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Abstract

The main goal of this work is to present a three-dimensional mechanical model for the numerical simulation of the deep-drawing process.

The model takes into account the large elastoplastic strains and rotations that occur in the deep-drawing process. Hill's orthotropic yield

criteria with isotropic and kinematics hardening describes the anisotropic plastic properties of the sheet. Coulomb's classical law models the

frictional contact problem treated with an augmented Lagrangian approach. This method yields a mixed system where the ®nal unknowns

of the problem are static (frictional contact forces) and kinematic (displacements) variables. To solve this problem use is made of a fully

implicit algorithm of Newton±Raphson type. Three-dimensional isoparametric ®nite elements with a selective reduced integration are used

for the spatial discretization of the deformed body. The geometry of the forming tools is modelled by BeÂzier surfaces. The numerical results

of the deep-drawing of a square cup are presented to focus their good agreement with the results of experiment. # 2000 Elsevier Science

S.A. All rights reserved.
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1. Introduction

The deep-drawing process is used widely in a variety

of industrial areas. In all its years of use, the industrial

experience gained has always been used for the conception

of new parts. In reality, conception cycles of shorter periods

have signi®cantly cut down the time available for the

optimisation of the forming tools. This optimisation process

requires a good understanding of the technological process

and the parameters involved, such as the lubri®cation

conditions, the forces over the forming tools, the gap

between punch and die, etc. The use of numerical simulation

could contribute towards the development and optimisa-

tion of the process, leading to signi®cant economic and

technical gains.

The application of the ®nite element method to the

numerical simulation of the deep-drawing process has

evolved in a signi®cant way in the course of the last few

years. Many of the problems associated with numerical

simulation of this process have been solved or at least are

better understood, of which the following are noteworthy;

the correct model of the phenomena at play, and the devel-

opment of sound numerical methods capable of coping with

the strong non-linearity generally associated with it. Further

to this, thanks to the calculation speed currently available, it

has been possible to perform three-dimensional simulations

that account for the increasing industrial interest in this ®eld.

Therefore, in the present paper certain general considera-

tions have been made of the three-dimensional mechanical

model and the numerical methods used in the algorithms of

the program DD3IMP1, developed in order to simulate the

industrial processes of deep-drawing.

2. Mechanical model

Deep-drawing process modelling puts forward complex

problems due to the non-linearity of the behaviour laws, to

the presence of elastoplastic transformations and to the non-

constant boundary conditions of contact with friction. A

mechanical model used in numerical simulation should take

all of these aspects into account, requiring careful simpli-
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®cations in order not to affect the precision of the results. In

the present case, the model considers the problem as a

process of large elastoplastic transformations. To correctly

evaluate the shear and bending effects, no kinematic sim-

pli®cation is made of the membrane or shell type. The

plastic behaviour of the material is described by Hill's

criteria with isotropic and kinematic work-hardening, and

by an associated ¯ow rule. The Coulombs law describes the

contact with friction and its evolution is controlled by a

mixed formulation, using an augmented Lagrangian

approach. The model establishes the contact between a

deformed body (sheet) and a rigid body (forming tools).

The kinematic description uses an updated Lagrangian

approach. It is also taken into account that the elastic part

of the transformation leads to small strains when compared

to the unit strain, although big rotations could occur, thus

making the hypothesis of small elastic strains applicable.

2.1. Basic equations of elastoplastic formulation

Under the aforementioned conditions, it is possible to

deduce the differential form of the elastoplastic behaviour

law, the general form of which is as follows [1]:

_rJ � Cep : D; (1)

where _rJ is the rate of variation according to Jaumann of the

Cauchy stress tensor r, which is given by:

_rJ � _r� rWÿWr; (2)

where _r stands for the time derivative of the Cauchy stress

tensor and W is the total spin tensor defined by:

W � _RR
T
; (3)

in which R is the orthogonal elastic rotation tensor. In Eq. (1)

D is the strain rate tensor and C ep is the elastoplastic module,

the calculation of which depends on the algorithms used for

the time integration of the behaviour law. The strain rate is

decomposed into elastic and plastic parts, De and Dp,

respectively. De is given by the Jaumann objective derivative

of the strain tensor e and Dp is a deviatoric tensor, given by

the associated inviscid flow rule:

