Cationic cellulosic derivatives as flocculants in papermaking

Roberto Aguado · Ana F. Lourenço · Paulo J. Ferreira · Ana Moral · Antonio Tijero

Received: 22 December 2016/Accepted: 24 April 2017

Abstract Water-soluble cationic cellulose derivatives were synthesized by three different procedures, cationizing bleached hardwood kraft pulp with (3-chloro-2-hydroxypropyl) trimethylammonium chloride. The first procedure involved a previous depolymerization step with orthophosphoric acid. The second one consisted on dissolving cellulose in NaOH/urea before cationization. For the third procedure, the reaction medium was heterogeneous since it was carried out with a part of cellulose with high degree of polymerization. Oppositely to the common methods, cationization occurred under mild conditions. Differences among the three derivatives are illustrated by X-ray diffraction patterns of pretreated samples, infrared spectra, and determinations of the degree of substitution, the zeta potential, the charge density and the molecular weight. The performance of these polyelectrolytes for the flocculation of mineral fillers used in papermaking was tested by laser diffraction spectrometry. The flocculant with the highest degree of polymerization and charge originated the best results, particularly when the filler used was kaolin, proving that water-soluble cationic cellulose derivatives can aid in the flocculation of fillers used in papermaking. On the contrary, the shortest-chained derivative was not effective. The results were interpreted in terms of the characteristics of the cellulose derivatives flocculants and of the fillers, and neutralization and patching were proposed as the dominant mechanisms.

Keywords Cationization · Cellulose · Fillers for papermaking · Flocculation · Laser diffraction spectrometry

Introduction

Non-renewable and scarcely biodegradable polymeric aids, such as cationic polyacrylamides (CPAM) or polyethyleneimine (PEI), are often applied in paper mills to achieve good retention of mineral fillers. The particle size of these fillers is generally much smaller than the wire mesh at the forming and drainage section of the paper machine, and thus mechanical retention...
alone, if no flocculation agents are used, results in high losses (Allen 1985). Cationic polyelectrolytes, besides enhancing retention, improve the drainage behavior and sheet formation, compensating somehow the disruption of fiber bonding caused by fillers (Antunes et al. 2008a).

Environmental concerns have led to research into alternative flocculation agents to be used in different fields, dedicating efforts to obtain cleaner and/or cheaper polyelectrolytes from natural and renewable sources. Introducing cationic ammonium groups into polysaccharides has been the answer for many researchers, given their availability and biodegradability. Starch, guar gum, cellulose, dextran and chitosan, among others, have been proved useful (Wood and Mora 1963; Prado and Matulewicz 2014). Nonetheless, while cationic starch and cationic guar gum have found good markets in the manufacturing industries (QY Research 2017), the production of cationic derivatives from the most abundant and available of all polysaccharides, cellulose, remains scarce. Although they are sold as cosmetic ingredients (Kozubal et al. 2014), their potential in the paper industry is being missed.

Yan et al. (2009) produced water-soluble cationic cellulose (WSCC) from microcrystalline cellulose to enhance flocculation in wastewater treatments. A similar procedure, i.e., dissolving short-chained cellulose in NaOH/urea and then performing cationization in a homogeneous medium, was followed by Li et al. (2015) aiming at using it as filler modifier. Other authors started from chemically modified cellulose, e.g., cellulose acetate and hydroxyethyl cellulose, as raw materials to obtain WSCC (Liesiene 2010; Liesiene and Kazlauske 2012). Those substrates consisted of alkali-soluble cellulose or modified cellulose with low degrees of polymerization (DP). The resulting cationic derivatives, obtained by means of epoxysuccinyltrimethylammonium chloride (EPTAC) or (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC), were not only soluble in aqueous alkaline solutions but also in water. However, solubilizing wood pulp in aqueous media is much tougher. Actually, total dissolution of high-DP wood pulp were produced by Liimatainen et al. (2011) and Sirvio et al. (2011). Instead of using NaOH and CHPTAC or EPTAC, they performed a previous oxidation step with sodium periodate, and then cationized the substrate with Girard’s reagent. They were able to incorporate more than one cationic group per monomer, thus obtaining a very high degree of substitution (and consequently high charge density). In spite of its high DP, this polymer was water-soluble due to its high ionic character. However, to simultaneously improve retention and drainage in papermaking, an agent of medium charge density is more appealing than a highly charged one, as the latter adopts a conformation that favors patching but hinders bridging (Antunes et al. 2008b).

