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Abstract

A speci c aspect of simulations of stamping processes is the numerical method adopted to include the
non-linearities associated with the frictional contact problem in large deformation plasticity. In fact, conver-
gence problems are frequently encountered, especially when using a quasi-static implicit algorithm. One way
of increasing the numerical robustness of these algorithms is to adopt an augmented Lagrangian method to
incorporate the problem of contact with friction. The resulting non-linear system can be solved by a Newton
–Raphson type method, for which a trial solution must be given to start the iterative equilibrium loop. The
quality of this trial solution is determinant for the convergence of the iterative process. An automatic control
of the size of the time step can improve this trial solution. In this study, a new size control for the time
step, imposing restrictions not only on the increments of the state variables but also on the increments of
the contact forces, is proposed. An example of a bending test is used to analyse the in6uence of this new
limitation on the overall convergence behaviour of the fully implicit code DD3IMP.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The codes that use implicit algorithms to simulate deep drawing processes have general conver-
gence di:culties, due to the complexity of the contact problem. However, it should be noted that
the accuracy guaranteed for the state variables makes them very promising, encouraging the devel-
opment of the implicit algorithms to improve their robustness. In the present paper the mechanical
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model and the numerical methods used in the  nite element code DD3IMP 1 , specially developed for
the numerical simulation of the three-dimensional deep drawing process, are brie6y described. The
mechanical model takes into account the large elastoplastic strains and rotations that are associated
with the forming process. To include the contact with friction, an augmented Lagrangian method is
used, leading to a mixed formulation where the  nal unknowns are displacements and contact forces.
The obtained non-linear system is solved by a Newton–Raphson method that can exhibit quadratic
convergence in the vicinity of the solution [1–3].
The global convergence of the Newton–Raphson method, when applied to simulate the stamping

process, depends mainly on parameters like: the numerical variables; the mechanical behaviour law;
the friction coe:cient; the geometry of the tools; the discretization of the metal sheet; the initial
solution for the equilibrium iterative loop and the course of the deep drawing process, which can
have distinct phases with diHerent initial boundary conditions and strain paths. Although it is possible
to identify the factors that in6uence the convergence, when divergence occurs it is very di:cult to
identify which of those parameters is the one responsible [3]. The results of the numerical tests
undertaken showed that it is always possible to overcome the problems of convergence, acting on
numerical parameters. They have also shown that, when divergence occurs, it generally results from
di:culties in the contact strategy [4]. Modifying the numerical parameters, as the penalty coe:cients
or the limitations to the size of the time step, has no in6uence on the quality of the solution, making
implicit methods highly sound and reliable [1–4].
In this study, the control of the initial solution of the iterative process is focused. A new set of

limitations to the size of the time step is proposed, acting directly on the incremental contact forces
that arise from the  rst trial solution. Numerical results of the bending of a metal sheet are shown,
enhancing the advantages of a time step size controlled also by the trial contact forces.

2. Mechanical model

The mechanical model used in the numerical simulation of the stamping process takes into account
the large elastoplastic deformations and rotations of a deformable body (sheet), in contact with rigid
bodies (the forming tools). Since in the stamping process the elastic part of the transformation leads
to small strains as compared with unity, the hypothesis of small elastic strains is applicable, regardless
of the high elastic rotations that can occur [1–3]. The accuracy of the design solutions provided by
numerical simulations strongly rely on the models used to describe the strong non-linearities resulting
from the material and contact with friction. In the last years an enormous eHort has been concentrated
on the blank sheet material behaviour, concerning the improvement of both the behaviour laws and
the initial yield locus description. The DD3IMP  nite element code follows the same tendency
and, nowadays, presents several isotropic and anisotropic constitutive models (7 isotropic/kinematic
hardening laws and 8 yield criteria) [5,6]. The Coulomb law and the Signorini conditions are used
to describe the contact with friction between the sheet and the tools. The evolution of the contact
conditions is controlled by a mixed formulation, using an augmented Lagrangian approach.

1 DD3IMP—contraction of Deep Drawing 3-D IMPlicit  nite element code.
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2.1. Principle of virtual velocities

The region occupied by the deformable body is denoted by �0 and its boundary by �0. On the part
�0|1 of the boundary the nominal stress vector is assigned, and on the complementary part �0|2 the
velocity vector is prescribed. This is the reference con guration in an updated Lagrangian scheme
for the time interval [t; t +Kt]. For this reference con guration the principle of virtual velocities is
given by the following equation [1]:∫

�0

S :
9�v
9x0

d� =
∫
�0|1

s∗:�v d�; (1)

valid for any virtual velocities  eld �v (with �v = 0 on the boundary �0|2). S is the  rst Piola–
KirchhoH stress tensor, x0 is the position vector of a generic point of the deformable body at time
t. s∗ expresses the external load corresponding to the prescribed nominal stress vector.

