
Pergamon 

Int. Comm. HeatMass  Transfer, Vol. 27, No. 8, pp. 1067-1076, 2000 
Copyright © 2000 Elsevier Science Ltd 
Printed in the USA. All rights reserved 

0735-1933/00/S-see front matter 

PIh S0735-1933(00)00194-9 

HEAT CONDUCTION IN THE HOLLOW SPHERE WITH A POWER-LAW VARIATION OF 
THE EXTERNAL HEAT TRANSFER COEFFICIENT 

J. F. Branco 
Departamento de Engenharia Mec~.nica e Gest~o Industrial 

Instituto Polit6cnico de Viseu 
Campus Polit6cnico, 3500 VISEU, Portugal 

C. T. Pinho 
CEFT-DEMEGI 

Universidade do Porto 
Rua dos Bragas, 4099 PORTO, Portugal 

R. A. Figueiredo 
Departamento de Engenharia Mecfinica 

Universidade de Coimbra 
Pinhal de Marrocos, 3030 COIMBRA, Portugal 

ABSTRACT 

(Communica ted  by J.W. Rose and A. Briggs) 

The conduction phenomenon in an insulated sphere is re-worked through a dimensionless 
approach, where the heat transfer coefficient dependence on the external radius and on the 
surface temperature, as in the case of forced and free convection, is taken into account. 
Assuming a power law variation of the convection coefficient [1, 2], and using the results 
of Sparrow [3], equations and graphs for the most important dimensionless parameters are 
presented. The developed equations show, for example, that as the insulation thickness 
increases the heat transfer rate tends to a positive value, independent of the considered 
case: constant convection coefficient, forced or free convection. © 2000 Elsevier Science Ltd 

Introduction 

The study of radial heat conduction in the hollow sphere, or in the insulation of spherical bodies, 

may be improved with the use of a dimensionless approach, allowing the graphical representation of the 

phenomenon, through the most important governing parameters. Natural convection, assuming a power- 

law variation of the external convection coefficient, is analyzed, whereas forced convection and the 

constant convection coefficient cases (eg. Incropera and DeWitt [4]) are treated as particular situations. 

Sparrow [3] used this kind of variation of the convection coefficient 
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in the study of  the critical insulation radius, with p _> 0 and n > 0, to obtain the following implicit equation 

2 - p  k 
r . , , ,  - (2) 

I + n  h,,.,,,~ 

Balmer [5] used the correlation developed by Yuge [6] for free convection around spheres, in the 

development  of  an equation for the critical insulation radius; similarly to equation (2) it is an implicit 

equation, since it uses the unknown insulation surface temperature. For the case of  constant heat transfer 

coefficient, Russo [7] presented an equation for the minimum amount of insulation necessary to minimize 

the heat loss. 

The following development  extends these results, under the assumption of a power law variation of 

the external convection coefficient. Explicit solutions for the critical insulation radius, but also for the 

heat transfer rate and the temperature distribution are presented. 

Convect ion Over  Spheres  

When far enough of the limiting case of  pure conduction heat transfer, forced and free convection 

around spheres can be modeled using a power law. In the range of Reynolds number from 17 to 70000, 

McAdams [1] recommends the following equation 

Nu D = 0.37(Re D )o i~ (3) 

In the case of  free convection, an equation indicated by Schlichting [2] is 

Nt4D = 0.429(Gr D )025 (4) 

where Nut~ is the Nusselt number, ReD the Reynolds number and GrD the Grashof number, all based in the 

outer diameter, D. 