In this paper, the syntheses of three different water-soluble cationic celluloseic derivatives from bleached hardwood kraft pulp are reported. The conditions applied, based on a previous kinetic study (Moral et al. 2016), are not as harsh as those usually reported in literature (Song et al. 2008; Sirvio et al. 2011; Acharya et al. 2014), since the reaction times are smaller, making the process more feasible. Characterization of the derivatives involved elemental analysis, X-ray diffraction patterns and infrared spectra. Their charge density, viscosity and zeta-potential were measured. Their performance was tested by laser diffraction spectrometry (LDS) with three different mineral fillers: precipitated and ground calcium carbonate (PCC and GCC, respectively), and kaolin, all of them frequently used in paper mills. In fact, LDS has proved to be very useful in assessing the performance of polymeric aids in flocculation (Antunes et al. 2008b; Pinheiro et al. 2013; Rasteiro et al. 2008b; Seo et al. 2016).
Materials and methods

Materials

Industrial bleached *Eucalyptus globulus* kraft pulp (BEKP) with a refining degree of 34° SR was used as raw material. An aqueous solution of the cationizing agent (3-chloro-2-hydroxypropyl) trimethylammonium chloride (60%) (CHPTAC), was purchased from Sigma-Aldrich, and orthophosphoric acid (85%) was bought from Panreac. A cationic polyacrylamide (CPAM) from BASF with MW = 3.7 × 10^6 g/mol and CD = 1.1 mmol/g (data provided by the supplier), commonly used as retention agent in papermaking, was used for comparison purposes. Two different industrial calcium carbonates and a hydrated aluminium silicate were used as fillers: scalenohedral PCC, rhombohedral GCC and lamellar kaolin, respectively. Their zeta potentials, measured in aqueous suspensions by electrophoretic mobility in a Zetaprobe NanoZS (Malvern Instruments) were +9 (pH 10), −28 (pH 10) and −24 mV (pH 6) respectively. The negative values of GCC are due to the presence of anionic polyelectrolytes used to stabilize the GCC dispersions (Vanerek et al. 2000). The fillers also differ in size: their median particle sizes (d50), determined by LDS in a Mastersizer 2000 (Malvern Instruments), were 4.2, 2.0 and 3.5 μm, respectively.

NaOH and urea, from Panreac, were also used as solvents. A representative scheme of the whole experimental procedure, including pretreatments, cationization and separation processes, is depicted in Fig. 1.

Pretreatments

The different polyelectrolytes produced are distinguished by the treatment previous to cationization. The cationic celluloses (CC) were labelled by ascending order of degree of polymerization (corresponding to descending order of yield), namely CC1, CC2 and CC3. The materials prior to cationization were named, respectively, C1, C2 and C3.

BEKP was depolymerized with orthophosphoric acid (H3PO4); a sample of BEKP, with a moisture content of 66%, was soaked in acid so that H3PO4 concentration was 80% and the consistency of the suspension (on a dry basis) was 2%. The acid hydrolysis occurred at room temperature for 2 h, the first hour without stirring and the second one with agitation with a four-blade stirrer at 600 rpm. A gel-like, whitish solution was obtained, similar to a suspension of nanofibrillated cellulose. Apparent dissolution was reverted when the pulp was diluted to 0.5% with distilled water. The suspension was filtered through an 11 μm paper filter, obtaining a powder-like amorphous cellulose (C1). The filtrate was discarded.

A precooled NaOH/urea solution was used to produce C2 and C3. For that, BEKP was diluted to 2% in an aqueous solution containing 6% NaOH and 6% urea, the mole ratio of alkali to anhydroglucose units (AGU) being 12. The suspension was stirred for 1 h at 600 rpm and then filtered through a 11 μm paper filter. The filtrate (lower DP fraction) was named C2, while the fibrous solid retained (higher DP fraction) was labelled as C3.