2.2. Contact with friction

In the absence of contact and friction equation (1) simply traduces the structural balance that can
be written in the generic form:

Fint(u) − Fext = 0: (2)

Fint(u) and Fext are the vectors of internal and external forces. The unknown of the problem is the
displacement  eld u. To include the problem of contact with friction, it is necessary to constrain the
previous equation with the associated contact conditions. The Signorini conditions that de ne contact,
and the Coulomb friction law, which imposes the contact status, are used. This is one of the main
di:culties of the numerical simulation of the deep drawing process, since the boundary conditions
are time-dependent. This dependency prevents a classic treatment of the problem, especially when
using a fully implicit method. In fact, the inequations associated with the constraints imposed by the
contact with friction induce strong non-linearities, requiring robust numerical methods for the solving
of the global problem. The augmented Lagrangian approach has been successfully applied to solve
this type of problem whenever it can be generalized to model the contact between a deformable
body and a rigid obstacle of complex shape [7,8].
In the present case the augmented multiplier, �, is de ned by the following equation [9]:

� = �nn + �t = [�n + pdn(u)]n + [[t + pTt(u)]; (3)

n(u) its the unit outward normal vector to the surface of the rigid obstacle, �n is the contact
force normal to the rigid body and [t the tangential force at the contact point, dn is the contact
normal distance, Tt is the tangential slip increment, and p is a penalty coe:cient. The contact and
friction conditions are computed based on linear combinations of the kinematic and static variables,
through the de nition of the normal and tangential components of the augmented lagrangian, �n and
�t , respectively. The use of this augmented multiplier corresponds to expanding the friction cone to
positive values of the normal contact force [7,8]. In this way it is possible to formulate an augmented
Lagrangian Lp(]; S) of virtual variables ] and S, associated to the unknown vector  elds u and [,
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respectively. With this augmented Lagrangian the problem is exactly equivalent to the initial one, for
all strictly positive values of the penalty coe:cient p and it can be written as follows [1–3,8,10]:[

9
9] ;

9
9S

]
Lp(]; S) =

{
[Fint(u)] + [Fequ(u; [)] − [Fext]

[Fsup(u; [)]

}
= R(u; [) = 0: (4)

The frictional contact Lagrangian Lp holds not only when there is contact, but also when the points
are distant, due to the augmented contact pressure. This assures its global continuity [9]. Fequ(u; [)
imposes the conditions of the contact with friction. Fsup(u; [) takes into account the supplementary
terms necessary for the control of the frictional contact boundary conditions allowing the determi-
nation of the contact forces.

3. Finite elements

Three-dimensional solid isoparametric  nite elements are used in order to realistically de ne the
sheet. The simultaneous contact on both sides is naturally taken into account, and it is possible to
accurately calculate gradients across the thickness during the simulation. However, the isoparametric
elements have a de cient behaviour when used to solve elastoplastic problems, since the full inte-
gration scheme causes the appearance of arti cial hydrostatic stresses. To avoid this locking eHect
a selective reduced integration method is used [11,12].
After the spatial discretization of the deformable body, the system of non-linear equations (4)

corresponds to six equations and six unknowns for each material point (node) of the deformable
body in contact with the tools. The unknowns are the Cartesian components of the displacement
vector u and of the contact force vector [; leading to a mixed formulation in the pair (u; [).The
spatial discretization of the deformable sheet leads, after the assembly of the elemental matrices, to
a global system obtained from the linearized form of equation (4):

[KAB]{duB; d[B} = {dfA}; (5)

A and B are the node numbers, [KAB] is the stiHness matrix. {duB; d[B} is the displacement and
contact force increment vector of the node B of the deformable body and {dfA} is the “load” vector
of the node A [1,8,13]. The mixed global system of linear equations is obtained considering the
contact/friction operators that appear in Eq. (4). The contact is checked between a boundary of the
deformable body and a rigid tool, described by BQezier surfaces [1,8,13]. The contact force [ is then
replaced by the contact force of node A, [A. This mixed system depends on the contact status of the
node A, which in6uences the form of the contact operators Fequ and Fsup. These contact operators
also depend on the curvature of the parametric patches that de ne the tools, which directly in6uences
the gradient of the normal vector at the contact point [1,8,13]. This combination of factors results
in sets of equations very diHerent for each node that conducts to an ill-conditioned, non-symmetric
system. As the unknown nodal contact forces depend only on the degrees of freedom of the nodes
to which they are associated, it is possible to transform the system in order to eliminate the un-
known nodal contact forces [2]. In this way, a reduced system of linear equations is obtained for the
nodal displacements, associated with an explicit de nition of the contact nodal forces that can be
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expressed as:

