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Abstract 

Purpose Electric vehicles (EVs) are promoted due to their potential for reducing fuel consumption and 

greenhouse gas (GHG) emissions. A comparative LCA between different technologies should account 

for variation in the scenarios under which vehicles are operated in order to facilitate decision-making 

regarding the adoption and promotion of EVs. In this study we compare life-cycle GHG emissions of 

EVs and conventional internal combustion engine vehicles (ICEV) over a wide range of use-phase 

scenarios in the US, aiming to identify the vehicles with lower GHG emissions and the key 

uncertainties regarding this impact. 

Methods An LCA model is used to propagate the uncertainty in the use phase into the greenhouse gas 

emissions of different powertrains available today for compact and midsize vehicles in the US market. 

Monte-Carlo simulation is used to explore the parameter space and gather statistics about GHG 

emissions of those powertrains. Spearman's partial rank correlation coefficient is used to assess the 

level of contribution of each input parameter to the variance of GHG intensity. 

Results Within the scenario space under study, battery electric vehicles are more likely to have the 

lowest GHG emissions when compared with other powertrains. The main drivers of variation in the 

GHG impact are driver aggressiveness (for all vehicles), charging location (for EVs) and fuel economy 

(for ICEVs). 

Conclusions The probabilistic approach developed and applied in this study enables an understanding 

of the overall variation in GHG footprint for different technologies currently available in the US market 

and can be used for a comparative assessment. Results identify the main drivers of variation and shed 

light on scenarios under which the adoption of current EVs can be environmentally beneficial from a 

GHG emissions standpoint.  

Keywords: Life-cycle assessment, Electric vehicles, Uncertainty analysis, Greenhouse 

gas emissions 

1. Introduction 

The electrification of the global vehicle fleet is gradually underway. Sales projections vary, 

and one estimate puts the penetration of electric vehicles (EVs) at 7% of the global market by 

the year 2020 (JD Power 2010). EVs are being promoted because they emit less tailpipe 

emissions. They also have the potential to reduce greenhouse gas (GHG) emissions to mitigate 

the global warming impact of road vehicle transport. There are various types of EVs (here 

understood as vehicles with some type of electric powertrain), including hybrid-electric 

vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles 

(BEVs). HEVs provide the ability to store energy, when decelerating, in a battery and operate 

the vehicle using both an internal combustion engine (ICE) and an electric motor. In PHEVs, 

the battery packs are larger and they can be charged using electricity from the grid. In BEVs, a 
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battery and an electric motor replace the engine entirely and are likewise charged from the 

grid. Fuel-cell vehicles (FCVs), which also use an electric powertrain, but produce electricity 

from hydrogen stored in fuel cells rather than an electric battery, are not considered in the 

scope of this work. 

Increasing sustainability and energy policy concerns have promoted the adoption of 

EVs due to their potential for reducing fuel consumption and global warming potential. The 

common perception regarding the environmental superiority of EVs, as compared to 

conventional internal combustion engine vehicles (ICEVs), relies on considering the direct 

tailpipe emissions, which constitute only one element of the overall environmental footprint. 

Prior studies suggest that a comprehensive environmental impact assessment of the entire 

vehicle life is crucial in making a robust comparison among different technologies (Lave et al. 

1995; Hawkins et al. 2013). It remains debatable whether PHEVs and BEVs offer significant 

savings in GHG intensity over their predecessor technologies on a life-cycle basis. Given the 

larger battery packs and electric motor components, PHEVs and BEVs typically require more 

resources and energy during their material processing and manufacturing phases to produce 

(Hawkins et al. 2012). Moreover, the GHG emissions associated with driving and charging 

EVs depend on a variety of factors defining different aspects of vehicle use. Some of the 

major factors that can influence the results of comparative assessments among different 

vehicle types include: 

- What is being driven - type of EV, vehicle size, payload; 

- How they are driven - trip characteristics, driver behavior, EV operational parameters; 

- Where they are driven - traffic conditions, road type and grade, weather conditions; 

- When they are charged - peak vs. off-peak charging; and 

- Where they are charged - emissions intensity of electricity. 

