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Abstract

We address the production of a musical tone by a very simple musical instrument of the Brazilian

tradition: the berimbau-de-barriga. The simple physics of vibrations of the string and of the air

mass inside the gourd are reviewed. Simple measurements, which illustrate the basic physical

phenomena, are performed using a PC based Soundcard Oscilloscope. The inharmonicity of the

string and the role of the gourd are discussed in the context of known results in the psychoacoustics

of pitch definition.
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I. INTRODUCTION

The berimbau is a well-known musical instrument of the Brazilian tradition. Its histori-

cal origins are not clear, but all evidence points to the fact that it developed autonomously

in Brazil from previous African musical traditions brought with the slaves since the XVIth

century. This resulted into this specific Brazilian instrument known as berimbau-de-barriga

or simply berimbau.1–3 The berimbau assumes particular importance in the musical accom-

paniment of the Brazilian martial art capoeira, which is now disseminated worldwide.

As we will discuss, this instrument is basically constituted of a vibrating string enhanced

by a resonator. Its simple constitution, together with its easy construction and its relevance

in both the musical and martial-arts cultural landscape, makes it a privileged tool for using

in simple demonstrations of the basic principles of the underlying physics. It thus serves

as a way to introduce simple physics and psychoacoustics principles to a relatively wide

audience.

In this work we have performed some basic measurements of the sound emitted by a

berimbau, using a PC based Soundcard Oscilloscope available online for private and non-

commercial use in educational institutions.4 These measurements allow to illustrate the

basic physics involved and to present these measurements in the perspective of a musical

instrument, where psychoacoustics results bring a particularly helpful insight. In particular,

we discuss the effect of the inharmonicity of the string and the role of the gourd (cabaça) in

the definition of the musical tone of the berimbau and relate it to the ongoing research in

the difficult question of the definition of pitch.

II. BASIC COMPONENTS OF THE BERIMBAU AND THEIR FUNCTION

Figure 1 illustrates the berimbau used in the course of this work: a typical berimbau is

constituted of a steel string attached to a wooden bow about 1.2 − 1.5 m long. The bow

is traditionally made of biriba (Rollinia mucosa), due to the resistance to bending of this

wood. Biriba can however be replaced by other adequate wood such as bamboo or oak.3 The

forced curvature of the bow provides the necessary tension to the string. A gourd is attached

to the string and bow at about 20 cm from the bottom end, as illustrated in Fig. 1. This

gourd is roughly spherical and is traditionally made of calabash, either coité (Crescentia
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cujete) or cabaça (Lagenaria siceraria),1 although coconut or even an empty metal can are

sometimes used.3 A circular opening is cut on the gourd and its interior is hollow. The gourd

is attached to the bow and string through a small cotton twine which crosses it in two small

holes cut in the extremity opposite to the circular opening, as illustrated in Fig. 2. The

cotton twine plays a role in the tuning of the berimbau, since it constitutes a fixed point of

the string.

The instrument is usually hold by the left hand, while the string is struck by a wooden

stick (baqueta) hold by the right hand (thumb, index and middle fingers). A basket rattle,

an independent instrument from the organological point of view, is usually held as well by

the right hand (ring and little fingers). Typically, the ring and middle fingers of the left

hand hold the wooden bow at the level of the abdomen, while the little finger is placed

under the tuning loop between the bow and the string.2 The thumb and index fingers hold

a small stone or coin. Pressing the coin against the string reduces its effective length and

increases its pitch by about one semitone to one tone. Timbrical diversity is also obtained

by pressing the gourd against the abdomen, thus eliminating completely the main resonance

of the gourd and obtaining a completely different timbre.

In this work we propose to specifically analyse the role of the inharmonicity of the string

and that of the gourd in the timbre of the berimbau, taking into account known results in

the physics and psychoacoustics of sound. For that, we begin by a short review of the basic

aspects of the vibration of strings and of Helmholtz resonators.