Cationization

Cationization was performed on the filtration retained fractions (C1 and C3) and on the filtrate (C2) with CHPTAC using a mole ratio to AGU of 3, as shown in Fig. 1. NaOH and urea were also added to C1 and C3 aiming for the same concentration (NaOH 6%, urea 6%, CHPTAC/AGU 3) in all three samples. Cationization lasted only 60 min, by applying gentle mechanical agitation (200 rpm) and maintaining the temperature at 65 °C. The mechanism by which CHPTAC and cellulose are activated with alkali and react is described elsewhere (Moral et al. 2016).

CC1 and CC2 seemed to be completely dissolved in the alkaline media. Since the derivatives are intended to be not only alkali-soluble but also water-soluble, the media were neutralized with hydrochloric acid. While CC2 remained in solution at neutral pH, a part of CC1 (insoluble part) was precipitated, filtered and discarded. Cationization of C3 originated a large amount of undissolved material, which increased even more after the neutralization. In this case, only 20% of the weight of C3 passed through the filter. The three cationic derivatives were soaked in a regenerating medium in which the volume percentage of ethanol was at least 50% (Fig. 1).

The aqueous-alcoholic suspensions were filtered by using a paper filter with an aperture size of 2.5 μm. The filtrates were discarded, although a liquid sample
from the CC2 filtration was submitted to mass spectrometry-gas chromatography (GCMS) to identify any possible by-products. The retained fractions of the filtrations (wet solids) were dried firstly at room temperature for 24 h, and after at 60 °C for 4 h. The solubility in water was confirmed by centrifugation of 1% solutions at 3000×g for 10 min.

Characterization

The samples were characterized for their degree of polymerization (DP), crystallinity, degree of substitution (DS), charge density (CD), zeta potential, yield and also with FTIR-ATR measurements. The degree of polymerization of the pretreated samples was determined by dividing the corresponding mean molecular weight (M) by the molecular mass of AGU (162). In turn, the mean molecular weight of the C1, C2 and C3 pretreated cellulose chains was estimated from the limiting viscosity number (mL/g) by using the Mark–Houwink equation with the parameters reported by Eckelt et al. (2011) for cellulose solutions in a copper (II) ethylenediamine solution (Cuen):

\[\eta = 0.0653M^{0.735} \]

(1)

The limiting viscosity number necessary in Eq. 1 was determined according to the ISO standard 5351-1.

For the crystallinity assessment, aliquots of the pretreated samples C1, C2 and C3 were dialyzed by using a sack from Sigma-Aldrich which ensures retention of compounds whose molecular mass is 12,000 Da or higher, and placed in deionized water for 24 h, in order to remove phosphate salts and other undesired substances. A PANalytical’s powder diffractometer with the software X-Pert HighScore provided X-ray diffraction patterns. The original pulp was also analyzed for comparison purposes.

A LECO CNS-2000I elemental analyzer was used to measure the content of carbon, hydrogen and nitrogen. The degree of substitution (DS) was calculated from the ratio of %N to %C (N/C), assuming that only one cationic quaternary ammonium group can be incorporated per anhydroglucose unit (Moral et al. 2016):

\[\frac{N}{C} = \frac{14DS}{144DS + 72 \cdot (1 - DS)} \]

(2)
where 14 is the atomic weight of nitrogen, 144 is twelve times the atomic weight of carbon (substituted monomer), and 72 is six times that weight (non-substituted monomer).

The charge density (CD) of the cationic derivatives was determined by potentiometric titration in a Charge Analysis System (CAS) from AFG. For that, a small amount of sample (less than 0.1 g) was dissolved in 10 mL of deionized water and the solution was titrated with an anionic polyelectrolyte, sodium polyvinylsulfate (PVSNa, 0.001 N).

The zeta potential of 1% (w/w) dispersions in distilled water of the dried CC1, CC2 and CC3 was measured with a Zetasizer Nano ZS device from Malvern Instruments.

FT-IR-ATR spectra were recorded by a Bruker Tensor 27 spectrometer with a MKII Golden Gate accessory, setting the resolution to 4 cm\(^{-1}\) and the number of scans to 128.

