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Abstract

Flexible manufacturing systems (FMS) are essential for small/medium batch and job shop manufacturing. These types of
production systems are used to manufacture a considerable variety of products with medium/small production volumes. Therefore,
the manufacturing platforms supporting these types of production must be #exible and organized in #exible manufacturing cells
(FMC). Programming FMCs remains a di$cult task and is an actual area of research and development. This paper reports an
object-oriented approach developed for FMC programming. The work presented was "rst thought for application in industrial robot
manipulators, and later extended to other FMC equipments just by putting the underlying ideas in a general framework. Initially, the
motivation for this work was to develop means to add force control to a standard industrial robot manipulator. This problem requires
remote access to the robot controller, remote programming and monitoring, as also is required to program and monitor any other
FMC equipment. The proposed approach is distributed based on a client/server model and runs on Win32 platforms, i.e., Microsoft
Windows and Windows NT. Implementation for the special case of industrial robot manipulators is presented, along with some
application examples used for educational, research and industrial purposes. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Actual manufacturing systems are evolving rapidly to
#exible systems. Hard Automation manufacturing
systems, composed by highly productive and dedicated
machines, are not suitable for today's manufacturing
platforms. Today the enormous diversity of products
along with the requirement for better quality at lower
prices makes the product life cycle very short. This is
incompatible with hard automation manufacturing sys-
tems.

One of the most recent developments in the area of
industrial automation is the concept of #exible manufac-
turing systems (FMS). These are highly computerized
systems composed of several types of equipments, usually
connected through a local area network (local network
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using MAP1 protocols [1]) under some hierarchical
computer integrated manufacturing (CIM) structure
[2}4]. The factory (shop yoor) equipments are organized
in #exible manufacturing cells (FMC) with transporta-
tion devices connecting the FMCs. In some cases,
functionally related FMCs are organized in #exible
manufacturing lines (FML) (Fig. 1). Each FML may
include several FMCs with di!erent or equal basic capa-
bilities. The organization proposed in Fig. 1 is a hier-
archical structure [3,5] where each FMC has its own
controller (cell level). Therefore, if the manufacturing
process is conveniently organized in FMLs we will have
several controllers in the shop #oor level, e.g., one con-
troller for each FML (process level). With this setup, an
intelligent and distributed job dispatching and awarding
mechanism may be implemented taking advantage of the
installed industrial network [3,6}8].

The essential factor of an FMC is its #exibility, i.e., its
adaptability to new manufacturing requirements that can

1Manufacturing automation protocol (MAP).
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Fig. 1. Example of an industrial network organized in hierarchical levels (shop #oor control structure is presented in detail). The industrial network
presented is conveniently segmented (using bridge HUBs) maximizing communication throughput in each segment.

go from a modi"ed product to a completely new product.
The #exibility results from the fact that FMC equipments
are programmable and easily recon"gured machines: this
is the case of industrial robot manipulators, mobile
robots for parts handling and transportation, programm-
able and logic controllers (PLC), CNC machines, vision
systems, conveyors, etc.

Nevertheless, programming an FMC remains a di$-
cult task mainly because usually FMC equipments come
from di!erent manufacturers, having their own program-
ming language and environments. A specialist is then
needed for cell programming, even if the required cha-
nges necessary to meet new manufacturing demands are
only simple adaptations in the original program. This
reduces signi"cantly the FMC #exibility, i.e., its potential
#exibility is only barely used. In this paper, we present an
object-oriented approach for robot programming,
monitoring and control. The proposed software architec-
ture may be extended and applied to other FMC equip-
ments, and is an alternative approach to the ones
presented in the literature. These approaches usually are
based on the development of a unique language for FMC
programming, having speci"c interpreters to convert the
code to each equipment native language [9]: this is com-
plex and reduced to a limited number of manufacturers.
Other object-oriented approaches showed that it is pos-

sible to have a #exible programming environment, and
still program each equipment using its native language
[10,11]. We consider here that for any individual equip-
ment we can de"ne a set of complex functions, which
include all the tasks that would require the equipment
when inserted into an FMC. We also consider that these
functions can be requested remotely by the FMC con-
troller, which provides also the proper parameterization.