A. Normal modes of ideal strings

We recall that the frequencies of the normal modes of vibration of a ideal string of length

L, fixed at both ends, with linear mass density µ and subject to the tension T , follow the

harmonic relation

fn = nf1 = n
v

2L
=

n

2L

√
T

µ
(1)

where v =
√

T
µ

is the velocity of the transverse sound waves in the string. In real strings,

the stiffness slightly distorts the harmonicity.5 The description of the vibration modes of the

stiff string has been thoroughly debated since the late XIXth century (see refs. 6 and 7 for
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a review) and the following simple expression is found to provide an adequate description,6

justifying its abundant use in the corresponding literature:8–10

fn = nf0
√

1 +Bn2

B =
π3Y d4

64L2T
(2)

B is the inharmonicity coefficient, where Y is the Young modulus of the string and d

is the diameter of its circular section. f0 is the fundamental frequency of the same string

without stiffness, which is thus found to be slightly smaller than f1.

B. Vibration frequencies associated to the gourd

In order to understand the contribution of the gourd to the acoustics of the berimbau we

need to model the frequencies of vibration associated to it. The vibrations of the mass of

air delimited by the volume of the gourd and its opening are bound to play a leading role,

although at first sight it may not be entirely evident which vibration modes are dominant

in a real gourd: those of the entire column of air or those of the mass of air at the opening.

These two limits are described by two different models: the pipe model for the former and

the Helmholtz resonator model for the latter.

1. Pipe model

In the case where the vibrations of the entire column of air, with length L, are dominant,

it is usual to distinguish whether the column is free to vibrate at both ends of the pipe or

only at one end.5 In the first case, the frequencies of the vibration modes are again simply

given by the purely harmonic relation

fn = nf1 = n
v0
2L

(3)

where v0 represents the velocity of sound in air. In the case where the pipe is closed in

one of the ends we have instead:

fn = nf1 = (2n− 1)
v0
4L

(4)
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Of course, if any of these pipe models is to be applied to the gourd, it is likely to be the

open-closed pipe model. The model of the pipe open at both ends, if applicable, would be

limited to the case where the holes associated to the cotton twine were large enough to ensure

that the air pressure at the corresponding end was kept always equal to the atmospheric

pressure. This is not usually the case, since the cotton twine closely fits the holes of the

gourd.

2. Helmholtz resonator

In the case of a recipient of volume V with a neck of length L and circular cross-section

S = πa2, a being the radius of the opening, the mass of air inside the volume V can be set

to vibrate by the small mass of air inside the neck with a frequency given by (assuming that

the wavelength is much longer than the dimensions of the resonator)5,12

fH =
v0
2π

√
S

V L
(5)

where v0 is the velocity of sound in air. This acoustical device is usually known as

Helmholtz resonator. In the case of the berimbau, the gourd presents no neck. However,

an effective length of the neck can be estimated by using twice the end correction of a tube

of radius a.5 For the case of a flanged tube, Lord Rayleig estimated the end correction c to

be13

π

4
a < c <

8

3π
a (6)

The corresponding effective length Leff = 2 c corresponds to 1.5708 a < Leff < 1.6977 a.

For the more realistic case of an unflanged circular pipe, Levine and Schwinger found the

end correction to decrease as a function of frequency and to be c = 0.6133 a for the long

wavelength (low frequency) limit.14 The corresponding low-frequency effective length of the

neck thus results to be

Leff = 1.2266 a (7)

A refined analysis of the Helmholtz resonator is presented by Fletcher and Rossing,5

where the frequencies of the higher vibration modes are obtained assuming that the neck is
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narrow enough so that the diameter of the cavity is kept well below the wavelength. Fletcher

and Rossing find the resonance frequencies to obey the relation:

tan

(
2πLf

v0

)
=

Sv0
2πV

1

f
(8)

Equation 8 of course reduces to eq. 5 in the limit where λ = v0/f >> L. It is also

possible to show that this refined model contains the pipe model as a limit, both for the

case where the pipe is open at both ends and for the case where it is open at one end only.

