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Abstract

A study of the mechanical behaviour of a composite ®lm-substrate material during the hardness test is undertaken. An analytical

calculation is proposed applying the kinematic model to the case of the coated spherical cavity problem. The aim of this paper is to discuss

the parameters that in¯uence the mechanical behaviour, in order to understand the observed experimental results. The parameters studied are

the size of the plastic deformed region, the ratio between the yield stresses of the ®lm and the substrate and the relative work-hardening ratios

of both materials. The results show that an important parameter that in¯uences the composite behaviour is the size of the plastic deformed

region. The other parameters play an important role in the de®nition of the size of this region and in¯uence the hardness behaviour as well in a

direct way. q 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

The indentation test has become the most successful tech-

nique to characterise the mechanical behaviour of thin coat-

ings. The main problem associated with this test is the

evaluation of the single contributions of the substrate and

the thin ®lm in relation to the composite hardness. A large

number of theoretical models have been used for this

purpose. In spite of their differences, they can be resumed

by a general relationship of the form

Hc 2 Hs

Hf 2 Hs

� F
t

h

� �
(1)

where Hc, Hs and Hf are the composite, substrate and ®lm

hardnesses, respectively, t is the ®lm thickness and h is the

depth of the indentation. The function F depends on the type

of model and could have a more or less complex form [1-

12]. Most of the times, F is a polynomial function with a

degree equal to or inferior than 3 and the respective

constants must depend on parameters related with the prop-

erties of the ®lm and the substrate materials, size and

geometry of the deformed region, etc. This dependence is

not well understood and, in general, it is taken in an empiri-

cal way.

In another paper [13], the authors develop an empirical

model to predict the hardness of the ®lm from the measured

hardness of a ®lm-substrate bilayer. This empirical model,

that can be used when the maximum load is such that the

plastic deformed region clearly affects the substrate, is

based on results obtained using depth sensing hardness

instruments. From the studied experimental cases, it was

understood that the size of the deformed region, more

precisely, the ratio of the ®lm thickness/critical depth

(above which exists plastic deformation of the substrate)

is an important parameter to determine the constants of

the model.

The intention of this paper is to undertake a theoretical

study of the mechanical behaviour of a bilayer, in order to

model the hardness test applying the kinematic approach to

the case of the coated spherical cavity problem. The kine-

matic model assumes that the plastic work done by the stress

®eld on a kinematically admissible displacement increment

®eld is equal to the work done by the external loads on the

same displacement increment ®eld. The main objective of

the present study is to appreciate the in¯uence of several

parameters, concerning the size of the deformed region and

the mechanical behaviours of the ®lm and the substrate, on

the relationship given by Eq. (1). The present manipulation

of the kinematic approach assume the hypotheses that the

mechanical behaviour of both ®lm and substrate are rigid-

plastic with linear work-hardening. Indeed, as most materi-

als present ductile behaviour, specially under compression
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stress state, as in the case of the hardness test, the rigid-

plastic theory can then be applied. This formulation discards

the elastic part of the deformation, which is quite reasonable

when the plastic strain reaches large values compared with

the elastic strain values.

2. A kinematics model analysis of a coated spherical
cavity problem

The kinematics model de®nes an admissible displace-

ment increment ®eld du*
i that satis®es the conditions of

strain compatibility, plastic incompressibility and the

boundary conditions. The plastic work done by the stress

®eld Wi on a kinematically admissible displacement incre-

ment ®eld is an upper bound of the work done by the exter-

nal loads We on the same displacement ®eld [14±17]. So, the

upper bound of external load per unity of area T1 can be

obtained solving the equation

We �
Z

S
TiduidS �

Z
V
s*

ijd1
*
ijdV � Wi (2)

where dui represents the boundary displacement, S the

boundary surface, d1*
ij the kinematically admissible incre-

mental strain ®eld, s*
ij the stress tensor at each point and V

the plastically deformed volume. The physical meaning of

this equation is as follows: for all possible kinematically

admissible displacement ®elds, the work done by the asso-

ciated stress ®eld in the volume is equal to the work done by

the unknown forces during the displacement of the surface

boundary.