The approach presented here is basically a collection
of software controls and a communication mechanism
between the host computer and the controllers of the
FMC equipments. From among the several available
technologies, either for software controls or communica-
tions, we selected the ones that could serve better our
needs. The basic idea was to provide means for easy
equipment programming and monitoring, hiding from
the user all the less important details of how to address
individual equipments, how to communicate, where to
collect data from, etc. All of these are encapsulated into
software controls (objects) that provide to the user the
properties and methods necessary to do the job. For this
we use actual standards, and did not tried to de"ne a new
distributed platform (as the European consortium
OSACA [12], although the approach is similar), because
we wanted to run the architecture from the usual PCs
using standard tools.
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Industrial robot manipulators are a special case of
FMC equipments, because they can perform a variety of
tasks, most of them in a human-like manner. As a conse-
quence, these machines have increasing importance in
today's manufacturing industry. Moreover, its import-
ance will grow in the near future as forecasted by the
United Nations and the International Federation of
Robots [13]. Nevertheless, actual industrial robot
manipulators remain ine$cient machines when it comes
to interact with the environment and deal with the con-
tact problems. They remain position-controlled devices
with no force control capabilities. Force-controlled ro-
bots are essential for industrial tasks requiring a precise
control of the interacting forces generated by contact
between the robot tool and the environment [14}19].
Examples of this type of tasks are polishing, deburring,
grinding, etc. Adding force control to an industrial robot
is one of the applications of the proposed scheme (see
Section 4.1).

In the following sections of this paper, our approach
for FMC programming, taking as example the case
of robotic FMC equipment's, is explained in detail. Sec-
tion 2 explains the basic architecture adopted which is
distributed and object oriented. Section 3 details the
application of the adopted architecture for the special
case of the industrial robot manipulator we have in our
laboratory. Special attention is also given to the integra-
tion of intelligent sensors into the FMC equipment and
the connectivity of the developed programs with other
commercial programs. Section 4 presents two application
examples of the proposed approach. Finally conclusions
are drawn in Section 5.

2. Basic architecture

The software architecture discussed here was de-
veloped for industrial robot manipulators, and was im-
plemented for the special case of ABB Robots (with the
new S4 control system). Nevertheless, it can be used with
other equipments of an FMC, enabling fast FMC pro-
gramming and monitoring. Because of this, the dis-
cussion will be kept general, aiming at application in
other equipments.

To implement the ideas discussed here, FMC equip-
ments are required to have processing capabilities (i.e.,
a microprocessor), some memory space and a TCP/IP
interface over ethernet or serial line (SLIP). These re-
quirements are usually available in modern FMC equip-
ments, which means that their application is not seriously
limited. The basic idea is to de"ne for any speci"c equip-
ment a library of functions that in each moment de"ne
the basic functionality of that equipment for remote use.
Thus a mechanism for calling these functions from a re-
mote computer, usually the FMC controller, should also
be provided along with a message syntax protocol. This

points to a distributed client/server environment, where
any FMC equipment acts as a server o!ering a collection
of services to the remote client (FMC controller). These
services are general by complex tasks that cover all the
functionality required for the equipment when working
in a certain type of FMC. Adding other services may also
be allowed and should be a simple task. Nevertheless, the
library should be complete in a way that adding new
services should not be necessary for usual operations. In
fact, when integrated in a FMC any equipment has
a well-de"ned number of tasks that it should perform.
The only thing that is required is to identify all of them
and implement the correspondent services as generally as
possible; in a way that they could be used in di!erent
situations or even in di!erent FMC's. For the special case
of industrial robot manipulators, the following are exam-
ples of remote services (Table 1).

The implementation of this requires the use of three
programming models:

1. Client/server } We require to have server code run-
ning on the equipment that deals with receiving calls
from remote computers (clients), execute them and
return the results.