Over the past two decades, life-cycle assessment (LCA) has been utilized as a tool for 

comparing the environmental impacts of vehicles (Hawkins et al. 2013; Wang et al. 1997; 

Singh 1998; Bandivadekar 2008; Baptista et al. 2009) (see (Hawkins et al. 2012) for a general 

review). For EVs in particular, there have been a number of studies examining their GHG 

intensity (Silva et al. 2009; Elgowainy et al. 2010; Freire and Marques 2012). Assumptions 

were made or scenarios created for the driving and charging profiles, usually based on travel 

survey data. These analyses are often deterministic: the average GHG emissions were 

reported, rather than probabilistic distributions. Some exclude materials production impacts 

and examine the “well-to-wheel” impact only. Reports that analyzed the variation in 

emissions due to different factors tend to focus on the GHG intensity of the grids. Doucette 

and McCulloch (2013) compared CO2 emissions from BEVs in the U.S., France, India and 

China. BEVs were found to emit more CO2 than conventional ICE vehicles in countries like 

China and India, where the average CO2 intensity of power generation is high. Nansai et al. 
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(2002) found that the life-cycle CO2 emissions of BEVs driven in Japan ranged widely mainly 

due to regional differences in the energy mix used for electric power generation in the 

country. Ma et al. (2012) accounted for real-world driving conditions and the burden of 

marginal electricity to assess the impact of BEVs in the UK and California. They concluded 

that GHG intensity of BEVs is context-specific, and BEVs do not always outperform ICE 

vehicles or HEVs. Anair and Mahmassani (2012) did not consider the complete life-cycle 

impact, but instead studied the impact of charging BEVs only. They found variation in EV 

charging-related emissions across the U.S., due to the regional variation in grid emissions 

intensity. 

Another set of studies focused on the effect of driving patterns, local traffic, and road 

conditions on the fuel consumption or energy use in both conventional as well as electric 

powertrains. Real-world fuel consumption and corresponding GHG emissions always varied 

from the vehicle’s rated values, which is based on standardized emissions test drive cycles. 

Earleywine et al. (2010) tracked 783 vehicles in Texas using Global Positioning System 

technology to gain an understanding of in-use travel profiles. More aggressive driving and 

higher accelerations were observed in the real world than compared with standard test cycles. 

Based on a survey of more than 28,000 drivers in Germany, Mock et al. (2012) reported that 

the real-world fuel consumption experienced in conventional vehicles were on average 21% 

higher than the value based on the New European Driving Cycle (NEDC) standard. In 

Michigan, LeBlanc et al. (2010) tracked 117 identical conventional gasoline vehicles driven 

by different drivers, and observed that fuel consumption ranged from 8 to 13 liters/100 km. 

Finally, Raykin et al. (2012) simulated PHEVs over different drive cycles (vehicle speed 

profiles) and also found substantial variation in tank-to-wheel energy use across driving 

patterns. Their study shows that, for PHEVs, energy use per unit distance traveled over 

highway driving can be almost twice that over city driving. 

Considering that the variation of the aforementioned factors can greatly influence the 

GHG intensity of EVs, using average values to assess the global warming impact can be 

misleading. A challenge arises in characterizing the overall variation in emissions due to 

different scenarios under which the vehicles are operating. This is clearly a challenging task 

since an exhaustive examination of all possible scenarios is prohibitive. An efficient 

methodology is required to explore a scenario space that is sufficiently representative. The 

other important issue is the way the environmental impacts are compared across a range of 

scenarios for different powertrains. Finally, it is valuable to identify the key drivers of vehicle 

environmental impacts. 

The present paper aims to address the challenges identified above. We propose a 

probabilistic approach to characterize the uncertainty in scenario parameters and propagate the 

consequences into the GHG emissions. This allows us to obtain probabilistic conclusions 
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about GHG intensity for each powertrain under study. Given the probabilistic description of 

the impact quantity, frequency assessments are conducted to quantify the overall superiority 

of different types of powertrains over the entire scenario space. Moreover, a global sensitivity 

analysis is performed to characterize the relative contribution of different factors in the 

variation of GHG intensity. The probabilistic approach developed and applied in this study 

enables an understanding of the overall variation in GHG footprint for different technologies 

currently available in the US market and can be used for a comparative assessment. Results 

identify the main drivers for variation and shed light on scenarios under which the adoption of 

current EVs can be environmentally beneficial from a GHG emissions standpoint. Although 

the methodology can be generalized to other contexts, we consider in particular the current 

situation in the US and the class of compact/midsize vehicles currently available in the 

market.  

It is worth emphasizing that the results of uncertainty analysis rely on the assumptions 

regarding the probabilistic descriptions of uncertain input parameters.  These assumptions are 

affected by limitations on the availability and the quality of data sources.  We acknowledge 

these limitations despite of thorough review of different data sources that we have conducted 

to improve the characterization of distributions for the relevant input parameters. Furthermore, 

the degree by which these assumptions affect the robustness of the results depends on the 

functional relationship between the input parameters and the modeled quantity of interest. The 

global sensitivity analysis presented in this work provides useful insight about the level of 

contributions of different input on the overall variation of the global warming potential.  