[Kred
AB ]{duB} = {f redA }

d[= f(du): (6)

3.1. Numerical methods

The system R(u; [) = 0 de ned in Eq. (4) is a partial diHerentiable non-linear problem, without
constrains. For its resolution it is possible to use a method of the Newton–Raphson type. In this
algorithm, a single loop strategy is adopted for solving both non-linearities, resulting from the large
elastoplastic deformation and the contact with friction. The reduced system of linear equations (6),
obtained for each iteration of the algorithm, is solved with an iterative “Conjugate Gradient Squared”
solver, with a “Level-k ILU” preconditioner [14].
To solve the problem using an implicit method, it is necessary to impose the equilibrium equations

and the consistency condition on the con guration at time t + Kt, which is a priori unknown. To
obtain a  rst solution for the incremental displacements stresses and contact forces, an explicit method
can be used. This solution satis es neither the variational principle nor the consistency condition, due
to the non-linearity of the constitutive laws and to the kinematics of the problem. Therefore, this trial
solution is corrected by using iterative method of Newton–Raphson type. So, each time increment
of the simulation can be divided into two phases; the Predictor phase, which determines the explicit
trial solution for each increment, and the Corrector phase, where this solution is improved by an
implicit method [1–3].

3.2. The tangent explicit method

Since the formulation is quasi-static, the time increment can be replaced by the increment of any
other monotonously increasing parameter, like the displacement of the tool that controls the forming
process. In general, the stamping process can be divided in various phases where, in each one, the
strain path is non monotonous. This means that the optimum incremental step size can change during
the process. Assuming that the tool M is controlling the phase, it is necessary to establish an initial
incremental displacement du[N ]M for that tool, for the con guration at time t+Kt, designated by N . In
order to predict the evolution of the state variables and of the boundary conditions, the user imposes
a trial value d�imp for each phase of the simulation, such as:

du[N ]M = d�imp: (7)

With this imposed increment, it is possible to solve Eq. (4) with the explicit algorithm and obtain a
 rst solution of the con guration C[N;0] c for which the nodal contact forces and displacements are
known. This allows the determining of the rotation, strain and stress increments. Since the integration
method is explicit, all the calculated variables are proportional to du[N ]M . Then, the relation between
the accepted trial increment (K) and this one (d) is established by a weighting factor r. For a
generic variable �, this can be written as [1–3,10]:

K�= r d�: (8)
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The admissible value rmin of the coe:cient r is determined such that the change in the state of the
elements and in the contact conditions during the increment does not induce too high modi cations
from the previous con guration. With this strategy, the increment size is not constant, and it is
continuously adapted to the conditions of each increment, contributing to the improvement of the
convergence of the iterative process in the Corrector phase. So, after obtaining the  rst explicit
solution, this algorithm corrects the increment size, determining the value of r for which, in each
Gauss point of the deformable body  nite element mesh:

• The largest absolute value of the incremental principal strains attains a prescribed limiting value
K�max:

r� =
K�max

max(|dU1|; |dU2|; |dU3|) : (9)

• The Euclidean norm of the incremental rotations attains a prescribed limiting value K!max:

r! =
K!max

|d�| : (10)

• The largest value of the incremental normal and tangential stress to the yield surface are limited
by a prede ned surface:

rT =
Y

|dT|
(
cos �
b +

√
1−cos2 �

a

) ; (11)

with cos � = (Z : dT)=(|Z| : |dT|) with Z=M : (T− X). M is a fourth-order tensor characterizing
the plastic anisotropy, X is the back stress tensor and T is the Cauchy stress, while dT is its trial
increment in the time step.
KUmax;K�max, a and b are user-de ned parameters. Besides these limiting values, the course of

the deep drawing process should also be considered. The end of a phase of the process is controlled
by a displacement or force of a speci c tool. To force the simulation to attain this phase limits, and
validate a change of phase, a weighting factor (rpha) is calculated in each increment. Also, to have
outputs for post-process purposes at prede ned con gurations a (rout) factor is also calculated. In
order to exclude too small or too high incremental step sizes, a range of values r ∈ [rinf ; rsup] is also
established. The admissible weighting factor rmin is then determined by the expression:

rmin = max[min(r�; r!; rT ; rpha; rout ; rsup); rinf ]: (12)