2. Remote procedure calls (RPC) } This is the usual way
to implement communications between the client and
the server of a distributed application. The client
makes what looks like a procedure call, although the
resource is not local. The RPC mechanism in use
translates that into network communications. The ser-
ver receives the request, executes accordingly and re-
turns the results.

3. Data sharing } We want to have services that share
"les, programs, databases, etc. The data-sharing servi-
ces will be built on top of RPC, which provides the
means for transferring data.

A messaging protocol (MMS [1,20] or other) and the
de"nition of data structures for handling service para-
meters, communication and execution status must also
be speci"ed. Due to space limitations, this point will not
be discussed in detail.

Another important aspect to consider is the possibility
to integrate sensor data into the developed applications.
The most easy and portable way to do this is to build
objects for sensor access and con"guration, as repre-
sented in Fig. 2. It is also very important to be able to
exchange data between the developed monitoring and
control applications and the commercial applications
used for simulation, data analysis and representation, etc.
This means that a connectivity mechanism must be avail-
able for these applications.

3. Application to robot manipulators

The above-explained architecture was applied to the
robot/controller we have in our laboratory (ABB
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Table 1
Examples of remote services

Gripper services
open}close}gripper Opens/closes the gripper in use. In the case of a multi position gripper, the user should identify the "nal position.
open}close}griper}if The same as open}close}gripper, having now the possibility to add a trigger event that can be a timer, an IO event,

a variable event, etc.

IO services
dig}in Reads from a single or from a group of digital inputs.
dig}out Writes to a single or to a group of digital outputs.
analog}in Reads from a single or from a group of analog inputs.
analog}out Writes to a single or to a group of signal analog outputs.

Motion services
go}home Sends robot to the de"ned home position.
go}position Sends the robot to the speci"ed position.
go}home}if Waits for a condition to be met (timer, IO, variable,2) before sending the robot home.
go}position}if Waits for a condition to be met (timer, IO, variable,2) before sending the robot to the speci"ed position.

FMC speci"c services
play}trj Executes a speci"ed trajectory for the speci"ed number of times: if !1 is speci"ed, the trajectory is played until

a condition is met (timer, IO, variable,2).
load}piece Fetches a speci"ed piece from a speci"ed loading device and moves the robot to the speci"ed position.
unload}piece Unloads the piece on the speci"ed position.
load}unload}piece Fetches a speci"ed piece from the speci"ed loading device, goes to the speci"ed unload position and unloads the piece.
production}sequence A production}sequence is a sequence of operations that should be performed. The sequence is speci"ed using a de"nition

matrix and saved in the robot control system.
Then the sequence can be executed for a speci"ed number of times. For example, the following speci"es a very simple
loading/unloading operation:

production}sequence(0, [100 0 320 1 200 2]);

production}sequence(1, [!1 500 10 1]);

The remote client sends two commands. The "rst command is a save sequence command ("rst parameter equal to zero),
the second command is an execution command ("rst parameter equal to one). The sequences can have any number of
operations. For practical use, we limited the dimension of the sequences to 1024 parameters.
In the "rst command the sequence commanded is:
100 }Wait for piece coming from any of the available loading devices (0). If the parameter following the 100 parameter
was di!erent than zero (0), then the system should look only to the speci"ed loading device.
320 } (load}unload}piece command) loads a piece from the speci"ed loading device and unloads it at the speci"ed
unloading device (1).
200 } goto}position de"ned by 2 (this is a safe general position to wait for new commands).
In the second command we command a execution:
!1 } The robot plays the saved sequence until a condition is met.
500 } The condition is an IO Digital event. The system should wait for input 10 to become active (1).

IRB1400/S4) [21]. Our objective was also to run the
developed software on standard personal computers,
which have today considerable computing power, name-
ly the ones based on Intel Pentium microprocessors. For
personal computers, the most popular operating system
(OS) platforms are the Microsoft Win32-based-plat-
forms, namely Windows NT and/or Windows 95/98.
Moreover, Windows NT 4.0 is also an industrial stan-
dard, taking advantage of its compatibility with the most
popular OS for desktop computers (Windows 95/98),
its very good security and UNIX-like performance
at a special low price. Therefore, we selected for use
personal computers running Win32 OS, preferably
Windows NT 4.0 or later.