Both sides of the above equation can be divided by dt and

the displacement increment ®eld becomes a velocity ®eld

_We �
Z

S
TividS �

Z
V
s*

ij _1
*
ijdV � _W i (3)

where ni is the boundary velocity and _1*
ij represents the

components of the strain rate tensor.

The hardness of a material depends on several parameters

such as the yield stresses s 0, the Young's modulus E and the

¯ow rule (plastic stress-strain relation) [18±20]. For small

ratios s 0/E the elastic behaviour does not in¯uence the

plastic ¯ow under the indent. So, the hardness can be calcu-

lated using a rigid-plastic behaviour model [20].

Considering that a pressured spherical cavity, existing

within a rigid-plastic bulk material, has radius a and is

submitted to a pressure p, the incremental displacements

can be written using spherical co-ordinates as follows

duu � duw � 0

dur � du�r� (4)

and the components of the incremental plastic deformation

tensor are

d1rr � d

dr
du�r�

d1uu � d1ww � du�r�
r

d1uw � d1ru � d1rw � 0 (5)

The incompressibility condition gives

d1rr 1 d1uu 1 d1ww � 0) d1rr 1 2d1uu � 0 (6)

Taking into consideration the boundary condition that at

r � a (a is the inner radius of the spherical cavity), du is

equal to da, the solution of this differential equation is

du � a2

r2
da (7)

So, Eq. (5) can be written as follows

d1rr � 2
2a2

r3
da

d1uu � d1ww � a2

r3
da

d1uw � d1ru � d1rw � 0 (8)

or, dividing both members of the above equation by the time

increment dt, and doing _1 ij � �d1ij=dt� and _a � �da=dt�

_1 rr � 2
2a2

r3
_a

_1uu � _1ww � a2

r3
_a

_1uw � _1 ru � _1 rw � 0 (9)

Considering this equation, the de®nition of the von Mises

equivalent plastic strain rate gives

_�1 � 2��
3
p

� � �����������������
1

2

X
_1 ij _1 ij

� �s
�

���
2

3

r ! ��������������������
_12

rr 1 _12
uu 1 _12

ww

q

� 2
a2

r3
_a

(10)

A linear work-hardening can be considered in the follow-

ing way

�s � s0 1 a �1 (11)

where �s and �1 are the equivalent stress and plastic strain

after von Mises. From Eq. (9) and considering that 1rr � 0

when r � c (in the elastoplastic boundary), it is possible to

write

1rr � 2
2

3

a

c

� �3 c3

r3
2 1

 !
(12)
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�1 � 2��
3
p

� � �����������������
1

2

X
1ij1ij

� �s
�

���
2

3

r ! �������������������
12

rr 1 12
uu 1 12

ww

q

� 2

3

a

c

� �3 c3

r3
2 1

 !
(13)

�s � s0 1
2

3
a

a

c

� �3 c3

r3
2 1

 !
(14)

The internal plastic energy rate _W i can be calculated

considering that in Eq. (3) _s*
ij _1

*
ij can be substituted by

�s* _�1*, being �s* and _�1* the equivalent stress and plastic

strain rate after von Mises, as follows

_W i �
Z

V
�s* _�1*dV (15)

� 4pa2 _a s0ln
c

a

� �
1

2

9
a 1 2

a

c

� �3

1 1 3ln
c

a

� �� �" #( )

The energy rate of external forces along the displacement

boundaries _We, can be calculated as follows

_We �
Z

S
TividS � 2pa2p _a (16)

The Eq. (3) then allows us to write

HV � p � 2s0ln
c

a

� �
1

4

9
a 1 2

a

c

� �3

1 1 3ln
c

a

� �� �� �
(17)