3.3. The implicit method

After calculating the explicit trial solution of the increment [t; t +Kt], the updated con guration
C[N;0] is given as a function of the incremental displacements, and frictional contact forces, Ku[0]

and K[[0]. This con guration allows the calculation of the incremental strains and rotations, the
integration of the constitutive laws, and the establishment of the  rst approximation to the stress
and plastic strain  elds at the end of the increment (instant [t + Kt]). To calculate the correct
incremental displacements and contact forces, Eq. (4) is linearized with respect to the displacements
in the neighbourhood of C[N;0]. This conducts to a system of linear equations, whose unknowns are
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du[1] and d[[1]. This allows for the determination of a new approximation of the real increment
[1–3,10]:{

Ku[N;1] = Ku[0] + du[1];

K[[N;1] = K[[0] + d[[1]:
(13)

The new sheet con guration C[N;1] and contact forces are then given by{
x[N;1] = x[N−1] + Ku[1];

[[N;1] = [[N−1] + K[[1]:
(14)

This iterative procedure is repeated until the norm of the out-of balance forces become lower than
an imposed limit. Then the con guration at the end of the increment is updated and a new increment
is started.
Although this method has quadratic convergence in the vicinity of the solution, numerical insta-

bilities are frequent. The main di:culty of the numerical treatment is due to the fact that the contact
problem introduces inequalities that lead to strong non-linearities. The quadratic convergence is re-
stricted to a small diHerentiable region, which is characterised by the correct contact status of each
point of the surface of the deformable body [3]. So, the  rst trial solution is of major importance
to the subsequent convergence of the implicit algorithm.

3.4. Control of the incremental contact force

Figueiredo et al. [15] have demonstrated the existence and uniqueness of solution in a problem
of contact with friction in thermoelasticity. These authors have shown that this problem has a local
unique solution, imposing some restrictions on the friction coe:cient, the contact force and eventually
on the initial gap. Although this theoretical study is not on elastoplasticity problems, its conclusions
can be very useful in the resolution of some convergence problems of the implicit algorithm presented
above. In the numerical simulation of the deep drawing process, the friction coe:cient cannot be
changed, as it is a physical input data, and the gap is already controlled by the penalty parameter
introduced in the augmented Lagrangian. So, a possible extrapolation of that work to the present
algorithm can be done applying some limitations to the contact forces in the Predictor phase.
In the Predictor phase several parameters are controlled, but they are all associated to the inter-

nal variables (strain, rotation and stress). The contact forces are not restrained. However in some
numerical simulations, the divergence of the algorithm can appear associated with incorrect values
of the contact forces [4]. To solve this di:culty, we can restrain the incremental contact forces in
order to assure the convergence of the algorithm without modifying the simulation process. This
is only applied to the nodes in contact at the end of the previous con guration C[N−1], once no
gap to contact changes are allowed during the Predictor phase. The explicit solution determines the
 ctitious contact forces (d[). The real increment (K[) is then forced to be limited to an ellipsoid
according to the equation:(

d�n

c

)2
+
(
d�t1
d

)2
+
(
d�t2
e

)2
¡B2; (15)

d�n; d�t1; d�
t
2 are the components of the incremental contact force normal to the sliding plane and in

the sliding plane, respectively. c, d and e correspond to the diHerent axes of the ellipsoid, which can
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Fig. 1. Forming tools for the bending test.

take diHerent values in order to control the components of the contact force vector diHerently. B is
used to normalize the value of the force components, since they can have diHerent order values in
the contact nodes. In this case B is taken as the Euclidean norm, in each contact node, of the contact
force in the con guration C[N−1] to avoid strong increases of B during the new time increment:

B= |[[N−1]|: (16)

A new weighting factor r� is then calculated, for every node A in contact, as follows:

r�A =

(√
B2

(d�n=c)2 + (d�t1=d)2 + (d�t2=e)2

)
A

: (17)

The  nal value of r� will be the lowest value of r�A . The new admissible weighting factor rmin is
then determined by the expression

rmin = max[min(r�; r!; rT ; r�; rpha; rout ; rsup); rinf ]: (18)

3.5. Numerical results

The e:ciency of the proposed parameter was evaluated in the simulation of the bending of a
mild steel sheet. The dimensions of the forming tools and initial blank sheet are described in Fig. 1.
Due to the geometrical symmetry, only one half of the global structure is simulated. The mechanical
properties of the mild steel considered are: E = 2:1 × 105 MPa; � = 0:30; Swift law parameters:
C = 565 MPa; n = 0:259; Hill coe:cients: F = 0:284, G = 0:358, H = 0:642, L =M = N = 1:289.
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Fig. 2. Blank sheet meshes for the bending test.