D p � _�
@ f ���; Y�
@r

; (4)

in which _� is the plastic multiplier that can be calculated

after the condition _f � 0, where f is the plastic potential

which is identified as the scalar function that defines the

elastic limit surface, described by the general quadratic yield

condition:

f ���; Y� � ��ÿY � 0: (5)

Y denotes the ¯ow stress in simple traction. Its evolution

depends on the isotropic work hardening modelled by the

Swift law:

Y � C�"0 � �"p�n; (6)

where C, �0 and n are material parameters. �� is the equivalent

stress defined by the quadratic equation:

��2 � �rÿX� : M : �rÿX�: (7)

M is a fourth-order symmetric anisotropy tensor, whilst X
is a second-order tensor, symmetric and deviator, called the

back-stress tensor, which is associated with the kinematic

work hardening, and is given by the Prager's law:

_X
J � kDp; (8)

where k is a material parameter and _X
J

is the Jaumann

derivative of X.

In order to account for the evolution of M during the

deformation process, it is supposed that the material, initi-

ally orthotropic, remains so during the deformation. The

orthotropic axis are subjected to the time-dependent rotation

R whose evolution is governed by Eq. (3). Therefore, the

evolution of M is given as a function of the initial anisotropy

tensor M, corresponding to the Hill's quadratic yield con-

dition, by the equation:

M � R�RMRT�RT : (9)

2.2. Principle of virtual velocities

In the updated Lagrangian scheme, the con®guration of

the sheet at time t is taken as the reference con®guration for

the time interval [t, t � �t]. At the end of the increment �t,

the con®guration is updated and taken as the reference

con®guration for the next increment. Assuming that a

deformed body, submitted to external forces, has a domain


0 with surface �0 at instant t, the principle of virtual

velocities written in the reference con®guration is given

by the following equation [1]:Z

0

S :
@@dm

@x0
d
 �

Z
�0

s���mdS; (10)

which is valid for any virtual velocity field �m. s* stands for

the prescribed nominal stress vector expressing the external

load, x0 is the vector position of a generic material point at

time t and S is the first Piola±Kirchhof stress tensor.

The behaviour law de®ned by Eq. (1) is formulated in

velocities. However, the principle of virtual velocities in Eq.

(10) involves the total stresses. Following this, it is necessary

to linearize the principle in order to involve the tensors that

occur directly in the formulation of the constitutive laws.

2.3. Unilateral contact with friction

The numerical simulation of the deep-drawing process

requires a good prediction of the evolution of the contact

conditions between the forming tools and the metal sheet to

be formed. The main dif®culty is that the boundary condi-

tions are time-dependent. For this reason, a classical treat-

ment of them, particularly in the case of using a fully
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implicit numerical method, is virtually impossible. The

inequations associated with contact with friction contribute

towards a strong non-linearity of the models, necessitating

the use of fairly strong numerical methods for the solving of

the global problem. The augmented Lagrangian approach is

currently quite popular for the solving of contact friction

problems. In the context of the ®nite element method, this

approach has been applied successfully [2±4], presenting a

signi®cant development. Heege [5] generalised the use of

the augmented Lagrangian approach for contact between a

deformed body and a rigid obstacle of general shape. This

generalisation was applied successfully in the simulation of

the deep-drawing process [1]. This method subscribes to a

mixed formulation in which the kinematic variables (dis-

placements) and static variables (frictional contact forces)

are the ®nal unknowns of the problem. This leads to a non-

linear system that can be solved by a method of the Newton±

Raphson type.

Eq. (10) expresses the conditions necessary for a struc-

tural balance in the absence of contact and friction and is

equivalent to the following generic form:

FintuÿFext � 0; (11)

where Fint(u) and Fext are the vectors of internal and external

forces and u is the displacement field, which is the vector

solution of the problem. With the inclusion of contact with

friction, Eq. (11) remains valid although constrained by the

boundary conditions associated with the contact with fric-

tion problem. An augmented multiplier is therefore intro-

duced, �n � rdn(u), where r is the penalty coefficient, �n is

the normal frictional force on the surface at the contact point

and dn is the contact normal distance. It is possible in this

way to formulate an augmented Lagrangian Lr(m,c), of

virtual variables m and c and of parameters u and k, giving

rise to an exactly equivalent problem for all strictly positive

values of the penalty coefficient r, and which can generally

be written as follows [1,2]:

@

@m
;
@

@c

� �
Lr�u; k� � Fintu� Fequi�u; k�ÿFext � 0

Fsup�u; k� � 0

�
(12)

Therefore, Fext represents the classical external forces,

Fequi(u,k) imposes the boundary conditions originating from

the contact with friction and Fsup(u,k) takes into account the

supplementary terms necessary for the control of the fric-

tional contact boundary conditions [1]. The problem is

therefore differentiable and without constraints, making

possible the use of a method of the Newton±Raphson type

for its resolution.