2. Life-Cycle Assessment Model 

In this section we present the main components of the life-cycle assessment model that is 

developed in order to assess the global warming potential of ICEVs and EVs. The goal of the 

analysis, system definition, and functional unit are discussed, along with the key parameters 

considered. This is followed by a description on the uncertainty analysis method, the data used 

in the analysis, and the results. 

2.1. System definition 

The goal of this study is to provide a comparative assessment of the life-cycle GHG emissions 

for conventional and electric vehicles. In particular, we consider compact and midsize cars 

(according to the classification of (EPA, 2014)) operated in the United States (US) with five 

types of powertrain: gasoline, diesel, HEV, PHEV10, PHEV40 (both PHEVs having an ICE 

as a range extender) and BEV80, where the numbers after PHEV and BEV denote the 

maximum range in miles they could travel under solely battery power until recharging is 

needed (or until a range extender ICE must intervene, in the case of PHEV). Only a subset of 
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the vehicles on sale in the US is considered, to increase comparability: cars with more than 

150 kW of power were excluded, as well as cars that were significantly smaller (<4.10m) or 

larger (>4.80m) than the compact and midsize BEV80s. In some cases this means there is only 

one car in a category, which is a reflection of the state of the current US automotive market. 

The system boundary of the LCA consists of the well-to-wheel impacts of generating, 

transmitting, and distributing electricity used to charge the vehicles, and processing and using 

fuel, if applicable. It also includes the impacts arising from automotive materials extraction, 

processing and vehicle manufacturing. Figure 1 shows the main stages of a vehicle life-cycle. 

The end-of-life treatment is not considered in this study due to its negligible effect on 

greenhouse gas emissions as compared with the use phase and vehicle production (Samaras 

and Meisterling 2008). In addition, we focus solely on pure fossil fuels, thereby neglecting the 

use of ethanol and gasoline fuel blends, or the use of biodiesel. The functional unit is one 

kilometer (km) driven. 

 

Figure 1 goes here 

 

2.2 Vehicle production 

Vehicle and battery production are the second major contributor to life-cycle GHG emissions 

and could vary for different powertrains (Hawkins et al. 2013). As such, it is important to 

account for the impact of vehicle production phase in a comparative assessment of 

conventional and electric vehicles. This includes a full life-cycle inventory analysis of all the 

upstream processes related to the vehicle production. A complete LCA of vehicle production 

is beyond the scope of this study and is not discussed here in detail. Readers are referred to the 

relevant studies in the literature for detailed analyses (Sullivan et al. 1998; Burnham et al. 

2006, Bandivadekar 2008; Samaras and Meisterling 2008; Baptista et al. 2009). Hawkins et al. 

(2012) reported the results of several studies on comparing GHG emissions from vehicle and 

battery production for both conventional and electric vehicles adjusted for the life standard 

lifetime mileage of 200,000 km. The reported values in (Hawkins et al. 2012) are averaged 

over different studies and are used here as an estimation of the baseline upstream GHG 

emissions due to vehicle and battery productions for the powertrains considered in this study 

(Figure A.1 in Appendix A). 
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2.3. Use phase 

In the life-cycle assessment of vehicles, the use phase accounts for the majority of GHG 

emissions through fuel combustion and/or electricity production. An LCA model is developed 

in this work to evaluate the use phase GHG impact. The model relies on four main input 

moduli characterizing charging location, trip profile, driving profile, and charging pattern. 

These moduli are described in more detail below. 

2.3.1. Charging location 

Charging location influences the GHG impact of EVs through the GHG intensity of electricity 

grids. Within the U.S., the fuel mix used to generate electricity varies by region and, as such, 

the GHG emissions due to charging of EVs are heavily dependent upon the location where the 

vehicles are being used. Thus, the spatial variation in the electricity grid must be taken into 

account to capture a full range of scenarios regarding the charging locations. The U.S. 

Environmental Protection Agency (EPA) provides comprehensive data on the emissions 

intensity of almost all electric power generated in the United States (EPA 2012). Figure 2 

shows GHG emissions of the average US electricity grid and the overall variation based on 

2009 data. 

 

Figure 2 goes here 

 

2.3.2. Trip profile 

Trip profile consists of the number and distance of weekday and weekend trips as well as long 

distance trips. There is a considerable variation in trip statistics across different states. The 

National Household Travel Survey (NHTS) (Santos et al. 2011) provides a rich nationwide 

inventory of travel trends. NHTS includes detailed information on daily and longer-distance 

travel. This information is used to estimate a reasonable range of values for trip profile 

parameters (see Table 1). 