Considering that a=c� �3 1 1 3ln c=a� �� � can be neglected

when compared with the unity (c is about ®ve times a and

so a=c� �3< 0), Eq. (17) can be written as follows

HV � p � 2s0ln
c

a

� �
1

4

9
a � 2s0 ln

c

a

� �
1

2

9

a

s0

� �� �
(18)

If the material does not present work-hardening (a � 0)

this equation is reduced to

HV � p � 2s0ln
c

a

� �
(19)

In the case of a composite material, the internal work _W i

is given by

_W i �
Z

V
�s* _�1*dV �

Z
Vf

�s* _�1*dVf 1
Z

Vs

�s* _�1*dVs (20)

where Vf and Vs are the plastic deformed volume of the ®lm

and substrate, respectively. We consider an identical beha-

viour for the ®lm and substrate as that described by Eq. (11)

�s � s0 1 as �1

�S � S0 1 af �1 (21)

where as and af , s0 and S0, �s and �S are the work-

hardening linear coef®cients, the yield stresses and the

equivalent stresses for the substrate and for the ®lm, respec-

tively.

The internal plastic energy rate _Wi can now be calculated

as follows

_Wi � 4pa2 _a
Za 1 t

a
S0 1

2

3

� �
af

a

c

� �3 c3

r3
2 1

 !" #
1

r
dr

(

1
Zc

a 1 t
s0 1

2

3

� �
as

a

c

� �3 c3

r3
2 1

 !" #
1

r
dr

)
(22)

If we suppose the following relationship between the

characteristics of the ®lm and the substrate to exist

S0 � ks0

af � xas (23)

then, it is possible to write

_W i � 4pa2 _a s0ln
a 1 t

a

� �k21 c

a

" #
1

2

9
as x 2

a

c

� �3
" #(

1
2

9
as

a

a 1 t

� �3

1 2 x� �2
2

3
as

a

c

� �3

£ ln
a 1 t

a

� �x21 c

a

" #)
(24)

The energy rate of external forces along the displacement

boundaries _We has the same value as in Eq. (16). So, Eq. (3)

allows us to write

Hc � p � 2 s0ln
a 1 t

a

� �k21 c

a

" #
1

2

9
as x 2

a

c

� �3
" #(

1
2

9
as

a

a 1 t

� �3

1 2 x� �2
2

3
as

a

c

� �3

£ ln
a 1 t

a

� �x21 c

a

" #)
(25)

Considering that Hs can be calculated using Eq. (17) and

that the value of a=c� � is the same for the substrate, the ®lm

and the composite, it is possible to deduce the following

expression
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Hc 2 Hs

Hf 2 Hs

� 1 1
2

3

as

s0

� �
k 2 1� �

a

c

� �3

1 2 x� �

2664
3775ln 1 1

t

a

� �8>><>>:
2

2

9

as

s0

� �
k 2 1� � 1 2 x� � 1 2 1 1

t

a

� �23
" #9>>=>>;

4 1 1
2

3

as

s0

� �
k 2 1� �

a

c

� �3

1 2 x� �

2664
3775

8>><>>:

£ln
c

a

� �
2

2

9

as

s0

� �
k 2 1� � 1 2 x� � 1 2

a

c

� �3
" #9>>=>>;

(26)

Assuming a=c� �3< 0 and considering the equality

�as=s0�=�k 2 1� � as=�S0 2 s0�, this equation becomes

Hc 2 Hs

Hf 2 Hs

�

ln 1 1
t

a

� �
2

2

9

as

S0 2 s0

� �
1 2 x� � 1 2 1 1

t

a

� �23
" #

ln
c

a

� �
2

2

9

as

S0 2 s0

� �
1 2 x� �

(27)

If both materials do not present work-hardening, i.e.

neglecting as and af , this equation is reduced to

Hc 2 Hs

Hf 2 Hs

�
ln 1 1

t

a

� �
ln

c

a

� � (28)

Taking into account Eq. (19), the above equation can also

be formulated as follows

Hc 2 Hs

Hf 2 Hs

�
ln 1 1

t

a

� �
Hs

2s0

(29)

This result makes it possible to plot �Hc 2 Hs�=�Hf 2 Hs�
versus �t=a�, knowing the ratio between the hardness and the

yield stress of the substrate (�Hs=s0� < 3 as discussed

below). In this simpli®ed formulation, the present model

is identical to the one proposed by Ford [8].