From a mathematical point of view, Eq. (12) represents a

system of six equations for six unknowns, for each point of

the deformed body. These unknowns are three displace-

ments (u) and three contact forces (k), which justi®es the

designation of mixed formulation in (u,k).

The use of computer codes in industrial applications

requires the adaptation of the contact algorithms to take

into account forming tools described by parametric surfaces

(BeÂzier, splines,. . .). As a result, it is no longer possible to

analytically calculate some contact parameters such as the

normal distance, the normal vector to the surface, the

relative displacements between deformed body and forming

tools, etc. Therefore, it is necessary to introduce numerical

algorithms that can lead to a minute and astute management

with regard to contact detection and the calculation of the

contact parameters over this type of surface [1].

3. Numerical methods

The use of an implicit method for the simulation of the

deep-drawing process ensures the structural balance at any

given instant of the calculation. Taking the known con®g-

uration at instant t, the equilibrium equations are solved for

the instant t � �t. The static structural balance is assured by

an iterative scheme in the vicinity of the arrived con®gura-

tion at instant t � �t. The algorithms are much more

sophisticated than in the explicit method, allowing greater

increments. However, it has some disadvantages when

compared to the explicit method. In fact, implicit algorithms

have no protection against eventual numerical instability,

and divergence can occur during the iteration process.

Generally, this is associated with severe changes in the

boundary conditions or in the strain evolution during an

increment. It is therefore necessary to alter the algorithms

favourably in a generally complex manner so that these

dif®culties can be sorted out without affecting the quality of

the problem solution [1].

Two types of non-linearities occur in the numerical

simulation of the deep-drawing process. One of them con-

cerns the large elastoplastic transformations whilst the other

is with respect to the contact with friction. These are two

interrelated issues: however, most existing calculation pro-

grammes reserve an iterative loop for the solving of each of

these non-linearities [6±9]. The mixed formulation

described earlier allows the transformation of the non-dif-

ferentiability of both the contact and frictional laws to a

partial differentiable non-linear problem, making the solu-

tion possible by a method of the Newton±Raphson type.

Therefore, only an iterative loop strategy can be adopted [1].

3.1. The implicit method

In the implicit method, equilibrium equations and the

coherence condition are imposed on the con®guration at the

instant t � �t, which is unknown. Therefore, this con®g-

uration has to be determined by successive approximations.

By an explicit method, for example, an approximate ®rst

solution for the incremental displacements, stresses and

frictional contact forces can be calculated. Generally, this

solution satis®es neither the variational principle nor the

coherence condition, due to the non-linearity of the beha-

viour law and to the kinematics of the process that is being
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simulated. Therefore, the correction of the solution lies in

the iterative Newton±Raphson method [1]. Consider that at

an instant t, corresponding to a con®guration C[Nÿ1], the

stress state of the deformed body satis®es the principle of

virtual velocities as well as the behaviour law. After calcu-

lating the explicit solution of the increment [t,t � �t], the

actualised con®guration C[N,0] is given as a function of the

incremental displacements and frictional contact forces,

�u[0] and �k[0], by:

x�N;0� � x�Nÿ1� � Du�0�; k�N;0� � k�Nÿ1� � Dk�0�: (13)

With this solution, it is possible to calculate the incre-

mental strains and rotations and to integrate the behaviour

law in order to determine the stress ®eld and the plastic

strains at the instant t � �t [1]. This is the ®rst approxima-

tion of the con®guration and of the state of the deformed

body at the instant t � �t. To calculate the incremental

displacements and the corrected incremental frictional con-

tact forces, Eq. (12) is linearized with respect to the dis-

placements in the neighbourhood of the con®guration C[N,0],

thus arriving at a linear system of equations of unknowns

du[1] and dk[1]. After the resolution of this system:

x�N;1� � x�Nÿ1� � Du�1�; k�N;1� � k�Nÿ1� � Dk�1�; (14)

where,

Du�1� � Du�0� � du�1�; Dk�1� � Dk�0� � dk�1�: (15)

This iterative process is repeated until the con®guration

obtained is satisfactory, i.e., until the iteration when the out-

of-balance forces attain a lower value to the imposed limit.