2.3.3. Driving profile 

A driving profile includes traffic conditions encountered (i.e. traffic congestion) and driving 

style (i.e. driver aggressiveness), which would determine the speed vs. time profiles of trips 

undertaken by the vehicles considered. In this work we account for traffic congestion, which 

varies by locations and time of day, by splitting city versus highway driving and assuming 

that congestion only happens during the daily commute. The Urban Mobility Report by the 
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Texas Transportation Institute provides information on congestion across the U.S. (Schrank et 

al. 2011). This information is used to estimate lower and upper bounds for the travel time 

spent idling. 

 The driving aggressiveness, defined as driver performance in speed and acceleration 

of vehicles, is another factor that influences the fuel economy and consequently impacts the 

use phase of the vehicle LCA. Studies on the effect of aggressive driving on fuel and battery 

power consumption show that the electric vehicles can potentially be more sensitive to driving 

aggressiveness (Carlson et al. 2009; Duoba et al. 2005). Thus, the variation in the fuel 

consumption due to different driving behavior needs to be adequately addressed in a 

comparative LCA of different powertrains. Carlson et al. (2009) conducted an experimental 

study to examine the impact of aggressive driving on PHEV fuel and electrical energy 

consumption. The results of their study were presented in the form of the percentage change in 

fuel consumption/battery depletion for different driving cycles. We make use of these results 

to take into account the variation in driving aggressiveness in our LCA model for the use 

phase. For this purpose the percentage change in fuel efficiency due to increase in driving 

cycles are applied to the baseline on-road fuel consumption/battery depletion (see Table A.1 

in Appendix A for baseline values). Well to wheel GHG emissions and other fuel parameters 

used in this study are extracted from de Sisternes (2010) and reported in Table A.2.  

2.3.4. Charging pattern 

The GHG impact of PHEVs is further complicated by charging pattern, which encompasses 

the distances driven between charging. This can vary depending on the user as well as 

availability of charging infrastructure. It affects the fraction of time the vehicle is driven on 

battery charge-depleting mode, versus relying on combusting fuel within the engine (charge-

sustaining mode). Often, an aggregated utility factor, or the fraction of travel on battery 

charge-depleting mode, is interpreted from travel survey data and used. Whether EVs are 

charged only during the night or also charged during the day can impact GHG emissions 

through the intensity of the electricity grid that is being used while charging. In our LCA 

model the charging habit is parameterized by a bimodal variable that specifies whether the 

electric vehicle is charged only during the night or also charged during the day, with the 

associated percentage of the charging time during the day. We assume that charging during 

the day corresponds to the peak electricity demand with non-baseload output emission rates 

are being used (EPA 2012). It should be noted that our current model does not account for the 

differences in charging modes or location-related losses, which could be another source of 

variation. 
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3. Uncertainty analysis method 

In section 2.3 we described the main parameters defining the scenarios under which the 

vehicles are used (trip nature, driving pattern, charging profile and charging location). These 

parameters directly affect the GHG intensity of the use phase. There is a significant variation 

in scenarios stemming from the uncertainty in these parameters. The consequence of these 

uncertainties is reflected in the results of LCAs in the form of variation in GHG emissions. In 

order to obtain robust conclusions about LCA results, these uncertainties need to be 

sufficiently accommodated. The propagation of uncertainty in comparative LCA of different 

alternative products requires generating sufficiently representative subsets of the scenario 

space.  

In general, exploring the scenario space can be carried out using two different 

strategies. In one strategy the domain parameters can be discretized and the scenario space is 

analyzed in a parametric way by changing one parameter a time. Alternatively one can 

explore the scenario space in a probabilistic manner. In this method each scenario parameter 

is described as a random variable with an appropriate probability distribution. Then a 

sampling method, such as Monte Carlo simulation, is utilized to generate a large number of 

random samples of the scenario space. These samples are in turn used to compute the 

corresponding realizations of impact quantities making use of the LCA model. The overall 

variation on GHG intensity of each powertrain can then be represented by a probability 

distribution estimated from computed realizations. For a large scenario space an exhaustive 

examination of all possible scenarios in a parametric way is prohibitive. As such, in this work 

the latter method is used to characterize the uncertainty in a large scenario space in an 

efficient way. This leads to the estimation of complete probabilistic descriptions for GHG 

intensity, which in turn can be well adapted to conduct the comparative assessment in a 

statistical manner.  