3. Discussion of the model results

When applying the cavity approach to model the beha-

viour during the hardness test, the ®rst problem is to work

out the correspondence between the inner radius a and the

dimension of the indentation h. Two hypothesis limits can

be considered. The ®rst one is to consider a as the radius of

the indentation at the surface of the sample: a � D=2 � 3:5h

[21] (D being the diagonal of the indentation and h the

indentation depth: D � 7h). The other one considers the

removed volume by the indentation to be the same in both

cases, i.e. pyramidal indenter and spherical cavity [8,22].

For this hypothesis: a � 1:574h. Probably, the best

approach is somewhere between these limit values. Fig. 1

shows the results of Eq. (28) considering three relationships

between a and h: a � 1:574h, a � 2:5h and a � 3:5h (the

value of c=a� � was considered equal to 4.5 ± see discussion

below). For comparison, this ®gure also shows the results

J.V. Fernandes et al. / Thin Solid Films 335 (1998) 153±159156

Fig. 1. Results of the present model considering three possibilities: a �
1:574h (curve 1), a � 2:5h (curve 2) and a � 3:5h (curve 3); the value of

c=a� � is always equal to 4.5. Results of other models: area mixture model

with C � 0:073 (curve 4) and C � 0:140 (curve 5) [1,3] and volume

mixture model (curve 6) [5,7].

Fig. 2. In¯uence of c=a� � on the present model results, in accordance with

Eq. (28). Curve 1: c=a � 3:5; curve 2: c=a � 4; curve 3: c=a � 4:5; curve 4:

c=a � 5; curve 5: c=a � 5:5. The value of a was considered equal to 1.574.



predicted by some other coated surface hardness models. As

can be observed, the results are very sparse. It is not easy to

choose the appropriate model to be applied in each case. In

most of the cases, none of these models can be successfully

applied. Two main kinds of problems are related with the

use of the models: the values of the respective empirical

parameters may be not correctly de®ned and some elastic

and plastic properties of the ®lm and substrate materials,

such as Young's modulus, yield stress, strain hardening

rate, etc. are not known a priori and, consequently, the

models are not accurate enough or useful.

As mentioned above, the results of the kinematic model

are comparable to the ones of some other models previously

proposed. Consequently, we do not intend to undertake an

experimental validation of the present model. It allows us to

perform a qualitative study concerning several mechanical

parameters of the ®lm and the substrate. Moreover, it makes

it possible to understand the reasons why the models could

fail in predicting the hardness of the ®lm, allowing a better

understanding of the range of applicability of such models.

The examples next studied consider the value of a comply-

ing to the relationship a � 1:574h. This choice corresponds

to the value more currently used in the literature [8,22].

The ®rst study concerns the importance of the value of the

ratio c=a� � on the behaviour described by Eq. (1). Neglecting

the work-hardening (a � 0), Eq. (19) allows us to determine

the value of c=a� � for any material: �c=a� � exp�HV =2s0�.
For most of the experimental cases the ratio �HV =s0� is

close to 3 [8,20]. So, the value of c=a� � must be close to

exp 1:5� � < 4:5. Several attempts were made to evaluate the

relative size of the deformed region [21±27]. Also, Bishop

et al. [18] have studied this problem, in their original elasto-

plastic formulation of a spherical hole submitted to internal

pressure and have concluded that the ratio c=a� � depends on

elastic and plastic properties, particularly on the values of

the elastic constants, Young's modulus (E) and Poisson ratio

n� �, and on the yield stress s0

ÿ �
c

a

� �
E

1 1 n� �s0

� �1=3

(30)

When �E=s0� is greater than or equal to about 100, the

value of c=a� � is greater than or equal to about 4.25, depend-

ing on the value of n� �. This hypothesis justi®es the use of

the rigid-plastic behaviour and considers most of the results

in the literature, even for some ceramic materials.