The latter case corresponds to the limit of large volume V of the cavity, where equation 8

can be simplified to

2πLf

v0
∼ nπ → f ∼ n

v0
2L

(9)

In the case of small volume of the cavity, equation 8 reduces to

2πLf

v0
∼ π

2
+ nπ → f ∼ v0

4L
+ n

v0
2L

(10)

With respect to the modelling of the gourd, we note that the length to be considered in

equation 9 is that of the neck only. In the case of the neckless gourd used here, it corresponds

to Leff = 1.2266 a (eq. 7), using the model of Levine and Schwinger.14 The limit expressed

by eq. 10 corresponds to the pipe model of equation 4 using the length of the gourd as the

length of the pipe.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Details

We adopted a very simple experimental setup which is easily available to any class-room

where a computer is present. We investigated the sound spectrum of the berimbau using

a microphone connected to a laptop, analysed through a PC based Soundcard Oscilloscope

accessible online for private and non-commercial use in educational institutions.4 This soft-

ware performs basic measurements and analysis of sound. We have used its fast-Fourier

transform (FFT) capabilities in order to obtain the frequency spectrum of our instrument

and of its parts.
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In order to reduce background noise, the measurements were realized in an inner quiet

room. A Sony ECM-DS70P microphone was used, with a response bandwidth in the range

100 Hz - 15 kHz. The microphone was placed at about 0.5 m from the instrument in

a direction perpendicular to its main plane. Room temperature was about 22(1) degrees

Celsius, so that we expect the corresponding sound velocity in air to be 344(1) m/s, using

the known expression5

vsound = 332 [1 + 0.00166 T(oC)] m/s (11)

In order to compute the fast Fourier transform, a time record of 0.12512 seconds was

used, sampled in N = 5512 intervals of ∆ = 2.27 × 10−5 seconds. The sampling rate is

fs = 1/∆ = 44.1 kHz and the resolution is estimated to be σf ∼ fs/N = 8 Hz. No window

function was used.

The string used in this work was a common steel string with a radius

r = 0.5(1) × 10−3 m. The effective vibrating length was Lp = 1.105(5) m with the

gourd in place and Lr = 1.370(5) m with the gourd removed. The Young modulus of steel

is15 Y = 200 × 109 Pa and its density is15 ρ = 7.8 × 103 kg m−3. We thus estimate the

linear density of our string to be µ = πr2ρ = 6(2) × 10−3 kg m−1. The gourd used in this

work has an interior volume of 0.90(5) × 10−3 m3. The diameter of its circular opening is

7.3(1)× 10−2 m and its length (from the opening to the cotton twine) is 13.5(1)× 10−2 m.

B. String with the gourd removed

1. Experimental data and analysis

We began by investigating the sound spectrum of the bare string with the gourd removed.

The string was plucked with the finger at about 13 cm from the bottom end. We chose to

pluck the string instead of striking it with the stick because this provides stronger spectral

power, thus easier to detect. We note that the plucking point (or the striking point when

the berimbau is properly played) has some influence on the spectral weight: the vibration

modes presenting a node at that point are known to be suppressed.5 For example, if the

string is hit at a fraction 1/10 of its length, the 10th vibration mode and its multiples (20th,

30th, etc) are likely to be suppressed.
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In Fig. 3 we show the Fast Fourier Transform (FFT) spectrum as obtained from the

Soundcard Oscilloscope program, for the berimbau of Fig. 1. The central frequencies cor-

responding to the first 28 modes are represented in Table I. The fundamental vibration of

the string is found at about f1 = 100(5) Hz. In Table I we also show the interval in cents