Figure 3 schematically presents the stochastic LCA procedure, using a Monte Carlo 

simulation, to propagate use phase uncertainty into the global warming potential of alternative 

powertrains. The probabilistic analysis of the scenario space sets up a framework for 

performing a global sensitivity analysis to find the key drivers of GHG impact. We use 

Spearman's partial rank correlation coefficient (PRCC) (Hamby 1994) for the sensitivity 

analysis. This method defines the sensitivity as the relative correlation between the output and 

each uncertain input parameter. The square of PRCCs are normalized and represented as the 

percentage of variation in GHG intensity accounted for by variability in each input. This 

allows us to rank the input parameters based on their level of contribution to the variance of 

GHG intensity. 
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Figure 3 goes here 

 

4. Results and discussion 

4.1. Uncertainty characterization and propagation 

The range of values and probability distributions used for the parameters that define use phase 

scenarios are presented in Table 1. Most of the values characterizing the trip profile are 

estimated from the data available through the National Household Travel Survey (Santos et al. 

2011). For parameters without information on their underlying distribution, a uniform 

distribution is used within appropriate lower and upper bounds estimated from NHTS data. 

This is an attempt to uniformly explore the parameter space, in this situation where the true 

distributions are unknown due to a lack of data. The only exception is for long distance trips, 

where the choice of a lognormal distribution seems to be more pertinent since the trips with 

longer distance are less frequent. A lognormal distribution is estimated from the long distance 

trip data available in NHTS 2001 (Hu and Reuscher 2004). A probabilistic analysis using the 

Monte Carlo simulation has been performed based on the methodology described in Section 3 

and depicted in Figure 3 to propagate the uncertainty in scenario parameters into GHG use 

phase impacts. The Monte-Carlo simulations take into account the different nature of the 

variables in groups A to D in Table 1. The ranges chosen for the variables in Table 1 intend to 

represent the current situation in the U.S., reflecting the variation among different locations x1, 

different trip characteristics (x2 - x8), and among different individual behaviors, (x9 and x10), 

based on official surveys. The exceptions are x9, x12, and x13, for which a full range of 0% to 

100% was considered reflecting all the possibilities that may occur. 

 Fuel economy of vehicles is another important source of uncertainty that propagates 

into the use phase GHG intensity (Cheah 2013). The uncertainty in the vehicles' fuel economy 

mostly stems from the variation in the technology and performance of vehicles. The 

Environmental Protection Agency's National Vehicle and Fuel Emissions database provides 

data on the rated fuel consumption for different vehicle types and different powertrains (EPA 

2014). The year 2014 data for different types of midsize/compact vehicles are used to 

characterize the uncertainty in the fuel consumption for gasoline, diesel, and hybrid vehicles. 

Considering only midsize and compact class vehicles, there are two BEV80s , one PHEV40, 

and two PHEV10 in the EPA 2014 database. For the sake of comparability, one of the 

PHEV10 vehicles is excluded, since it is much larger (4.90m) in length than the remaining 

PHEVs and BEV80s (ranging from 4.39m to 4.50m). In the same spirit, HEV, Gas and Diesel 
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vehicles longer than 4.80m or shorter than 4.10m are excluded. Another filter applied 

concerns power, since there are several very high performance HEVs and Gas vehicles 

incomparable with the BEV and PHEVs. An upper limit of 150kW is considered. 

We used data on over 100 vehicles for the gasoline, eight for the diesel vehicles, and 

eight for the HEVs to estimate the variability of fuel economy. Uniform distributions are 

estimated to represent the variation, considering the minimum and maximum observed values. 

For the PHEV10, PHEV40 and BEV80 powertrains, this information is only based on one or 

two types of vehicle and as such only the baseline values are considered. This information is 

summarized in Table A.1. 

It is important to note the disparity in the number of vehicles used as data sources for 

fuel economy across the different categories (over 100 for gasoline vehicles, compared with 

eight for the diesel vehicles and HEVs, two for the BEV80s, and one each for the PHEV10 

and PHEV40). While it would certainly be preferable to have a significant sample size for 

data sources in each category, our analysis is a realistic assessment of the current market. The 

introduction of a few vehicles in all categories except for gasoline vehicles would impact the 

results. 

 Figure 4 shows the average values as well as 5
th
 and 95

th
 percentiles of life cycle GHG 

intensity in gCO2eq/km for different powertrains estimated using 20,000 Monte Carlo 

samples. It is important to note that these GHG intensity results include vehicle production, 

although the scenario variation only concerns the use phase. The gasoline powertrain shows 

the largest variation in the impact whereas the variation is lowest for the case of PHEV10, as 

can be seen in Figure 4. 

 

Table 1 goes here 

 

Figure 4 goes here 

 

Figure 5 goes here 

 

4.2. Comparative assessment 

The results of an LCA are often represented in a comparative manner in order to allow 

analysis to comment on the superiority of different alternatives. When the LCA is conducted 

under uncertainty, the results are not deterministic values but rather a range of possible 
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outcomes with their associated probabilities. As described in Section 3, we use Monte Carlo 

simulation to explore the variation in the scenario space and propagate this variation into 

GHG emissions. This provides the ingredients for conducting the comparative assessment in a 

statistical manner. 