Typical general expressions [4, 8] for forced and natural convection around spheres are of  the form 

Nu D - 2 + ot ( N )~ P r  Y (5) 

where N = Re~ for forced convection and N = GrD for free convection. This kind of  equation combines the 

cases of  pure conduction heat transfer (N = 0, Nun = 2) with a power law, characteristic of  greater 

Reynolds or Grashof  numbers. As examples, for the case of forced convection, we have the correlation of 

Ranz and Marshall [9] 

Nu~ = 2 + 0.6 ReD 1/2Prl/~ (6) 

and in the case of  free convection the equations of Yuge [6] (Pr  = 1, I < Ran < 10 ~) 
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N u  o = 2 + 0.43 R a o  1/4 

and Churchil l  [10] ( P r >  0.7, Rap  <- 10 II) 

N u  D : 2  +0.589/(1 + ( 0 . 4 6 9 / P r ) 9 / ' 6 ) 4 / 9 R a D  '/4 

(7) 

(8) 

All the referred equations,  when  far enough  of the pure conduct ion limit, can be written as power  

law equations.  In the case of forced convection 

Nu D = B(  Re  D)m p r  I/3 (9) 

and in the free convect ion case 

Nut) = C (R a D )"  (10) 

where Rat) is the Rayle igh number .  Constants  B, m, C and n can be found in the literature. 

Heat Conduction Under Free External Convection 

A sphere of  external radius r,, covered with an external insulation layer of  th ickness  e = r,, - r, and 

thermal conduct ivi ty  k, is losing heat to a surrounding fluid, in free convect ion regime. The  analysis  

presented in this work is based in the following choice of  d imensionless  parameters  

r r, T - T ~  , q h 
B i - - h ' r ' ,  r = - - ,  r,i' = - - ,  T * -  q = - -  and h * = - -  (11) 

k r, r, r , - T '  q, h, 

The subscript  ' i '  s tands for the inner insulation surface, 'o '  for the outer  insulat ion surface and 'oo' for the 

surrounding fluid. Bi is the characteristic Blot number ,  based on h,, the convect ion coefficient in the 

absence of  insulation. The  dimensionless  radial coordinate is r*, T* is the d imens ionless  temperature 

difference, q* is the d imens ionless  heat transfer rate and the d imensionless  convect ion coefficient  is h*. 

In the case of natural convection,  equation (10) may be written in a d imensionless  form, similar to 

equat ion ( 1 ), as 

h,~ = (r])  m-~(To*) '~ (12) 

Forced convect ion and the constant  heat transfer coefficient case may be treated as specific examples  of  

this more general  one. In the free convection case m = 3 n and under  forced convect ion n = 0. In the case 

of constant  convect ion coefficient,  m = I and n = 0. In the following development ,  m, n and fluid 

properties, calculated at an average f i lm temperature,  are considered constants.  

Temperature Distribution 

For steady-state  conditions,  no internal heat sources, and constant  properties for the insulat ing 
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material, the conduction equation in spherical coordinates reduces to 

d x 
, ( r  T " ) = 0  (13) 

dr '  - 

The boundary conditions - known internal temperature and prescribed external heat transfer coefficient - 

can be written as 

T * 0 ; ' ) = I  and dT* =-Bih,TT 7 (14) 
dr':[ =, 

hrtegration 

distribution across the insulation 

T' =l-BiT[h'~(r~i)2[l-~t=l-(l T[)l-l/rI-I/r.* 

The external surface temperature can be obtained introducing equation (12) into equation (15) 

T / = I  Bi( rT) l+ ' " ( ' ( . )F" [ l  1 ) 
' / <) 

of equation (13) under these conditions, originates the following temperature 

(15) 

(16) 
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FIG. 1 
Variation of the dimensionless surface temperature of the insulation layer, as a 

function of the Biot number, for for re=l, n=0, m=0.5, tz=0 and m=0.75, n=0.25. 



Vol. 27, No. 8 HEAT CONDUCTION IN THE HOLLOW SPHERE 1071 

This equation can be solved numerically, and T,, substituted into equation (15) to obtain the temperature 

distribution in the radial direction. Figure 1 represents the variation of the insulation surface temperature 

as the insulation thickness increases, for different Biot numbers. 