(¢exp) with respect to the ideal harmonic relation based on the same 100 Hz fundamental

frequency. We recall that the ratio I = fn/(nf1) of the frequency fn of the nth mode and

the frequency n f1 expected from a purely harmonic relation can be translated to the more

convenient cent (¢) scale for musical intervals.16,17 1200 cents represent a frequency ratio of

2, matching the important relation of one octave, so that the number of cents associated to

a specific frequency ratio I is

n = 1200
log10(I)

log10(2)
(12)

Two aspects are clearly visible in figure 3:

1. The lowest modes (3rd to 7th) are underrepresented in the spectrum.

2. The modes above the 10th have a very important spectral weight in the region 1 − 3

kHz, where the frequency detection of the ear is most accurate.16,18

We will address the implications of these two features in detail below. However, we add

two important additional notes on the FFT spectrum shown in figure 3:

� we note that the 8th mode is particularly prominent in the spectrum. The selective

enhancement of this particular mode may arise from a modal frequency of the stick

itself. The modal frequencies of the stick can in principle be measured by damping the

string and replacing the gourd with an acoustically dead object with the same mass,

while keeping equal the tension of the string. However, with our present equipment

the amplitudes of vibration of the modal frequencies of the stick are comparable to

background. We will therefore not pursue this particular feature, that does not affect

our overall conclusions.

� the conspicuous absence of the 10th and 20th modes are consistent with having the

string plucked at about 1/10 of its length, as discussed above.
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With respect to the two main features mentioned above, we will first address the implica-

tions of the high spectral weight in the region 1− 3 kHz and come back to the low spectral

weight of the lowest modes in section III D. The strong spectral weight of the highest modes

is responsible for the characteristic non-consonant metallic timbre of the string. In order to

develop this point in a more quantitative way, we first note that the ratio I of the frequency

fn of the actual nth harmonic to the frequency nf1 expected from the harmonic relation is,

from eq. 2:

I =
fn
nf1

=
√

1 +Bn2 (13)

where f1 is the fundamental frequency of the stiff string. In order to analyse this aspect

in more detail, we represent in Fig. 4 an expanded view of Fig. 3 in the region 1 − 3 kHz,

where the spectral power is particularly relevant. We will henceforth limit our analysis to

frequencies up to 3 kHz.

In Fig. 5 we represent the harmonics assigned in Fig. 4 as a function of the harmonic num-

ber n. The full line is a fit to Eq. 2, yielding f0 = 99.5(1) Hz and

B = 9.7(3) × 10−5. This value for f0, together with Eq. 1 and the experimental val-

ues quoted in section III A, allows to use Eq. 2 to predict B = 12(4) × 10−5, which is

consistent with the fitted value. The dashed line represents the harmonic relation fn = n f1,

which is clearly not followed for n > 20. In Table I we see that the relation of the vibration

frequency to that expected from the ideal harmonic relation, for n > 20, ranges from 20 ¢

to 59 ¢, thus up to about a quarter of tone. This is above the differential threshold of

perception in the spectral region 1 − 3 kHz,16,18 suggesting that the inharmonicity of the

steel string of the berimbau may be perceptible.

2. Inharmonicity and pitch perception

The relation of the inharmonicity of strings to the perception of pitch has been investi-

gated for a long time. Fletcher et al. have suggested that the inharmonicity of the strings of

the first three octaves of the piano is essential for its liveness or warmth.8 Pure harmonicity

is not essential for pitch perception19 and the concept of harmonic sieve has been proposed

in this context: spectral components are perceptually grouped if their frequencies fall within

a certain range around integer multiples of a common fundamental frequency f0.
19,20 All this
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of course implies relatively small values of inharmonicity. Järveläinen et al. have measured

the audibility threshold of inharmonicity as a function of the fundamental frequency f0 and

verified that it correlates with the inharmonicity coefficient B according to the following

expression:9

lnB = 2.57 ln f0 − 26.5 (14)

For f0 = 100 Hz, this model predicts that the inharmonicity is clearly perceived if B is

larger than 4.3× 10−7. Our fitted value B = 9.7(3)× 10−5 is about 200 times larger.