ABB S4 controllers implement RPC server programs
[22] with variable access services, "le and program
management services and system status services. To ac-
cess these services the host computer (client) must imple-
ment RPC calling code through an ethernet or serial
connection (both using TCP/IP protocols). ABB also
developed an application speci"c protocol (ASP) called
RAP [22] to be used with these services. The RAP
messaging protocol works in the same way as MMS
speci"ed for MAP networks [1]. To implement the
PC}Robot communication code based as mentioned on
RPCs using RAP, we used the facility developed by the
Sun Microsystems Open Computing (ONC) Group
named SUN RPC 4.0. The choice of this facility was
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Fig. 2. Basic architecture for the distributed software.

mainly due to two reasons:

1. ABB S4 RPC server programs are SUN RPC 4.0
compatible.

2. SUN RPC 4.0 is freely available on the Internet. This
facility uses the ONC-standard and includes a com-
piler (rpcgen), a portmaper and some other tools and
utilities like the rpcinfo, etc. [23]. The Microsoft RPC
implementation uses the OSF/DCE standard [24]
which is not compatible with SUN RPC 4.0.

We need "nally to select the technology that will be
used to build the distributed objects. We considered the
Common Object Request Broker Architecture (CORBA)
technology [25] from the Object Management Group
(OMG) and the Common Object Model/Object Linking
and Embedding (COM/OLE/ActiveX) technology
[26,27] from DEC/Microsoft. For Win32 platforms, the
easier approach is the COM/OLE/ActiveX technology
mainly because:

1. It is fully supported by Win32 platforms. In fact,
COM is the most widely used component software
model in the world, and a large majority of the new
code developed for Windows and Windows NT oper-
ating systems depends on it.

2. There are very good developing tools available for
those platforms, integrated into developing suits like
the Microsoft Visual Studio (we use the Microsoft
Visual C## compiler as programming environ-
ment).

3. Availability of detailed documentation, easily access-
ible even through Internet.

4. We have some experience with this technology.

Nevertheless, OMG CORBA is a good alternative that
deserves to be considered more carefully in the future if
integration with Win32 platforms is provided (Microsoft
is facilitating interoperability with CORBA just by li-
censing COM to CORBA vendors).

JAVA Beans [28] is another component technology
to be considered when it is more mature. In a certain
way Java Bean component technology resembles the
COM/OLE/ActiveX component technology: both can
be scaled to various tasks, implement properties and
methods that can be used by other software components
and implement events to communicate its actions to
others. Nevertheless, they have di!erent objectives. The
COM/OLE/ActiveX technology uses a binary standard
to implement interobject communication, focussing on
language independence. Instead, Java Beans are based on
the concept of Java Virtual Machines (VM) [28] and
implement a Java Remote Method Invocation (RMI),
which enables an object running on a Java VM to com-
municate with other object running on a di!erent Java
VM and invoke its methods. This focuses on platform
independence, which is a very interesting and promising
idea.

Finally, to exchange data between commercial ap-
plications and our own applications we selected to use
the Microsoft Dynamic Data Exchange (DDE) techno-
logy. DDE performs well if the amount of data to be
exchanged is not very large, is stable and is generally
supported by the majority of the commercial applica-
tions available for Win32 platforms (that is the case of
Matlab, Microsoft Excel, etc.)

In the next sections, the software designed to develop
distributed applications will be presented and explained,
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Fig. 3. Basic structure of the software for robot applications.

showing also a few examples applied to industrial, re-
search and educational speci"c applications.

3.1. Development software

The software design to develop distributed applica-
tions is divided into three main parts (Fig. 3):

1. Robot communication software (ActiveX robot com-
munication object).

2. Sensor access and con"guration software (ActiveX
F/T sensor object).

3. Connectivity to Win32 applications software (DDE
server).

In the following, each of these parts will be brie#y
explained.