The examples now studied considers Eq. (28), for values

of the ratio c=a� � between 4.0 and 6.0, as shown in Fig. 2.

This ®gure shows that the value of �t=h�c, for which

�Hc 2 Hs�=�Hf 2 Hs� � 1, is strongly in¯uenced by the

value of c=a� � (which characterises the size of the deformed

region): the bigger this region the higher the value of �t=h�c.

This agrees with the analysis presented by the authors else-

where [13]. However, the linear behaviour used to describe
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Fig. 3. (a) Linear evolution of �Hc 2 Hs�=�Hf 2 Hs� versus �t=h�; (b) corre-

spondent evolution of c=a� � with �t=h� in agreement with Eq. (31). The value

of a was considered equal to 1.574. The examples exhibit the same �t=h�c as

that in Fig. 2.

Fig. 4. Importance of the ratio as=�S0 2 s0�. Curve 1 as=�S0 2 s0� � 0;

curve 2 as=�S0 2 s0� � 1; curve 3 as=�S0 2 s0� � 2; curve 4

as=�S0 2 s0� � 3; curve 5 as=�S0 2 s0� � 4. The value of a was consid-

ered equal to 1.574, c=a � 4:5 and x � 0.



the function �Hc 2 Hs�=�Hf 2 Hs� versus �t=h�, experimen-

tally observed, has no correspondence with the results of the

model, presented in Figs. 1 and 2. This is probably due to the

fact that the hardness test is not quite well simulated by the

cavity model. Besides, one must take into account that the

ratio c=a� � evolves during the test, because the mechanical

behaviour of the material under the indentation changes

during the test. In fact, at the beginning of the indentation,

the plastic deformation affects only the ®lm and, with

increasing penetration depth, the plastic deformation affects

also the substrate, in an increasing manner. After the results

of Bishop et al. [18] mentioned above in Eq. (30), the size of

the deformed region is greater for soft materials, such as

those usually used for substrate, than for hard materials,

such as those often used for the ®lms (the value of the

yield stress should decrease relatively quicker than the

value of the Young's modulus and so c=a� � should increase

during the hardness test). So, with increasing penetration

depth, the value of c=a� � increases, which means that the

function �Hc 2 Hs�=�Hf 2 Hs� � f�t=h� tends to approach

linearity. The linearity occurs when ln�c=a� evolves with

�t=h� in such a way that

ln
c

a

� �
� t

h

� �
c

t

h

� �21

ln 1 1
t

a

� �
(31)

Under these conditions, Eq. (28) becomes linear

Hc 2 Hs

Hf 2 Hs

� t

h

� �21

c

t

h

� �
(32)

Fig. 3a shows examples of the function described by the

Eq. (32). The corresponding evolution of c=a� � versus �t=h�,
in accordance with Eq. (31), is shown in Fig. 3b. An impor-

tant conclusion can already be emphasised: the size of the

plastic deformed region and its evolution during the hard-

ness test strongly in¯uence the composite behaviour.

In spite of the impossibility to correctly de®ne this evolu-

tion, this model is quite helpful for understanding which

parameters de®ne the composite behaviour. Other para-

meters can be analysed, such as the ratio k between the

yield stresses of the ®lm and the substrate. Neglecting the

work-hardening of the substrate (as � 0), the functions

described by Eqs. (26) and (27) are not affected by the

ratio k of the yield stresses, giving place to Eqs. (28) and

(29). When the work-hardening of the substrate as is differ-

ent from zero, the behaviour is de®ned by the ratio as=�S0 2
s0� (see Eq. (27)). An example of such a study is shown in

Fig. 4. In this ®gure, several cases with different values for

the ratio as=�S0 2 s0� are compared. When this ratio is

increased, a region with positive concavity is observed,

for values of �t=h� close to zero, i.e. the curve described

by Eqs. (27) or (28) is pushed down and to the right, at
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Fig. 5. Comparison between different cases for the model constants. Curve