Chin and Berger10 review recent results regarding inharmonicity and pitch perception

and state that ”a moderate amount of inharmonicity creates a sense of warmth, but an

excessive amount of inharmonicity can result in a harsher metallic sound.” They find that

the perception of inharmonicity is highly dependent on the individual musical background

and training and suggest that the threshold for perception of inharmonicity can be mapped

out for each individual (and that, of course, it can change for a given individual with musical

training). Their results also suggest that for such a low fundamental frequency f0 = 100 Hz

as that of our string, an inharmonicity coefficient as high as our fitted value B = 9.7(3)×10−5

is likely to be well above the audibility threshold even for the more insensitive individuals.

We thus conclude that the high inharmonicity coefficient of the steel string of the berimbau

is likely to be responsible for the harsh metallic sound of the bare steel string.

Most importantly, the near absence of the lowest modes brings additional difficulties for

the perception of the pitch of the string tone, as will be discussed below.

On a side note, we recall that the berimbau player uses a coin/stone in order to reduce

the effective length of the string and concomitantly increase its fundamental frequency of

vibration. This increase is known to amount from about one semitone to one tone.3 We note

that the length reduction is of course dependent on the size of the hand of the player and the

inclination of the stone/coin with respect to the string, but we may estimate a reduction of

5− 15 cm to be a typical value. In the case of our string (effective length L = 1.105 m), this

corresponds to a length reduction of about 4− 14% and to an increase of the fundamental

frequency in the range 70 − 230 ¢. Notwithstanding the fact that these simple estimates

disregard the possible effect of the change in the tension of the string due to the use of the

coin/stone, they are consistent with the known increase of the pitch in the one semitone to

one tone range.
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C. Gourd

We have also measured the sound spectrum due to the gourd alone, by tapping with

a soft mallet the end of the gourd with the twine . The corresponding FFT spectrum is

shown in Fig. 6, limited as before to 3 kHz for clarity. A similar spectrum is obtained

by gently blowing at the opening of the gourd. We observe two resonances which we can

adequately fit to a Gaussian shape A exp
(
−1

2
((f − fg)/σ)2

)
, obtaining fg1 = 555(20) Hz

and fg2 = 2111(15) Hz (the numbers in parenthesis denote the respective fitted values σ).

We note that eq. 5 predicts the fundamental vibration frequency of the gourd to be

fg1 = 558(17) Hz, when considering the realistic value Leff = 2×0.6133 a = 4.48 cm for the

effective length of the neck. This value is consistent with the experimental frequency of the

first mode of vibration of the gourd. In contrast, the quarter wavelength pipe model (eq. 4)

predicts fg1 = 637(5) Hz. The Helmholtz resonator model thus seems adequate in order to

describe the first vibration model of the gourd.

We may use Eq. 8 to predict the frequency fg2 of the second vibration mode. Eq. 8 can

be solved either graphically, iteratively or analytically using the small-angle approximation

tan(x + nπ) ∼ x. With this approximation we recover eq. 5 for n = 0; for n > 1 the

following expression can be used to estimate the frequencies fgn of the vibration modes:

fgn ∼ n
v0

4Leff

(
1 +

√
1 +

4LeffS

n2π2V

)
(15)

We present in fig. 7 a graphical solution using the geometrical parameters of the gourd

used in this work (including Leff = 2×0.6133 a = 4.48 cm). The small-angle approximations

are represented in Fig. 7 as dashed lines. From Fig. 7, a refined graphical value for the

frequency of the first mode fg1 = 540(17) Hz is obtained, as well as the frequency of the

second mode fg2 = 3.92(4) kHz.