Flocculation tests

The performance of CC1, CC2 and CC3 as polymeric flocculants was evaluated by LDS in a Mastersizer 2000 device from Malvern Instruments, equipped with the Hydro 2000 module. To process the raw scattering patterns, the Mie theory (De Boer et al. 1987), which is rigorous and suitable for small particles (below 10 \(\mu m\)), was used considering the refractive index of the mineral fillers as being 1.57 (Wypych 2016).

Aqueous suspensions [1% (w/w)] of PCC, GCC and kaolin were submitted to magnetic stirring for 20 min and placed in an ultrasound bath (50 kHz) during 15 min in order to disaggregate the particles. For each experiment, 6 mL of the filler suspension were added to the equipment vessel containing 600 mL of distilled water. This was enough to reach an adequate obscuration of the He/Ne laser beam. The pump speed was set to 2000 rpm during the measurement of particle size.

As for the flocculants, solutions of CPAM, CC1, CC2 and CC3 [0.1% (w/w)] were prepared and stirred. A certain amount of the flocculant in each case (1 mg/g for CPAM, 20 mg/g for the cationic cellulose derivatives) was added after the stabilization of the filler median size (some initial aggregation occurs spontaneously to a certain degree). Then, the evolution of the median particle size of the fillers together with the added polymer was monitored. Smaller amounts of the WSCC were previously tested (see supplementary information).

Results and discussion

Characterization of the pretreated samples

For the necessary calculations, BEKP was assumed to consist entirely of anhydroglucose units (AGU). This assumption is safe, given the negligible amount of lignin after bleaching, the most probable dissolution of the remaining hemicellulose in the preliminar NaOH/urea treatment and the fact that cationic groups are also incorporated into anhydropentose units (Deutschle et al. 2014).

For C1, BEKP was depolymerized with orthophosphoric acid (\(H_3PO_4\)), since this compound works both as a hydrolysis agent, as long as its concentration is higher than 30% (w/w), and as a cellulose activator, causing total amorphization if its concentration is superior to 79 wt% (Vinogradov et al. 2002).

For C2 and C3, a precooled NaOH/urea solution was used as solvent due to the influence of urea on hydrophobic interactions of low-DP cellulose (Zang et al. 2002). As mentioned, the NaOH/AGU mole ratio was 12 in order to ensure a good cellulose solvation, since theoretically at least 4 OH\(^-\) ions per monomer are necessary in alkaline dissolution (Myasoedova et al. 1991).

All samples differ in solubility. As visible in Table 1, the DP of C1 was much inferior to that of BEKP. On the contrary, and as intended, C2 produced from the lower-DP part (soluble in NaOH/urea, at least to a degree in which solvated particles, macroscopically undistinguishable from the solvent, passed through the filter) exhibited a higher value than C1 but a smaller value than the original pulp. As for C3, it has the highest mean DP value, superior to that of the original pulp as a result of being obtained from the higher-DP fraction of this pulp.

Table 1 also presents the crystallinity index (CI) as calculated from the diffraction patterns shown in Fig. 2a. A linear baseline correction and a Gaussian deconvolution of peaks were carried out with Systat’s Peakfit, as exemplified in Fig. 2b for the non-treated BEKP sample. The assignment of Miller indices to the peaks and the notation of these indices are based on the
conventions used by French (2014). It is assumed that BEKP, as cellulose from wood, consists fundamentally of cellulose I\textbeta, while the pretreated samples are mixtures of cellulose I\textbeta, cellulose II and amorphous cellulose. The crystallinity of the samples was estimated from XRD by identifying the four most prevalent peaks of cellulose I and the cellulose II (110) peak, and dividing their area by the total area (Eq. 3) (Park et al. 2010):

\[
CI = \frac{A_{110(I\beta)} + A_{200(I\beta)} + A_{110(II)} + A_{004}}{A_{\text{total}}}
\]