1: as=�S0 2 s0� � 0 and c=a � 4:5; curve 2: as=�S0 2 s0� � 2 and

c=a � 4:5; curve 3: as=�S0 2 s0� � 3 and c=a � 4:5; curve 4: as=�S0 2

s0� � 0 and c=a� � de®ned by Eq. (31); curve 5: as=�S0 2 s0� � 2 and

c=a� � de®ned by Eq. (31). For all the cases, the value of a was considered

equal to 1.574 and x � 0.

Fig. 6. In¯uence of the value of x on the model results. Curve 1: x � 0;

curve 2: x � 0:25; curve 3: x � 0:5; curve 4: x � 0:75; curve 5: x � 1. The

value of a was considered equal to 1.574 and c=a � 4:5 with: (a) as=�S0 2

s0� � 3 and (b) as=�S0 2 s0� � 2.



the origin of the axis. At this point, the slope of the curve can

even be zero or negative. In the case of x � 0, this happens

for:

as

S0 2 s0

� �
$

3

2
(33)

When this occurs, the curve crosses the horizontal axis at

two points, �t=h� � 0 and �t=h� . 0, in the domain

0 # �Hc 2 Hs�=�Hf 2 Hs� # 1. So, the effect of increasing

the ratio as=�S0 2 s0� is, in some way, qualitatively similar

to the effect obtained by increasing the value of c=a� �, as was

described in Fig. 3a. Increasing both parameters simulta-

neously, it is possible to observe a positive concavity

throughout the domain: 0 # �Hc 2 Hs�=�Hf 2 Hs� # 1. In

Fig. 5, several different cases are considered for compari-

son. The above mentioned effect is clearly seen when we

observe curve 4 and 5: curve 4 was obtained with a constant

value of c=a� � and a large value of as=�S0 2 s0� (a positive

concavity is observed only for values of �t=h� close to zero)

while curve 5 is obtained with the same value of as=�S0 2
s0� but with c=a� � evolving with �t=h� in agreement with Eq.

(31) (the concavity is positive in the entire range of values of

�t=h�).
It must be referred that, in the present paper, the cavity

problem is intended to be solved using the kinematic model

for the case of a hard ®lm on a relatively softer substrate:

�Hf =Hs� . 1. Under this hypothesis, the value of as=�S0 2
s0� obeys the condition as follows (whatever the value of

x $ 0), as in the examples shown in Figs. 4 and 5

as

S0 2 s0

� �
,

9

2
ln

c

a

� �
(34)

It can be concluded that the results are in¯uenced by the

ratio as=�S0 2 s0�, mainly for low values of �t=h�. Also, the

fact that the ®lm presents a work-hardening coef®cient

different from zero changes the behaviour for low �t=h�
values, as seen in Fig. 6, for which the x value changes

between 0 and 1. Whatever the case of as=�S0 2 s0� and

x, �t=h�c it only depends on the value that takes c=a� �.

4. Conclusions

The kinematic model was applied to the case of a sphe-

rical cavity problem, in order to simulate the mechanical

behaviour of a coated material during the hardness test. It

can be concluded that the present formulation as well as the

case of other former models do not give any guarantee of

accuracy in the solving of such a problem. This guarantee

fails mainly concerning the de®nition of the values of the

parameters of the models, which are sometimes empirical

and at other times dependant on the properties of the ®lm

and the substrate. Most of the times, the correct values of the

parameters are not known. The present model allows a

qualitative study concerning the parameters that determine

the behaviour of the composite ®lm-substrate, when both

deform plastically. The results of the model show that an

important parameter that in¯uences this behaviour is the

size of the plastically deformed region, which mainly in¯u-

ences the behaviour for relatively high values of �t=h�. The

®lm and the substrate properties also in¯uence the beha-

viour of the composite, this time for low �t=h� values.
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