The predicted frequency of the second mode is thus almost the double of the experi-

mentally observed value, implying that the Helmholtz resonator model fails to describe this

vibration mode. In fact, the wavelength corresponding to the second resonance fg2 is only

about 16 cm, which is comparable to the dimentions of the resonator. This implies that it is

no longer valid the assumption that the mass of air within the (effective) neck vibrates co-

herently while the mass of air inside the volume of the resonator is kept at uniform pressure.

We thus expect that a larger mass of air is now set in vibration, so that an intermediate
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model between the Helmholtz resonator and the quarter-wavelength (open-closed) pipe is

needed. In fact, the quarter wavelength (open-closed) pipe-model (eqs. 4 and 10) predicts

fg2 = 1911(40) Hz for the frequency of the second vibration mode (using the full length of

the gourd L = 0.135 m). This provides a far better estimate than the simple Helmholtz

model.

We note that the large diversity of gourd geometries used in the building of berimbaus21

is likely to provide examples covering both the pure Helmholtz resonator model or the pure

quarter wavelength (open-closed) pipe model, as well as cases such as that of our gourd

where neither model provides a fully adequate description.

D. The berimbau as it is played

1. Experimental data and analysis

We then proceeded to investigate the FFT spectrum of the berimbau with the gourd in

place. The reduced length of the string was 1.105(5) m. We have investigated the two main

playing configurations:

(a) with the gourd pressed against the abdomen of the player;

(b) with the gourd free to vibrate.

The stick has been used to excite the string in both cases. We have hit the string close

to the bottom end (always less than 10 cm from the cotton twine): this was adopted in

order to avoid for the lower harmonics the already mentioned effect of suppression of the

vibration modes presenting a node at the hitting point of the stick.5 We have hit the string

always at a fraction of its length smaller than 1/11, implying that the modes affected by

this suppression effect are higher than the 11th.

The FFT spectra corresponding to both cases (a) and (b) mentioned above are shown in

Fig. 8 (a) and (b), respectively. We note that the spectral power is now much reduced with

respect to that observed in section III B, particularly for the lower harmonics in case (a).

The fundamental mode of vibration is not observed in both cases. This low spectral power

of the string hit with the stick was the main reason, as mentioned already, for our option

of plucking the string with the finger in section III B. The vertical scale of Fig. 8 (a) was
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thus multiplied by a factor 4 with respect to that of Fig. 8 (b), in order to make its details

perceptible.

The most important effect visible in Fig. 8 is the clear enhancement, for the case (b) where

the gourd is left free to vibrate, of the string harmonics around the fundamental resonance

of the gourd (fg1 = 555(20) Hz), in particular the immediately adjacent 5th vibration mode.

The central frequencies for both cases (a) and (b) are listed in Table II, together with the

corresponding FFT amplitudes relative to the 2nd vibration mode for case (a).

The dashed line in Fig. 8 (b) is a Gaussian curve with center frequency 555 Hz and width

20 Hz. As shown in Fig. 8(b) and represented in Table II, the presence of the gourd results

in the enhancement by about one order of magnitude of the FFT relative amplitude of the

3rd to 7th modes, which thus assume a dominant spectral weight. A complete modelling of

the gourd-string-bow system is bound to clarify the enhancement in a spectral region larger

than the spectral width of the first vibration mode of the gourd. This is however outside

the scope of this work, where we simply take note of this experimental result.

We will now discuss the consequences of this effect to the perception of the pitch of the

berimbau with the freely vibrating gourd. We note that for the gourd pressed against the

abdomen, the amplification due to the vibration modes of the gourd is simply suppressed.