3.1.1. Robot communication software: ActiveX robot
communication object

This software is available as an COM/OLE/ActiveX
object that implement methods and related data struc-
tures to access all the RPC services available from the
ABB S4 controller. We used the SUN RPC 4.0 facility to
implement the RPC calls, as explained before, recompiled
using the Microsoft Visual C##5.0 compiler. Some of
the original functions were changed to better suit our

needs, without a!ecting the compatibility with SUN
RPC compliant software.

Basically, the only services really necessary to be able
to run the proposed architecture are the variable access
services. Nevertheless, we did implement functions to
access all the services available from the S4 controller.
These services include also "le and program management
and control services, which are very handy for industrial
applications requiring di!erent programs and databases.

Using a service means making the respective RPC call,
properly parameterized, and receiving the execution re-
sult. There are two types of services: synchronous and
asynchronous. Synchronous services give the answer as
the return value of the RPC call. Therefore, the prototype
of a function implementing a synchronous RPC call is
something like:

short status call}service} i (struct parameters}i,

struct answer}i),

where status is zero if there is no error executing the call
and less than zero otherwise (in this case the value re-
turned identi"es the error), parameters}i is a structure
containing the parameters for service i and answer}i is
a structure containing the execution results of service i.
Asynchronous services, after activation, return results
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asynchronously, i.e., the robot control system also makes
RPC calls to the remote host to send information as soon
it becomes available or when a certain event occurs
(controller state change, program controller state change,
IO events, etc.). These RPC calls, also named spontan-
eous messages, are made to all clients on the network
that make a subscription to receive them (a subscription
is an RPC call to the subscription service specifying the
type of information the client wants to receive). The client
must also implement a program to receive those mess-
ages. This program (Fig. 4) is an RPC server implemen-
ting the message receiving service, which logs on all
messages and broadcasts registered Win32 messages that
can be picked up by any running application by proper
selection of its message queue.

The variable access services enable access to all type of
data de"ned in the robot control system memory, requir-
ing only each variable to be de"ned with a special tag
(PERS instead of VAR). Using the variable access servi-
ces and designing accordingly the application running on
the robot controller, written using RAPID (a Pascal-like
programming language from ABB Robotics), it is pos-
sible to add other services to the robot controller. In fact,
with a simple switch-case-do loop switched by a variable
whose value is controlled by the client (Fig. 5), we can
add services to the system like the ones listed in Table 1.
Furthermore, with this approach we still use the original

Fig. 4. RPC server diagram.

Fig. 5. Simple switch-case-do loop used to implement new remote
services.

capabilities of the robot control system, namely its ad-
vanced motion capabilities, related functions and data
structures.

This procedure is not much di!erent from that in any
other RPC server program; the svc}run routine that is
working on any of these programs is nothing more than
a switch-case-do loop.

Using this structure, we built several generic and com-
plex services for remote use. For example, a service to
enable robot jogging from the remote host, using an
inexpensive usual game joystick. With this service, the
user can move all the axes of the robot 3-by-3 (because
the joystick has only three axes). The user can select
between axis 1-2-3, axes 4-5-6 and axes 7-8-9 (external
axis). The robot is moved by steps. The value of each step
is proportional to the position of the joystick handle
multiplied by a scaling factor selectable by the user
(Fig. 6).

Another example, is the play}trajectory service. A tra-
jectory of up to 1000 points (position, orientation, velo-
city and acceleration) can be commanded to the robot.
The user must "rst download the trajectory to the robot
control system memory, using the write}trajectory ser-
vice. Each trajectory is a structure with the following
elements:
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We built a function in Matlab to generate these trajec-
tories starting from the joint angle con"gurations. This
function searches also for singular con"gurations and
performs a graphic simulation of the all motion [29].
After passing the trajectory to the robot control system, it
can be played a speci"ed number of times, or until a con-
dition is met, using the play}trajectory service. This op-
eration can also be commanded directly from Matlab
using the connectivity software that is explained below
(Section 3.1.3). This function demonstrates the use of the
proposed architecture to add and use new remote servi-
ces to the robot control system.
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Fig. 6. Dialog developed to use the joystick remote service.

