV y-rays also emitted from the **'Am
source. Fitting of the left side of the peak with a Gaussian
gives resolution of 13.5% (FWHM). The smaller peak at
channel 70 seems to be due to 60keV y-rays, for which,
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Fig. 5. Pulse-height spectrum obtained in the two-phase mode.
Veem = 625V, Q../0Q, = 15. Narrow peak at channel 130 is due to
calibration pulses.
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because of much weaker recombination, the charge
extraction in liquid is much more efficient than for o-
particles.

2.3. Xenon purity

The issue of possible contamination of liquid xenon by
electronegative impurities from GEM is very important as
impurities may affect both the validity of the measurements
and performance of the detector. To assess the purity of
xenon after a 12-h run, additional xenon was condensed
into the chamber to cover the GEM (the amount of xenon
added was about 10% of xenon already existing in the
chamber). Then the time dependence of the current,
induced by ionisation charge drifting in the parallel-plate
chamber formed by the bottom face of the GEM and the
cathode was studied. As this current was found practically
constant during the electron drift time of about 3.5 us, thus
indicating no sensible loss in the amount of drifting
electrons during this time, the electron lifetime is much
longer than 3.5ps. Also, the total charge collected from
a-track was estimated to be 3.2fC for electric field of
5.5kV/cm, which is in agreement with published data [9]
within 10%.

3. Conclusions

Operation of a single GEM in pure xenon was studied
for gas at 25°C, cold but not saturated gas at —90 °C and

saturated xenon vapour in one- and two-phase modes. The
most stable operation was observed at —90 °C for which
the gain of 150 was obtained for xenon gas at a density of
4.9 x 10" em™3. The maximum gain of ~40 was achieved
for saturated xenon vapour at —102°C and of =~25 for
two-phase configuration at the same temperature. Energy
resolution of 13.5% (FWHM) was obtained for a-particles
in two-phase mode. Continuous stable operation of a
GEM in two-phase mode for periods of several hours was
routinely achieved.
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