2. About the contribution of upper harmonics to the perception of the pitch of the berimbau

As we have mentioned already, the perception of pitch is a rather complex phenomenon

which goes much beyond the simple perception of the fundamental and that keeps defying

full understanding.22–25 It is known for long that the perception of pitch cannot be reduced

to the simple identification of the fundamental and that the presence of higher harmonics

plays not only a non-negligible, but sometimes an essential role in this perception. The

problematics of the perception of a pitch that may not even correspond to any frequency

present in the sound spectrum is known as the problem of missing fundamental, virtual

pitch or residue perception. In a seminal work,26 Plomp demonstrated that, for fundamental

frequencies below 700 Hz, the pitch of complex tones is determined by the harmonics and

not by the fundamental. Moreover, his investigations clearly showed that for fundamental

frequencies up to about 350 Hz, the pitch is determined by the 4th and higher harmonics.

Subsequent studies by Ritsma,27 Bilsen,28 Houstma and Smurzynski,29 and Meddis and
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Hewitt30 have confirmed this fundamental result, allowing Meddis and Hewitt to summarize

that ”for fundamental frequencies below 400 Hz, harmonics lying between the 3rd and the

5th contribute most to the strength of the pitch percept.”30 Models for rationalizing these

results include periodicity theories, place theories and processing by the central nervous

system.25 However, the basic experimental psychophysical data seem to be well described

by a simpler fundamental nonlinear dynamics model.25

Our measurements do show that in the usual playing configurations the fundamental

vibration mode of the string is nearly absent. Moreover, the gourd is seen to contribute

to a significant enhancement of the amplitude of the specific harmonics which are known

to be more important for the definition of pitch. In the context of the above-mentioned

results from the psychoacoustics of pitch, our measurements thus strongly suggest that the

gourd is likely to play a fundamental role in the definition of pitch, through an amplification

of the higher harmonics, especially the 4th and 5th harmonics. These have been identified

as important for the perception of pitch in psychoacoustic experiments. Of course, the full

development of this idea implies further thorough psychoacoustic studies that this work does

not intend to provide.

IV. CONCLUSIONS

Being a very cheap and accessible instrument, the berimbau can be easily introduced as

the subject of a simple experimental study of the vibration of a (harmonic-rich) metallic

string and its coupling to a narrow-filtering resonator. The widespread use of the berimbau

associated to the corresponding dissemination of capoeira, makes it appealing to a particu-

larly broad audience.

Despite its simplicity, this study allows to discuss rather complex phenomena in the

physics and psychoacoustics of sound. The details of the vibration of (stiff) strings and

resonators can be addressed in a simple way, but its interpretation in the musical context

implies that attention must be paid to the results of ongoing research in the psychoacoustics

of pitch perception. These results can thus also be illustrated.

Our measurements reveal that the stiff steel string has a strong spectral weight in the

region 1 − 3 kHz, and that the inharmonicity of the corresponding vibration frequencies is

likely to be detected even by the more insensitive individuals. The gourd is found to boost
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the vibration modes around the 5th harmonic. These modes are known to play an essential

role in the definition of pitch of complex sounds with low fundamental frequencies, as in the

case of the berimbau.

The berimbau thus proves to be a useful tool that can easily be used for undergraduate

classroom projects in the physics and psychoacoustics of pitch. For example, gourds with

different sizes could be used in a classroom project in order to explore the effect of the

geometry of the gourd discussed in sections II B 2 and III C. Also, eq. 2 can be used to

synthesize computationally a slightly inharmonic complex sound in order to individually

test pitch perception. The results reviewed in sections III B 2 and III D 2 can be explored

similarly, for example synthesizing complex sounds containing only the partials relevant to

the perception of the missing fundamental.
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FIGURE CAPTIONS
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TABLE I. Experimentally observed frequencies fexp (up to 3 kHz) and intervals ¢exp in cents with

respect to the ideal harmonic frequency fideal = nf1, for the string with the gourd removed (as

represented in Fig. 3 and in Fig. 4).

n fexp /102 Hz ¢exp n fexp /102 Hz ¢exp

1 1.00(5) 16 16.16(5) 17(3)

2 2.00(5) 17 17.08(5) 8(2)

3 3.00(5) 18 18.16(5) 15(2)