Table 1 Characteristics of the bleached kraft pulp (BEKP) and of the pretreated cellulose samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\eta) (mL/g)</th>
<th>M (\times 10^{-4}) (Da)</th>
<th>DP</th>
<th>CI</th>
<th>I(Cell-I/Cell-II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEKP</td>
<td>494</td>
<td>18.9</td>
<td>1170</td>
<td>0.813</td>
<td>4.30</td>
</tr>
<tr>
<td>C1</td>
<td>132</td>
<td>3.1</td>
<td>194</td>
<td>0.518</td>
<td>1.33</td>
</tr>
<tr>
<td>C2</td>
<td>380</td>
<td>13.3</td>
<td>820</td>
<td>0.386</td>
<td>0.36</td>
</tr>
<tr>
<td>C3</td>
<td>658</td>
<td>28.0</td>
<td>1703</td>
<td>0.540</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Fig. 2 X-ray diffraction patterns of the bleached kraft pulp (BEKP) and of the pretreated cellulose samples (a) deconvolution of the BEKP X-ray diffraction pattern (b)
Cellulose

Both orthophosphoric acid and sodium hydroxide caused a diminishment in Cl. The lowest crystallinity index corresponded to C2, the only pretreated sample which was totally alkali-soluble. The diffractogram of BEKP displayed the typical shape of cellulose I (Fig. 2a). Likely, some phosphate groups incorporated into the structure of C1 during the pretreatment remained after dilution and regeneration, since the shape of the corresponding pattern before 21° resembles that of cellulose phosphate esters (Olaru et al. 2007). For C2 and C3, partial amorphization was evident: the peak at 22.5° for the (200) plane of cellulose I became much shorter (C3), or simply indiscernible from the (020) reflection of cellulose II, at 22° (C2). The other peaks became broader, which is a consequence of an increase in the amorphous fraction (Park et al. 2010).

Besides phosphoric acid and inorganic ions, the filtrate of C1, analyzed by GCMS, contained soluble products from the hydrolysis, but not necessarily furanic compounds. The temperature of the pretreatment (20–25 °C) was too low for dehydration.

To elucidate to what extent cellulose I is converted into cellulose II by the pretreatment, the intensity ratio (I(Cell) – I(Cell – II)) was calculated with Eq. 4. The numerator contains peaks assigned to cellulose I, while the denominator contains peaks assigned to cellulose II (French 2014; Kolpak et al. 1978). The peak assigned to the (020) plane of cellulose II is omitted because it overlaps with the highest peak of cellulose I. The peak (004) is roughly the same for both cellulose I and cellulose II. It must be stressed that this parameter serves as an indication of the ratio of cellulose I to cellulose II for comparison purposes, but never as an accurate and absolute determination of that ratio.

\[\frac{I(\text{Cell}) - I(\text{Cell - II})}{I(\text{Cell})} = \frac{I_{14.7} + I_{16.5} + I_{22.5} + I_{30.0}}{I_{12.5} + I_{20.3} + I_{04.0}} \] (4)

The value corresponding to C1 is not reliable, since the peak (110) of cellulose II (20.1°) may be confused with the most prominent band of cellulose phosphate. As expected, the proportion of cellulose II, more thermodynamically stable, increases with the alkaline treatments (C2, C3), as it also happens, for instance, in cotton mercerization (Poletto et al. 2014). When this alkaline treatment results in apparent dissolution (C2) and the sample is regenerated with an alcohol, specific peaks of cellulose I cannot be perceived in XRD patterns. C2 may consist completely of cellulose II and amorphous cellulose.

Characterization of the cationic derivatives

The DP values estimated from Eq. 1 for the pre-treated samples were also used for the cationized CC1, CC2 and CC3 samples. In fact, it is legitimate to consider that the DP is not modified with the cationization process, because the temperature is too low for an alkaline hydrolysis to happen at an appreciable extent. For instance, Song et al. (2008) using size exclusion chromatography, showed that the hydrolysis of cellulose during cationization with CHPTAC, NaOH and urea is negligible, even when the reaction took place at 60 °C for 8 h. As can be seen in Table 2, the cellulose derivative with the highest DP (CC3) was the one presenting, after cationization, the highest degree of substitution, charge density and zeta potential. This is due to the fact that high-DP cellulose needs to have more ionized monomers to become soluble in water, and thus the lowly-substituted parts were rejected. As a drawback, given the mildness of the conditions used in this study, these lowly-substituted parts accounted for the majority of the material. Crystalline and lowly-substituted parts of CC3 could not pass through the filter after neutralization with HCl.