3.1.1.1. Performance. We made several performance
tests using two robot TCP/IP connections: SLIP and
ethernet. One of the tests was to write a `robtargeta
structure in the robot system 1000 times, and compute
the average write time. The values achieved were:

SLIP connection: &150 ms,

Ethernet connection: &15 ms.

Another test was to write a `robtargeta structure specify-
ing a 0.05 mm shift of the robot in the ZZ direction (Tool
reference frame) from actual position, wait until the end
of the motion and then repeat 1000 times. The average
cycle time was

SLIP connection: &190ms,

Ethernet connection: &20 ms.

3.1.2. Sensor access and conxguration software
For some speci"c applications, the user must add intel-

ligent sensors to its setup. By intelligent sensors, we
understand sensors with some data receiving and pro-
cessing hardware connected to the sensing unit through
a serial/parallel high-speed interface. This is the case of
force/torque sensors, vision systems, laser distance
measurement systems, laser guidance systems, etc. To
integrate these sensors into any application requiring its
data readings, software must be made to operate with it.
Again, the most easy and portable way to do this is by
using objects that implement methods and related data
structures to access and con"gure the sensor.

As an example, we built one of these objects to manage
a six-axes force/torque sensor from JR3 Inc. [30] (Fig. 7).
In this case, we also used the Microsoft COM/OLE/
ActiveX technology to implement the object. The
methods and data structures implemented enable the
user to read forces and torques at a speci"ed rate, setup
the sensor (o!sets, full scales, maximum and minimum
allowable values, etc.) watch for warnings and errors, etc.
This object can be easily integrated into Visual C## or
Visual Basic projects. Under Windows NT, a driver is
needed to access any IO port. The driver acts at the NT
Hardware Abstraction Layer (HAL) level to manage
the hardware access [31]. We built such a driver for
Windows NT 4.0, adding also a function (init}jr3) to the
sensor object that detects the running OS and calls the
driver if NT was detected (under Windows 95 the driver
is not used). This means that the "rst thing that any
application must do, before accessing sensor, would be to
call init}jr3.

3.1.3. Connectivity to Win32 application software:
DDE server

In several situations regarding industrial or research
applications, we need to use some other programs like
mathematical and/or simulation packages, spreadsheets,
databases, etc. It would be very important and simplify-
ing to have a mechanism enabling direct connection to
the robot and/or to the sensors. In a general case of
a FMC, the proposed mechanism should provide means
to extend its functionality to the other equipments of the
FMC. This points to some type of server program, built
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Achannel"dde}init(&s4srv', &matlab5'); //Opens DDE connection.
Aabb}connect(channel, &robot}1'); //Connect to robot.
Aabb}mon(channel, &robot}1'); //Robot in ready state.
Aabb}progprep(channel, &robot}1'); //Robot program prepared.
Aabb}progrun(channel, &robot}1'); //Robot program started.
Apoints //Positions to achieve.
0 0 0 0 0 0
1.0472 0 0 0 0.1745 0
1.0472 0.3491 0.5236 0 0.1745 0
1.0472 0.3491 0.5236 0.5236 0.1745 0
1.0472 0.3491 0.5236 !0.5236 0.1745 0
1.0472 0.3491 0.5236 0 0.1745 0
1.0472 0.3491 0.5236 0.5236 !1.5708 0
1.0472 0.3491 0.5236 !0.5236 1.5708 0
0 0 0 0 0.1745 0
0 0 0 0 0 0
Aabb14trj(dh,points, [30 30 30 30 30 30 30 30], &b',&d:Ctraj2.dat',&m');
//Generates the trajectories using a 55) order polynomial [33] and saves the results in a "le using the ABB robtarget
format [29].
Aabb}writetrj(channel, &robot}1'); //Writes trajectories to robot.
Aabb}playtrj(channel, &robot}1', 2); //Play trajectories 2 times.
Ajr3}reseto!(channel, 1); //Reset F/T sensor o!sets.
Ajr3}ftread(channel, 2) //Read F/T data using Filter 2.
0 0 0 0 0 0 0 0
Ajr3}readfs(channel, 1) //Reads Max. (1) Full Scales.
48 50 131 34 34 46
Aabb}proghalt(channel, 1); //Stops robot program.
Aabb}mo!(channel, &robot}1'); //Robot in standby.
Aabb}disconnect(channel, &robot}1'); //Disconnects from robot.
Adde}term(channel); //Terminates DDE connection.