4 4.00(5) 19 19.20(5) 18(2)

5 5.00(5) 20 20.23(5) 20(2)

6 6.00(5) 21 21.36(5) 29(2)

7 7.00(5) 22 22.36(5) 28(2)

8 8.00(5) 23 23.52(5) 39(2)

9 9.00(5) 24 24.52(5) 37(2)

10 10.00(5) 25 25.64(5) 43(2)

11 11.00(5) 26 26.72(5) 47(2)

12 12.04(5) 6(3) 27 27.84(5) 53(1)

13 13.12(5) 16(3) 28 28.92(5) 56(1)

14 14.09(5) 11(3) 29 30.00(5) 59(1)

15 15.09(5) 10(3)

FIG. 1. The typical berimbau used in this work and its components. The full string length is

1.37 m.

FIG. 2. Detail of the gourd. The cotton twine which attaches the gourd to the string is indicated

at the left side. The diameter of the gourd opening is 7.3(1) cm and its inner volume was measured

to be 0.90(5) dm3. The length of the gourd is 13.5(1) cm (from the opening to the cotton twine

end).
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TABLE II. Central frequencies fa and fb of the first 10 harmonics of the string with the gourd in

place, for the case (a) where the gourd is pressed against the abdomen and for the case (b) where

it vibrates freely, respectively. The respective FFT amplitude of the given harmonic in relation to

that of harmonic number 2 of case (a) is also indicated.

Harmonic no. fa /102 Hz FFT Relative amplitude fb /102 Hz FFT Relative amplitude

2 2.25(5) - - -

3 3.32(5) 1.52 3.33(5) 4.93

4 4.44(5) 0.08 4.45(5) 8.09

5 5.48(5) 0.71 5.58(5) 37.16

6 6.66(5) 0.11 6.67(5) 8.13

7 7.80(5) 0.11 7.83(5) 7.54

8 8.88(5) 3.13 8.92(5) 15.49

9 10.04(5) 0.92 10.08(5) 11.14

10 11.16(5) 1.39 11.17(5) 8.12

FIG. 3. Fourier transform of the vibration of the string of the berimbau, with the gourd removed.

The first 9 vibration frequencies are identified. The spectral weight for harmonics above the tenth is

very significant with respect to that of the lower harmonics, a characteristic feature of the metallic

timbre of the string.

FIG. 4. Detailed view of Fig. 3 in the spectral region 1 − 3 kHz, with identification of the most

prominent vibration frequencies.

FIG. 5. Frequency of the harmonics visible in Fig. 4 and presented in Table I, as a function of the

harmonic number n. The full line is a fit to Eq. 2 and the dashed line represents the harmonic

relation, as discussed in the text.

FIG. 6. Fourier transform of the vibration of the gourd, upon tapping with a soft mallet the end

with the twine. Two vibration frequencies are identified at fg1 = 555(20) Hz and fg2 = 2111(15)

Hz, as discussed in the text.
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FIG. 7. Graphical solution of eq. 8, with the parameters of the gourd used in this work (assuming

Leff = 2 × 0.6133 a). The dotted lines represent tan(αf), with α = 2πLefff/v0; the dashed

lines represent the corresponding small-angle approximations tan(αf) ∼ αf − nπ; the continuous

line represents β/f , with β = Sv0/2πV . The intersection points define the resonance frequencies

fg1 = 540(17) Hz and fg2 = 3.92(4) kHz.

FIG. 8. Fourier transform of the vibration of the string with the gourd in place, for the case

(a) where the gourd is pressed against the abdomen and for the case (b) where it vibrates freely.

The vertical scale in (a) has been multiplied by a factor 4 with respect to that in (b). A clear

enhancement of the harmonics around the fundamental vibration frequency of the gourd (centered

around 555 Hz) is visible in (b). The dashed line in (b) is a Gaussian curve centered at 555 Hz, as

discussed in the text.
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