Table 2 also shows the yield of WSCC from the bleached kraft pulp. It should be noted that CC2 and CC3 share the same pretreatment. 100 g of BEKP could be used to produce 44 g of CC2 and 11 g of CC3 (a total of 55 g of cationic cellulose from one single process), or 60 g of CC1, which is less electrically charged. Sirviö et al. (2011) obtained higher yield values, achieving complete dissolution of high-DP cellulose by producing a polymer with a very high positive electric charge.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Yield (%)</th>
<th>DS*</th>
<th>CD* (mmol/g)</th>
<th>ζ-Potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1</td>
<td>60</td>
<td>0.33</td>
<td>2.07</td>
<td>+4.5</td>
</tr>
<tr>
<td>CC2</td>
<td>44</td>
<td>0.34</td>
<td>2.80</td>
<td>+6.8</td>
</tr>
<tr>
<td>CC3</td>
<td>11</td>
<td>0.46</td>
<td>5.01</td>
<td>+16.7</td>
</tr>
</tbody>
</table>

* DS and CD mean degree of substitution and charge density, respectively.
degree of substitution, but at the cost of a 24 h-long first treatment, a 3 h-long second treatment at 75 °C and then by cationization with Girard’s reagent. Substitution was in the expected range. Lower degrees of substitution would have implied lack of solubility, while obtaining values close to 1 was impossible under mild conditions. Higher reaction times and higher concentrations of CHPTAC could have improved the yield, but probably not the degree of substitution. Yan et al. (2009) cationizing cellulose with a reagent/AGU molar ratio of 10, achieved DS values of 0.32 and 0.47 by applying reaction times of 6 and 9 h, respectively. These values are in the same range as those presented in Table 2, but their conditions and the use of low-DP cellulose eased solubility and avoided discards of undissolved parts, achieving a yield of 100%.

A gentle process, like the one suggested in this work, can generate samples with degrees of substitution higher than 0.3 at the expense of the yield. If a continuous reactor had been used instead of a batch one, the insoluble fraction could have been recycled, keeping the mild conditions. This would be a feasible alternative to the expensive and time-consuming processes.

The zeta potential of the starting material (fibers from BEKP) in water is slightly negative in a wide pH range and cationization involved a switch towards positive values. As cationic functional groups were incorporated into cellulose, the polymer reached the isoelectric point and then its charge density increased with the degree of substitution. The small difference between the CC1 and CC2 zeta potentials could be deemed not significant. The value found for CC3 is negative under mild conditions. Higher reaction times and cationization involved a switch towards quaternary ammonium groups (Sang et al. 2012). Due to the conversion of cellulose I to cellulose II, the spectra of CC2 and CC3 do not possess a peak at 1345 cm$^{-1}$ (Granja and Barbosa 2001). Whether phosphate groups remain in the structure of CC1 is not proved by its spectrum, but their absence is not confirmed either, since the most prominent band of PO$_4^3-$ is given at 1020 cm$^{-1}$, thus interfering with one of the most noticeable bands in the spectrum of cellulose (Hallac and Ragauskas 2011).