Heat Transfer Rate Through the Insulation 

The dimensionless heat transfer rate under the prescribed variation of the heat transfer coefficient is 

* / *x  I + m / T * n  l+n q = tr,,) t <,) (17) 

This equation and equation (16) can be combined to yield 

q*=(r~)i+"(l-Bi(l-l)q*) I+" (18) 

t r , , ) )  

showing that the insulation efficiency depends on its thickness and on the Blot number. 
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FIG. 2 
Variation of the dimensionless heat flow rate as a function of the external radius of the 

insulation and the Biot number, for re=l, n=0, m=0.5, n=0 and m=0.75, n=0.25. 

Equation (18) is graphically represented in Fig. 2. It can be seen that Bi controls the shape of the 

different curves and that, with low Bi, losses may increase. Equation (18) and Fig. 2 also reveal that, for 

an infinite insulation thickness, the dissipated heat tends asymptotically to a positive value 
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1 
lira q~ = - -  (I 9) 
, 7 ~  Bi 

This means that, in a spherical container, the heat losses could only be eliminated using a perfect 

insulating material. It can be also seen that, when Bi < 1, the heat loss is always greater than the heat loss 

for the case of the non-insulated sphere. For a cylindrical geometry, similar equations show that, even 

with a poor insulating material, an adiabatic system can be simulated using a sufficiently large insulation 

thickness. 

C r i t i c a l  R a d i u s  a n d  M i n i m u m  I n s u l a t i o n  R a d i u s  

The external radius of insulation that maximizes heat losses can be obtained by differentiating 

equation (18) with respect to r,i ' , and equating the result to zero, leading to 

q;,,,,, = '; ...... (20)  
B i ( ( l + n ) , / ' ( l + m ) + O ~ ,  i - 1 ) )  

I + m  1 ( l + m  . )" 

(t;'"'i ') I +n Bi 

i,,, 
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FIG. 3 
Variation of  the critical radius of insulation as a function of the Blot number, for for 

re=l,  n=0, m=0.5, n=O and m=0.75, n=0.25. 
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We can conclude that, with a power law variation of the external convection coefficient, a 

necessary condition for the existence of a critical radius is 

l + m  
B i  < (22) 

l + n  

When the Blot number satisfies condition (22) and the limiting value of the dimensionless heat 

transfer rate - equation. (19) - is smaller than one 

l + m  
1 < B i  < (23) 

l + n  

the insulation is only effective, Chapman [11], above the minimum insulation radius, r , , , , , i , ,  indicated by 

points with "+" marks in Fig. 2. The minimum insulation radius can be obtained finding the non trivial 

solution of 

(r,i ' , , ,i , ,) . . . . . .  (r,~',,,i,, - B i  (~i'i,,,,, - l)) '+" = I (24) 

Outside the interval defined in equation (23) a minimum insulation radius does not exist. 
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FIG. 4 
Variation of the minimum radius of insulation as a function of the Biot number, for for 

m=l, n=0, m=0.5, n=0 and m=0.75, n=0.25. 

The critical and the minimum insulation radius are represented in Figs. 3 and 4. Practical applica- 

tions of this phenomenon can be found in the field of electricity and electronics (Russo and StCyr [ 12]). 
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Forced Convection and Constant Convection Coefficient 

In the cases  of  forced convection and of constant  heat transfer coefficient, equat ions (15-24) can be 

re-written setting n = 0, or m = 1 and n = 0, respectively• Also the case of pure conduct ion heat  transfer in 

the surrounding fluid (Nuz)=2) can be represented setting m = 0 and n = 0. In this late case, in the absence 

of a convect ion phenomenon ,  a critical insulation radius does not  exist, the defined Biot number  being the 

ratio between the thermal conductivi ty of  the fluid and of the insulating material• 

The  obtained results are presented in Table 1. Figures 1-4, besides the previously referred case of 

free convect ion,  also illustrate the variation of the insulation external surface temperature,  d imens ion less  

heat flux, critical radius, m i n i m u m  insulation radius for the situations of h= const, and forced convect ion 

(m= 0.5,/7= 0). 