One straightforward comparison can be made observing the GHG intensity 

cumulative distribution functions (CDF) for the different powertrains, depicted in Figure 5. 

The comparison of CDFs shows that among all the powertrains, it is more likely that the 

BEV80s and the PHEV10 yield lower GHG intensity among all. This implies a first order 

stochastic dominance of the BEV80s and the PHEV10 over the other powertrains (the 

cumulative probability of having less than any given GHG intensity level is higher for the 

BEV80s and the PHEV10 than for other powertrains).  

 A more detailed analysis can be made based on pair-wise comparisons. Let S be the 

scenario space and sS denote each element of the set defining a use phase scenario. Let 

GX(S) denote the random variable associated with the GHG intensity for powertrain X, where 

X can be any of the powertrains being compared, that is XPT= {Gas, Diesel, HEV, 

PHEV10, PHEV40, BEV80}. As a basic statistical indicator, one can look at the frequency of 

the cases that a product X has less GHG intensity than an alternative product Y among all the 

scenarios under study. This frequency is mathematically defined as 

 𝑝𝑋𝑌 = 𝑃(𝐺𝑋(𝑠) < 𝐺𝑋𝑌(𝑠)), 𝑋, 𝑌 ∈ 𝐏𝐓 (1) 

in which P(.) denotes the probability or the likelihood. Table 2 reports the likelihoods, pXY, in 

percentage terms for different pairs of powertrains. For instance, the first row indicates that 

the diesel vehicle had less GHG intensity than the gasoline vehicle in 66.9% of the randomly 

generated cases. 

 As another measure of comparison, we also look at the likelihood that each powertrain 

has the lowest GHG impact among all the powertrains, that is 

 𝑝𝑋 = 𝑃(𝐺𝑋(𝑠) = min{𝐺𝑖(𝑠)| 𝑖 ∈ 𝐏𝐓}). (2) 

These quantities are estimated from the results of Monte Carlo simulation and compared in 

Figure 6. Gas vehicles, diesel vehicles, and the PHEV40 were never the best in terms of GHG 

impacts, and HEVs performed better than all other vehicles in only 0.9% of the cases. Most of 

the times, the BEV80s had lower emissions. 

  

 

Table 2 goes here 
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Figure 6 goes here 

 

 

Based on the results of comparative assessment demonstrated in Figure 6, the BEV80s 

and PHEV10 are the two contenders with a likelihood of having the lowest emission of 68.9% 

and 30.2%, respectively. In order to statistically quantify the difference between the two, we 

make use of a comparison indicator defined as the ratio of their associated GHG intensity as 

follows (Huijbregts et al. 2003): 

 𝐂𝐈 = 𝐺𝐵𝐸𝑉80 𝐺𝑃𝐻𝐸𝑉10⁄  (5) 

For each scenario, the BEV80s show lower GHG intensity than the PHEV10 if CI < 

1. The probability density function of the random variable CI (Figure 7) is estimated from the 

results of Monte Carlo simulation. This information is used to quantify the relative difference 

in the performance of two powertrains along with the associated likelihood. For instance, the 

probability that the BEV80s have lower GHG intensity than the PHEV10 is defined as  = 

P(CI < 1), which is estimated as 0.69 (Figure 7). Furthermore, the results suggest that the 

GHG intensity of the BEV80s is almost surely at most 3/2 of the competitor, the PHEV10; 

that is: P(CI < 3/2)  1. On the contrary, the probability P(CI < 2/3) is far from negligible 

(although P(CI < 1/2)  0). 

 

Figure 7 goes here 

 

 

Looking into the scenarios under which the BEV80s have lower GHG intensity shows that 

these scenarios correspond to the situations where the vehicles are operating in low grid 

emission areas and the EVs are mostly charged during the night. Moreover, it is more likely 

that the BEV80s prevail over other powertrains for lower degrees of driving aggressiveness. 

This suggests that these parameters are the most critical factors when assessing whether the 

BEV80s have lower GHG intensity. In the following section we present a global sensitivity 

analysis in order to systematically identify the most influential factors for each vehicle type. 

4.3. Sensitivity analysis 

The use phase model for quantifying GHG intensity, as described in section 2.3, depends upon 

a variety of inputs, which influence the GHG impact of each powertrain to different extents. 