Performance in flocculation tests

The evolution of the median equivalent spherical diameter (d_{50}) of the three fillers when in contact with the WSSC is plotted in Fig. 4. On the left side (Figs. 4a–c) the influence of the WSSC addition on the different fillers flocculation is shown. The results were normalized considering the particles median size at the moment of the flocculant addition and the corresponding values are shown in Fig. 4d–f, which provide a better perception of the influence of each polyelectrolyte separately. As stated, CPAM was always used for comparison purposes since it is one of the most common flocculants used in papermaking. Table 3 presents the zeta potential of the suspensions used in the flocculation tests at given pH values. When kaolin was used, it is evident that CPAM and CC3 promoted a high filler flocculation, with a maximum filler particle size increment close to 6.5 and 7.5 times, respectively. As stated in the literature, CPAM is able to flocculate the particles by bridging due to its high molecular weight (Neimo 1999). As for CC3, with a molecular weight one order of magnitude off but a much higher charge density
neutralization was most probably the dominant mechanism (Neimo 1999). However, due to the high charge, patching was also likely to occur, which was proven by the good reflocculation ability of the particles after a step of high shear, shown in Fig. 5. According to Rasteiro et al. (2008b), flocs formed by bridging mechanisms do not reflocculate as easily as those formed by patching. In fact, the electrokinetic potential of the kaolin/CC3 mixture was only slightly negative (−7.3 mV), which increases the probability of particle aggregation. In contrast, with CC2 this value was much higher (−27.2 mV) and the flocculation effects were attenuated, in accordance with the smaller values of the molecular weight and also charge density. CC1 has no influence in filler flocculation, regardless the mineral used, and this is a result of the very small molecular weight, degree of polymerization and also charge density. For this reason, the plot with the normalized values is not presented. This confirms that the pretreatment with orthophosphoric acid was not successful to induce filler flocculation.

For GCC similar results are observed with CC2 and CC3, revealing a negligible increment of the particles size. In spite of having also a negative charge, as kaolin, GCC particles are scalenohedral shaped, and not lamellar, and this fact may have hindered the aforementioned flocculating mechanisms. In this case only CPAM seems to be effective.

Contrary to kaolin and GCC, PCC has positive charge (+9 mV) and therefore the influence of the WSCC on filler flocculation is expectedly different.
However, similarly to GCC, both CC2 and CC3 don’t have significant impact on flocculation. By the contrary, CPAM has a positive effect on PCC flocculation, by bridging, in agreement with many studies reported in the literature (Rasteiro et al. 2008a; Lourenço et al. 2017).

Fig. 4 Flocculation kinetics of three mineral fillers with a cationic polyacrylamide (CPAM) and with the cationic cellulose derivatives (CC1, CC2 and CC3), depending on the choice of filler (a–c) and on the choice of flocculation agent (d–f).
The flocculation process with CPAM is however somewhat distinct for the three fillers studied: with kaolin a fast flocculation occurred, while for GCC it took almost 5 min to double the particle size. It is worth mentioning that CC3 was the polyelectrolyte that promoted the faster kinetics with kaolin. In papermaking a fast flocculation is of utmost importance since the contact time between the stock and the retention agents is as short as possible (usually 30 s or less) (Antunes et al. 2008a) to not disturb the runnability and sheet formation.

It should be noted that a smaller dosage of WSCC (10 mg/g) was tested, and the results showed that flocculation of fillers occurred but in a clearly smaller extent. Those results can be found in the supplementary material of the electronic version of this article.

It is safe to state that by cationizing cellulose it is possible to obtain water soluble derivatives with promising applications as filler flocculant for papermaking. In order to promote an effective flocculation, the WSCC must possess high charge and/or high DP, which in this work was achieved by pretreating cellulose fibers with NaOH and urea, followed by a cationization with CHPTAC, and finally by regenerating the resulting filtrate with ethanol. The obtained dry product, soluble in water, presented a medium degree of polymerization, high charge density and a moderate zeta potential, but the yield of production under mild conditions was quite small (11%). In this work, the best flocculation results were obtained with kaolin due to its higher surface charge and lamellar shape that allowed the WSCC to be adsorbed more easily on its surface.

Conclusions

Three water-soluble cationic derivatives of cellulose, containing at least 30 quaternary ammonium groups per 100 anhydroglucose units and a charge density above 2 mmol/g, were produced with NaOH and CHPTAC under mild conditions, following different pretreatments.

The pretreatment with orthophosphoric acid caused the yield to be the highest, easing solubility by acid hydrolysis and amorphization, but the degree of polymerization (DP) of CC1 was too low to promote a suitable flocculation of filler for papermaking. In fact, by comparing the results with those obtained by applying the other alkaline pretreatment (NaOH/urea), it is possible to conclude that the WSCC whose DP was the highest (CC3) originated the best results in flocculation tests, even better than those for CPAM when the filler used was kaolin. The performance of the derivative with an intermediate DP, CC2, was worse when flocculating PCC and kaolin, but as good with GCC as that of CC3.