T A B L E  1 
Heat Conduct ion  in an Insulated Sphere: Forced Convection,  Constant  Heat Transfer  Coefficient  and Pure 

Conduct ion Heat Transfer  

Forced convect ion (n = 0, 0< 177<1 ) h = const. (n = 0, m = 1) Nun = 2 (n = O, 177 = O) 

( r )  (l 1 7 .... I Bi * J+m - 1 / r * )  
• '= I + m  1 + Bt(r,, ) ( l - l / r i ' )  

(ri')~ .... 
q 

• :~ ] + h i  l + B t ( r . )  ( I - l / r ] )  l + B i ( r , ~ ) 2 ( 1 - 1 / r ] )  

c,,,, ('+m l'"'" 2 
[ Bi ) Bi 

1 
,: . . . . . .  (r[,,,,,,)'"(r;,,,,,, -B i ( r [ , , , , ,  - ] ) )  = 1 

Bi - l  

qi:,:,,,, (1 + m) <"+~/''' 4 

Bi((1 + m) I'''+1 ~/''' - m Bi I/'') Bi ( 4 -  Bi) 

B i ( r ' [ ) = ( 1 - 1 / r ~ )  I B i r ] ( 1 - 1 / r ' )  
• * 2 l + B t ( r , , )  ( l - l / r , ;  + ) I+BiF;~(I - /r,; ~3 

I + B i ( r , [ - 1 )  

Conclusion 

With a more realistic representation of the convection coefficient, equations (9) and (10), than the 

usual ly a s sumed  (h,,= const.),  Figs. I to 4 show that: 

As expected,  the outer surface temperature of  the insulation is higher, Fig. 1, while the heat transfer 

rate is lower, Fig. 2, than the observed with a rougher  approach. For Bi close to unity, the critical 

insulation radius a s sumes  a smaller  value; but for lower values of  Bi there is a bias inversion. Through  

equation (2) it can be seen that, a l though the corrective factor ( l - p ) / ( l + n )  is smaller  than unity,  the 

dependence  of  h,, with the insulation radius (h,, < h,) has a super imposing and opposite effect. The  
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minimum insulation radius decreases, as can be seen in Fig. 4. These conclusions are in agreement with 

the expected trends, since the external convection coefficient, given, for example, by equations (3) and 

(4), decreases as the insulation thickness increases. 

As the insulation thickness increases the dimensionless heat transfer rate converges to 1/Bi, and as 

the defined Blot number increases, the error made assuming constant convection coefficient - except in 

the evaluation of the critical or minimum insulation radius - diminishes. 
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Nomenclature 

B, C proportionality constants in equations (9) and (10), dimensionless 

Bi Biot number, h,r,/k, dimensionless 

D external diameter, m 

e thickness of the insulation layer, m 

Gr1~ Grashof number based on diameter, dimensionless 

h, /7 convection coefficient (W/m2K) and dimensionless convection coefficient 

k thermal conductivity of the insulation, W/InK 

m, n, p exponents in equations (1), (9) and (10), dimensionless 

N characteristic dimensionless number, in equation (5), dimensionless 

Nut~ Nusselt number based on diameter, dimensionless 

Pr Prandtl number, dimensionless 

q, q* heat transfer rate across the insulation (W) and dimensionless heat transfer rate (q/q,) 

r, r* radial coordinate (m) and dimensionless radial coordinate (r/r,) 

Ra~ Rayleigh number based on diameter, dimensionless 

ReD Reynolds number based on diameter, dimensionless 

T, T* temperature along the insulation (K) and dimensionless temperature difference 

c~ constant in equation (5), dimensionless 

13, y exponents in equation (5), dimensionless 

Subscripts and Superscripts 

crit critical radius 
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i inner surface of insulation 

ra in  minimum insulation radius 

o outer surface of insulation 

: dimensionless variable 

surrounding fluid 
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