using the above-mentioned objects, o!ering to its clients
all the services necessary to access the above mentioned
resources. The only thing that remains to be selected is
the technology to be used by the server program to
expose its services. As already mentioned we chose DDE,
because currently almost all Win32 applications are also
DDE clients. The DDE call from a client should have the
following syntax:

The DDE server main dialog is represented in Fig. 8.
The dialog also gives information about the state of the

server, the state of the robot controller and of the robot
program controller.

To access the DDE server from a client, a connection
must be established with the server before trying to make
any service calls. Fig. 9 shows an example of reading
the force/torque sensor data from Microsoft Excel. In
the following, we will demonstrate how to access the
server from Matlab (see [29,32] for more details and a list

of the functions currently available to access the DDE
server from Matlab).
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Fig. 9. Using force/torque sensor services from Excel.

Fig. 7. Force/torque sensor integration.

If used in conjunction with a robotics toolbox
[29,34,35], the developed DDE server extends signi"-
cantly their application because it provides real access to
the robot (which can be anywhere in the network) and
sensors. Moreover, taking into consideration that this
server is open, the user can add new services to the server
upgrading in this way its functionality.

4. Test case examples

In this section two examples will be presented and
brie#y discussed, showing the application of the ideas
presented above.

Fig. 8. DDE server dialog.

4.1. Force control on industrial robots

With the above-explained setup, we can add force
control to standard industrial robots. Nevertheless, we
are limited to indirect force control approaches [36], i.e.,
the force control law generates position commands to the
inner position controller (robot control system). The
basic scheme is represented in Fig. 10.

The force control function may implement several in-
direct force control approaches: classical (PID control-
lers), fuzzy, etc. Nevertheless, the following guidelines
should be considered:

(a) Simplicity. The force control law must be simple
and easy/faster to compute to enable real time.

(b) PI-type control. If a null steady-state error is to be
achieved a PI-type force control law should be selected.
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Fig. 10. Indirect force control approach.

Fig. 11. Basic architecture of the force control application.

The derivative term is not desirable due to the noise
associated with force readings.

(c) Robustness to environment stiwness. The system
should work with several environment sti!ness constants
(the environment is modeled as a linear spring), which
generally happens under industrial environments.

(d) Implementation requirements should not include
signi"cant changes to the original control system.

We built a force control testbed program for Win32
platforms, using the development software described be-
fore, namely COM/OLE/ActiveX objects used to access
the robot and the force/torque sensor. Its basic archi-
tecture is represented in Fig. 11. In Fig. 12 we show
the force control program, along with the DDE server,
Matlab shell and a graphic representation, obtained
using Matlab graphic capabilities, of the results of a force
control experiment.

The application is distributed based on a client/server
model as discussed earlier. The main part of the applica-
tion is located in the PC, with a RAPID program run-
ning on the robot control system (along with the RPC
servers used to communicate with the robot, of course).
The RAPID program receives new position/orientation
commands, updates the robot accordingly and "res the
end}of}command message. The discussion of force

control approaches and their implementation details is
beyond the scope of this paper. Nevertheless, the interest-
ed reader can "nd some application inside and prelimi-
nary results of a fuzzy-PI controller in [36].