The influence of each parameter can be different for conventional and electric vehicles. It is 
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important to identify the key drivers of impact in order to limit the burden and expense of data 

collection for a better characterization. Moreover, this information helps decision-makers to 

identify the area that causes the decision to change. To this end, we perform a sensitivity 

analysis to quantify the dependency of the impact to each uncertain parameter. As the measure 

of sensitivity we compute partial rank correlation between each input and the output, 

represented as the percentage of contribution to the variance of GHG intensity. The result of 

this sensitivity analysis is shown in Figure 8. Driving aggressiveness is one of the top 

contributors to the GHG impact for all the powertrains. For the battery and plug-in hybrid 

electric vehicles (Figure 8(a)) the charging location (grid) is one of most influential drivers of 

the uncertainty. For conventional and hybrid vehicles (Figure 8(b)) other major factors include 

the fuel economy, percentage of city miles, and the average distance driven during the 

weekdays. The variation in the impact of the HEVs is almost entirely influenced by the 

uncertainty in the fuel consumption of these vehicles.  

 

Figure 8 goes here 

 

It is important to note the final results presented in this study and the subsequent outcome of 

comparative assessment hinge on the underlying assumptions regarding the range of input 

parameters and the associated distributions. The degree to which these assumptions influence 

the decision depends upon their level of contributions to the final results. The global 

sensitivity analysis presented in this section identifies the critical areas to focus on for a more 

detailed characterization. 

5. Concluding remarks 

In this paper we present a comparative assessment of GHG impacts for conventional and 

electric vehicles, while accounting for uncertainty in the use phase. A stochastic analysis 

using a Monte Carlo simulation has been adopted to propagate the uncertainty in the use phase 

into the greenhouse gas emissions of different powertrains. This procedure allows us to 

characterize overall variation in GHGs and conduct the comparative assessment in a statistical 

manner. Moreover, we present a global sensitivity analysis in order to identify the key drivers 

of impact that could cause the outcome to change. 

The results suggest that the EVs currently available in the US market are preferable 

from a GHG standpoint only within certain contexts. Within the scenario space under study, 

the BEV80s are more likely to result in the lowest GHG impacts as compared to other 

powertrains. According to Table 2, only in rare circumstances do the BEV80s show higher 
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environmental burden than the PHEV40 (0.7%), HEVs (7.4%), gas vehicles (0.2%), or diesel 

vehicles (0.5%). Even acknowledging the use of uniform distribution and the absence of 

correlation modelling as limitations of this study, these are very robust conclusions that would 

not change (even if numbers would be different) if other statistical distributions were used. 

The close competitor is the PHEV10, which achieved lower GHG intensity in 30.2% of the 

scenarios. But Figure 7 shows that it is almost certain that the GHG intensity of BEV80s is at 

most 50% higher than that of the PHEV10, whereas the reverse is not true.  

If more precise results are sought, the sensitivity analysis provides clues on which 

parameters matter the most. GHG intensity of the PHEV40 and BEV80s depends heavily on 

the electricity grid used for charging the vehicles. Furthermore, driving aggressiveness can 

significantly affect the environmental footprint for both electric and conventional vehicles.  

Concerning the limitations of this study, there are other sources of uncertainty that are 

not addressed. In particular, the uncertainty in vehicle production is not accounted and 

average values are used for these quantities. The uncertainty in the fuel production (see 

(Kocoloski et al. 2012), for instance) is not discussed here since this is outside the scope of 

our LCA model. Other sources of variation such as the weight of the occupants or the use of 

air conditioning were not considered either. There is also temporal variation due to the 

technology dynamics, in particular in the electrical grid emission factors, which can influence 

the results for the future scenarios. The focus of this paper is, however, on addressing 

uncertainty already present in the current situation of use phase. While we were able to 

characterize some sources of uncertainty in the use phase, several sources were not included 

due to a lack of data such as weather conditions and the loads of equipment and devices 

within the vehicle. This study is also limited by lack of information on the correlations 

between input parameters, which deserves further investigation. Finally, the scope of the 

analysis is limited by the small numbers of EVs currently available in the US market. 

Introduction of a few new EVs could potentially have a significant impact on outcomes. 

 Despite these limitations, the results of this study can inform decision-makers of the 

overall variation in environmental footprint for different technologies and shed light on the 

scenarios under which the adoption of EVs currently available in the US market can be 

environmentally beneficial from a GHG emissions standpoint.  
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Figure 1 Study system boundary – the dotted lines indicate the life-cycle phases of vehicle included 

within the scope of this study. 
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Figure 2 Variation in GHG emissions intensity of electricity grids in the U.S. The non-baseload 

emission rates are a portion of the system total mix, with a greater weight given to plants that operate 

during the peak demand for electricity. 
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Figure 3 Monte Carlo simulations are used to propagate the uncertainty in the use phase into the life-

cycle GHG intensity. Statistical distributions of GHG intensity are estimated and used to conduct a 

probabilistic comparative assessment. 