When using GCC, the flocculation was faster with CC2 and CC3 than with a conventional CPAM polymer. However, the flocculation tests with PCC only yielded acceptable results with CPAM, most likely due to the high molecular weight of this polymer.

<table>
<thead>
<tr>
<th>Filler</th>
<th>WSCC</th>
<th>ζ-Potential (mV)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaolin</td>
<td>–</td>
<td>-23.7</td>
<td>5.6</td>
</tr>
<tr>
<td>CC1</td>
<td>–</td>
<td>-29.5</td>
<td>7.1</td>
</tr>
<tr>
<td>CC2</td>
<td>–</td>
<td>-27.2</td>
<td>7.0</td>
</tr>
<tr>
<td>CC3</td>
<td>–</td>
<td>-7.3</td>
<td>7.0</td>
</tr>
<tr>
<td>CPAM</td>
<td>–</td>
<td>-9.7</td>
<td>7.1</td>
</tr>
<tr>
<td>GCC</td>
<td>–</td>
<td>-27.8</td>
<td>10.1</td>
</tr>
<tr>
<td>CC2</td>
<td>–</td>
<td>-2.7</td>
<td>9.9</td>
</tr>
<tr>
<td>CC3</td>
<td>–</td>
<td>-11.7</td>
<td>9.8</td>
</tr>
<tr>
<td>CPAM</td>
<td>–</td>
<td>-18.9</td>
<td>9.9</td>
</tr>
<tr>
<td>PCC</td>
<td>–</td>
<td>8.7</td>
<td>10.1</td>
</tr>
<tr>
<td>CC2</td>
<td>–</td>
<td>0.8</td>
<td>9.9</td>
</tr>
<tr>
<td>CC3</td>
<td>–</td>
<td>15.4</td>
<td>10.0</td>
</tr>
<tr>
<td>CPAM</td>
<td>–</td>
<td>7.3</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Table 3 Zeta potential of the suspensions used in the flocculation tests

![Fig. 5](image-url) Reflocculation behavior of kaolin with CC3 after floc rupture

![Table 3](image-url) Zeta potential of the suspensions used in the flocculation tests

![Graph](image-url)
Further research could be beneficial if a water-soluble cationic polymer with medium charge density from high-DP cellulose could be obtained.

Supplementary information

The evolution of the median particle size of the fillers with smaller dosages (10 mg/g) of WSCC is provided.

Acknowledgments Roberto Aguado is thankful to Asociación Universitaria Iberoamericana de Posgrado for the Grant to fund an internship in Coimbra. Ana F. Lourencão acknowledges Fundação para a Ciência e Tecnologia for the Ph.D. Grant SFRH/BDE/108095/2015.

References

Ind Eng Chem Res 47:9370–9375

Author Query Form

Please ensure you fill out your response to the queries raised below and return this form along with your corrections.

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the ‘Author’s response’ area provided below.

<table>
<thead>
<tr>
<th>Query</th>
<th>Details Required</th>
<th>Author’s Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ1</td>
<td>Qi et al. (2010) has been changed to Qi et al. (2011) so that this citation matches the list.</td>
<td></td>
</tr>
<tr>
<td>AQ2</td>
<td>Pinheiro et al. (2008) has been changed to Pinheiro et al. (2013) so that this citation matches the list.</td>
<td></td>
</tr>
<tr>
<td>AQ3</td>
<td>Reference: Reference Zang et al. (2002) was mentioned in the manuscript; however, this was not included in the reference list. As a rule, all mentioned references should be present in the reference list. Please provide the reference details to be inserted in the reference list.</td>
<td></td>
</tr>
<tr>
<td>AQ4</td>
<td>French et al. (2014) has been changed to French (2014) so that this citation matches the list.</td>
<td></td>
</tr>
<tr>
<td>AQ5</td>
<td>Hallac and Ragauskas (2001) has been changed to Hallac and Ragauskas (2011) so that this citation matches the list.</td>
<td></td>
</tr>
<tr>
<td>AQ6</td>
<td>Lourenço et al. (2016) has been changed to Lourenço et al. (2017) so that this citation matches the list.</td>
<td></td>
</tr>
</tbody>
</table>