Direct force control approaches require direct and
real time access to position readings and motor
torque signals. This requires open robot control sys-
tems [37,38] which are not currently available at
industry.

4.2. Monitoring and controlling an industrial robot
in a FMC

The application brie#y described in this section
(Fig. 13) is an industrial application actually working
on a Portuguese company that produces glasses,
especially automobile glasses. The setup presented is
located at a production line that produces automobile
front glasses for several automobile manufacturers
from Europe and USA. The robot receives commands
from the FMC controller to pick a glass pair from posi-
tion AUTO}FEED or from position MANUAL}FEED,
and put it on the mechanical transporter that will take
it into the oven. In the oven, the glasses will gain
the curvature characteristic of its model. The mechani-
cal carriage works as a mold. Therefore, there is a
carriage for each model of glass. The CCD cameras
are used to position correctly the glass on the carriage.
They see two special marks on each carriage and
compute the corrections on the robot position/ori-
entation necessary to correctly unload the glasses onto
the carriage.

We developed the robot program to be commanded
from the FMC controller (a PLC from Siemens, already
present in the setup) using a parallel interface. The com-
mands are calls to services (or complex general tasks)
built in the same way as explained before, but these can
be called also using a parallel IO interface (there is
a variable driving the switch-case-do loop whose value
can be changed using RPC calls or using the parallel IO
interface).

Setting up the robot program is a di$cult task. We
need to adjust velocities and accelerations of all the
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Fig. 12. Testbed for force control experiments (SLIP connection was used in this example; sampling at 190 ms; Matlab was used only to process and
plot data after experiment).

programmed trajectories to not only reduce the cycle
time but also to perform e$ciently the required tasks. In
addition, we need to teach some new positions to the
robot when a new glass model is introduced. The teach-
ing procedure includes:

1. Adjusting the position to pick the glass pair (that may
be di!erent depending on the glass thickness);

2. Adjusting the gripper positions to hold the new glass;
3. Adjusting the approach and download positions in

the mechanical carriage;
4. Adjusting the unload motion to have a perfect "t

between the glass and the carriage.

This means that each glass model has its own setup
that is saved in a database sorted by the glass code
type.

A PC was added to optimize remotely the robot pro-
gram and to monitor all the operations, including pro-
ductivity rates. All the system events and productivity
values are logged on to the robot controller, which means
that the PC program does not need to be always running.
It can be started whenever we want to retrieve informa-
tion on system events and/or productivity values, or

perform any adjustment in the robot program. These
adjustments are corrections made to any of the variables
of the program: we can change safe #y trajectories, posi-
tions, velocities, and accelerations of all the axes includ-
ing external axes, etc. These variables can be adjusted
without stopping the robot program, until the robot
performs satisfactorily. This procedure reduces signi"-
cantly the setup time of the program. The teaching opera-
tion referred above can be performed on the robot
console using the robot program, or using the PC ap-
plication, which is far easier. We also added a robot
explorer application to handle "les and programs be-
tween the robot controller and the PC, which is very
useful for everyday backup operations.

5. Conclusion

In this paper, several aspects related to FMC program-
ming were discussed. An object-oriented approach for
FMC programming and monitoring was presented. This
approach is based on an earlier e!ort carried out to
add force control to a standard industrial robot
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Fig. 13. Industrial FMC in the automobile glass industry.

manipulator, which is here extended to include other
FMC equipments. Implementation of the proposed
software architecture was presented for the special case of
the robot we have at our laboratory (ABB IRB 1400).
The developed solution includes robot communication
and access software, sensor integration software and con-
nectivity to Win32 applications software. Finally, ap-
plication examples of the proposed software are brie#y
presented.

The de"nition of general/complex set of functions
for each FMC equipment and the de"nition of a
calling messaging protocol to access these functions re-
motely, facilitate the programming task of FMC equip-
ments by regular operators. A specialist is only needed to
de"ne those functions that are available as remote
services, and only the operator should know how to
call and parameterize them using simple commands
(Table 1).
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