Then, the con®guration at the end of the increment is

considered calculated, passing on therefore to the next

increment.

Quadratic convergence in the vicinity of the solution is

one of the main advantages of this method. On the other

hand, numerical instabilities are frequent. The dif®culty of

the numerical treatment is due to the fact that the problems

of contact introduce inequalities that lead to strong non-

linearities. The behaviour law associated with the deformed

body also contributes towards the strong non-linearity of the

problem to be solved. The quadratic convergence area in the

vicinity of the solution is necessarily included in a differ-

entiable region characterised by the `̀ correct'' contact status

of each point of the surface of the deformed body (no

contact, stick contact or slip contact). During the ®rst

iterations, the algorithm should determine the correct con-

tact status. In this way, conclusions on the existence of the

quadratic convergence can be made, but only after the

moment when no more changes in the contact status occur

[1]. Numerical tests have shown that the global convergence

depends mainly on the following factors: the penalty coef®-

cient r, the behaviour law of the deformed body, the friction

coef®cient, the tool geometry, the ®nite element mesh of the

deformed body and the solution at the beginning of the

iteration process. Although the convergence behaviour is a

function of these parameters, in the case of divergence it is

extremely dif®cult to identify the parameters responsible.

Further to this, when solving a real problem, the behaviour

law, and the friction coef®cient, as well the tool geometry,

are unchangeable factors as they depend on the type of

problem to be solved. In case divergence does occur, the way

to avert it is to act on the value of r, on the ®nite element

mesh and on the solution at the beginning of the iterative

loop. The results of the numerical tests undertaken show that

it is always possible to overcome the problems of conver-

gence by modifying the cited parameters, without a loss in

the quality of the results, which show the method developed

to be highly sound and reliable.

4. Finite elements

The use of solid ®nite elements considers the sheet as a

three-dimensional domain, which is the more realistic way

to model the process. The simultaneous contact on both

sides of the sheet is naturally solved without any particular

strategy. Further to this, with these elements it is possible to

calculate accurately the stress gradients over the thickness of

the sheet as well the evolution of the sheet thickness during

the simulation. However, its use requires certain care, which

is trying in terms of the CPU time required: At least two

thick layers of elements should be used in order to accom-

modate the stress gradients that occur in this direction and

the ratio between the dimensions of the elements on the

sheet plane and over the thickness should be small to avoid

deterioration of the matrix of the linear system being solved.

In order to choose a ®nite element to be used in the

simulation, one should take into account aspects such as the

plastic incompressibility, the geometry of the operation, its

behaviour in bending and shear, the contact with friction and

the cost in terms of time of CPU. In the present work, an

isoparametric, hexahedral element is used, associated with a

selective reduced integration technique [10,11]. This ele-

ment has eight nodes, eight Gauss points for complete

integration and one for reduced integration. It uses the same

interpolation functions to interpolate the spatial co-ordinates

x and the incremental displacements �u in its domain.

There are then the following relations:

x �
Xnen

a�1

Ne
a��; �; ��xe

a; Du �
Xnen

a�1

Ne
a��; �; ��Due

a; (16)

where Due
a and xe

a are the incremental displacement and

position vectors of the node a of the element e; nen is the

number of nodes of the element; x,h and z are the canonical

co-ordinates; and Ne
a is the interpolation function associated

with node a.

The isoparametric elements have a de®cient behaviour

when used to solve elastoplastic problems [12]. In fact, using

a complete integration scheme increases the stiffness of the

element causing the appearance of arti®cial hydrostatic
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stresses, which leads to a complete deterioration of the

solution. This phenomenon is associated with the isochoric

nature of plastic deformation. Thus, the distortions that can

occur in the volume conservation are compensated for by a

volume deformation of elastic origin. The effect can be

eliminated by the use of a selective reduced integration

method (`̀ assumed strain methods'') [10,13±15]. Here, a

reduced integration is used only in particular terms of the

stiffness matrix. Regarding the method used in the present

work, the hydrostatic components of the velocity and virtual

velocity gradients are both considered constant in the whole

element and are calculated at its central point (point of

reduced integration) [10]. This method is equivalent to the

application of a complete integration where the velocity

gradient ®eld L and the virtual velocity gradient ®eld dL is

calculated as follows:

Lkl � Nb;lvbk � abqvbq�kl; �Lij � Na;j�vai � aap�vap�ij;

(17)

where i, j, k, l, p and q note the spatial co-ordinate indices

and:

aap � �1=3� �Na;pÿNa;p

ÿ �
; (18)

where �Na;p is the value of Na,p at the central point of the

element.