 

 

 

 

Figure 4 Average values and uncertainty ranges for GHG intensity. The error bars represent the 5th and 

95th percentiles. 
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Figure 5 Comparison of estimated cumulative distribution function of GHG intensity from vehicle 

production and use. 

 

 

 

 

 

 

Figure 6 The likelihood that each powertrain achieves the lowest emission among all powertrains, pX 
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Figure 7 Statistical characterization of the difference in the performance of PHEV10 and BEV80. The 

plot shows the cumulative distribution function of the comparison indicator, CI, as the measure of 

comparison. 

 

 

 

 

 

Figure 8 Sensitivity analysis: percentage of variation in GHG intensity accounted for by variability in 

each input parameter (see Table 1 and Table A.1 for the descriptions of each parameter xi): (a) Vehicles 

charged or partially charged from the grid; (b) Vehicles not charged from the grid. 
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Figure A.1 Average GHG emissions from vehicle and battery production, adjusted for a common 

lifetime mileage of 200,000 km. The average values are estimated based on the date reported in the 

review paper by Hawkins et al. (2012). 
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Table 1 Description of scenario parameters and the associated distributions used in uncertainty analysis 

Scenario Parameters Min Max Distribution type 

A. Charging location    

• x1 : Grid emission (gCO2eq/KWh) 227.1
 
 894.2

 a
 Uniform (discrete) 

B. Trip profile    

• x2 : Number of trips per weekday 1
 
 4

 b
 Uniform (discrete) 

• x3 : Average weekday trip distance (km) 6.4
 
 48

 b
 Uniform 

• x4 : Number of trips per weekend days 0
 
 3

 b
 Uniform (discrete) 

• x5 : Average weekend trip distance (km) 6.4
 
 48

 b
 Uniform 

• x5 : Number of long-distance trips per year 0 4 Uniform (discrete) 

• x7 : Average distance of long trips (km) =425
 
 =360

 c
 Lognormal 

• x8 : Average trip congestion time for weekday 

commute (min) 7
 
 20

 d
 

Uniform 

C. Driving profile    

• x9 : Percentage of distance driven in city (vs. 

highway) 0% 100% 

Uniform 

• x10 : Driving aggressiveness (USDDS scaling 

factor) 

1.0 1.6
 e
 Uniform (discrete) 

D. Charging pattern    

• x11 : Charging habit night night\day   Binomial 

• x12 : Percentage of charging time during the day 0% 100% Uniform 

• x13 : Chance missing a charge (percentage) 0% 100% Uniform 

References:
 a
 eGRID (EPA 2012), 

b
 NHTS 2009 (Santos et al. 2012),  

c
 NHTS 2001 (Hu and Reuscher 2004), 

d
 (Schrank et al. 2011), 

e
 (Carlson et al. 2009) 
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Table 2 The likelihood that a powertrain, X, has lower emission than an alternative one, Y, pXY = 

P(GX<GY) 

X   \  Y Gas     

Diesel 66.9 Diesel    

HEV 97.1 97.1 HEV   

PHEV40 99.1 98.2 48.7 PHEV40  

PHEV10 100.0 100.0 98.4 99.0 PHEV10 

BEV80 99.8 99.5 92.6 99.3 69.0 
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Table A.1: Fuel economy (EPA 2014). Units in km per liter for fuel economy or watt hours per km 

(shown in bold) for electric operation. CD = charge depleting, CS = charge sustaining. 

Powertrains City Driving (UDDS drive 

cycle) 

Highway driving(HWFET 

drive cycle) 

Comments 

CD Electric CS Engine CD Electric CS Engine 

GAS  Min=8.93, 

Max=13.2 

 Min=12.3, 

Max=17.9 

Uniform 

distribution 

DIESEL  Min=11.5, 

Max=13.6 

 Min=16.6, 

Max=19.6 

Uniform 

distribution 

HEV  Min=12.3, 

Max=21.7 

 Min=15.3, 

Max=20.4 

Uniform 

distribution 

PHEV10 161.6 21.7 205.1 20.8 Baseline 

values 

PHEV40 205.1 14.9 223.7 17.0 Baseline 

values 

BEV80 Min=167.8, 

Max=192.3 

 Min=205.1, 

Max=223.7 

 Uniform 

distribution 

 

 

 

Table A.2. Other fuel and emission parameters 

 Gasoline Diesel Reference 

 

• Energy density (MJ/liter) 32 34 (de Sisternes 2010) 

• Well to wheel GHG emission (g CO2/MJ 

delivered) 

92 94 

 

 

 

 

 

 

 