By the spatial discretization of the deformed body with

®nite elements, and applying the usual assembling technique

to the elemental matrices, a global linear system is obtained

as follows [1]:

�KAB�ijfduBgj��AA�ijfduAgj��CA�ijfd�Agj�ff 1
Agi;

��AA�ijfduAgj � �BA�ijfd�Agj � ff 2
Agi:

(
(19)

where du and dl correspond to the increase in displacement

and the frictional contact force, respectively. A and B

correspond to the global numeration of the nodes. The term

[KAB]ij is the traditional global stiffness matrix and is

independent of the contact status of the nodes. The remain-

ing matrices will depend on the contact status of node A and

are associated with the contact operators Fequi and Fsup.

5. Numerical example

This section shows some results of the numerical simula-

tion of the deep-drawing of a square cup. The dimensions of

the forming tools are described in Fig. 1.

Due to geometrical symmetry, only one quarter of the

global structure is simulated. The initial dimensions of the

metal sheet are 150 � 150 � 0.81 mm and it has the follow-

ing mechanical properties: E � 0.71 � 105 MPa; � � 0.33;

the Swift law: �� � 576:79��0:01658� �"p�0:3593
MPa; the

Hill coef®cients: F � 0.5932, G � 0.5848, H � 0.4152,

L � M � N � 1.272. Further, a friction coef®cient of

0.162 and a blank-holder force of 4900 N were used. In

order to describe the forming tools, nine BeÂzier surfaces

were used for the matrix, nine for the punch and three for the

blank-holder. The sheet was discretized in a regular mesh

composed of 1250 hexahedrons, with two element layers in

the thickness direction.

Fig. 2 compares the numerical and experimental [16]

results of the distribution of the thickness strains along

the Ox axis (Fig. 1), after a punch travel of 15 mm. The

numerical results are in good agreement with the experi-

mental results.

Fig. 3 shows the isovalues of the thickness strains after a

punch travel of 20 mm. As can be observed, the strain attains

Fig. 1. Forming tools for the deep-drawing of a square cup.(dimensions:mm).

Fig. 2. Distribution of the thickness strain along the Ox axis (Fig. 1), after

a punch travel of 15 mm.
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values of 60%, which for the present case is too high and

hinder the success of the deep-drawing process. In fact, the

experimental results present a rupture in the sheet after a

punch travel of around 20 mm [16]. Fig. 4 presents a detail

of the thickness strains on the vertical wall of the cup. A

local decrease of the sheet thickness can be observed that

could mean a strain localisation, con®rming the failure of the

operation.

The deep-drawing of the square cup allows comparison

with the numerical results obtained through the DD3IMP

code with an example of real industrial interest. Despite the

results being consistent, some systematic differences were

observed in relation to the experimental results which can be

reduced by using a more re®ned ®nite element mesh. This

example enhances the use of solid ®nite elements. In fact,

the experimental failure of the process was well predicted in

the numerical simulation.

6. Conclusions

This paper presents a summary of a mechanical model for

the numerical simulation of the deep-drawing process that is

keeping with the development of the DD3IMP code. Special

Fig. 3. Isovalues of the thickness strain after a punch travel of 21 mm.

Fig. 4. Isovalues of the thickness strain after a punch travel of 21 mm (detail in the sheet vertical wall).
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attention has been given to the use of the elastoplastic

behaviour law and to the use of an augmented Lagrangian

approach in order to include the frictional contact problem.

The resultant problem is solved by an implicit method with

one single iterative loop. Three-dimensional isoparametric

®nite elements are used for the spatial discretization of the

deformed body. The forming tools are modelled by BeÂzier

surfaces enabling a direct link with CAD codes.

The numerical results obtained in the simulation of the

deep-drawing of a square cup were compared with experi-

mental results. Despite a relatively low number of ®nite

elements used in this simulation, the numerical and experi-

mental results were found to be in agreement.
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