Table 1
Limiting values for the determination of the admissible step increment

K�max K�max a b rinf rsup

0.005 0:05◦ 3.0 1.0 0.001 1.0

A friction coe:cient of 0:144 is de ned for the contact between the tools and the blank sheet.
The tools are described by BQezier surfaces, three for the punch, three for the die and one for the
blank-holder.
Since the goal of this study is to evaluate the in6uence of the limitation of the contact force

increments on the global convergence of the implicit algorithm, some numerical di:culties are
introduced. First, the blank holder force used is 22:6 kN, which minimises the sliding of the nodes
in the 6ange, since is four times higher than the minimum theoretical value. Second, a high value of
5 mm is considered for the gap between the punch and the die. This value allows a higher rotation
of the blank sheet in the die shoulder, introducing some di:culties in the contact detection in this
region [16]. Finally, a rather coarse mesh is used to guarantee an easier interpretation of the results
and to reduce the CPU time. Two diHerent meshes, represented in Fig. 2, were tested. The main
diHerence between them is the orientation of the elements in the sheet plane. The  nite element
meshes have 60 elements corresponding to a total of 88 nodes candidates for contact.
The chosen values for the increment size limitations on the strain, rotation and stress are taken from

previous optimization studies [1], and they are presented in Table 1. Several penalty coe:cient values
are tested (p=100:0; 1000:0; 10000:0; 100000:0). They cover the range predicted for admissible values
of this parameter [1,8,17]. It is important to clarify that all simulations are made with a constant
value for p, for all nodes. In general during a numerical simulation with an implicit code, it is
necessary to change the value of p in order to overcome convergence problems. In this study, all
simulations are assumed as stopped, as soon as, in an increment, the convergence is not attained after
a pre-de ned number of iterations. No attempt is made to continue the simulation. The convergence
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Fig. 3. Summary of the simulations performed with both meshes and with the step increment control de ned by the
parameters presented in Table 1.

criterion for each iteration j is de ned as [1,8]:

CCrit|j = ‖d[‖j−1 + ‖R‖j
‖[‖j−1 ; (19)

where R is the residual vector de ned in Eq. (4) and the vector [ is used in order to normalize the
value of the convergence criterion in function of the contact forces involved in the process.
The  rst simulations performed were done with the limiting values presented in Table 1 and with

no activation of the contact force control. These tests are used for comparison of the performance
of the code, after the introduction of the new control parameter. The results are resumed in Fig. 3,
which presents the total displacement of the punch achieved up to loss of convergence, for each
 xed penalty parameter, p.
From these preliminary tests, it is possible to verify the importance of the mesh orientation in

relation with the tools. In fact the contact detection for the presented problem is very di:cult due
to the reduced number of nodes in contact. During the  rst equilibrium iterations, in each time
step, several nodes change their contact status. As the contact operator considered is only weakly
diHerentiable, when contact status changes occur, this results in perturbations on the convergence
[3,13]. In fact, only when the correct contact status is determined the convergence becomes quadratic.
Mesh (a) has the same orientation of the tools. For the punch displacement of 2:0 mm, all contact
nodes along the same line are changing their contact status, as shown in Fig. 4. This eHect in6uences
the convergence of the process, whatever the penalty parameter. That is why all simulations stop at
this punch displacement (Fig. 3). For mesh (b) this change of contact status is not so severe because
it occurs for the diHerent location nodes in diHerent time increments. This leads to better results,
and, for p = 1000:0; 10000:0 and 100000:0 the simulations with this mesh attain the process end,
without any type of convergence problems. The results of mesh (a) might indicate that the penalty
parameter has no in6uence, but since the penalty parameter acts directly on the contact status, it is
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Fig. 4. Deformed shape and forming tools for both meshes, after a punch displacement of 2:0 mm.

also an important factor. In fact, in using a small penalty parameter the augmented normal contact
force is underestimated, which may lead to an incorrect “slip” contact status instead of a “stick”
status. This is the reason why, for mesh (b), the use of a smaller penalty parameter does not result
in a full simulation. It stops after a punch displacement of around 18 mm.
With the introduction of the contact force control, two diHerent strategies may be considered. If

the parameters c, d and e (Eq. (17)) are equal, the ellipsoid becomes a sphere. The radius of this
sphere is function of the value considered for the parameters, and of the Euclidean norm B of the
contact force in the previous step. Note that this normalized value B corresponds to the norm of
the eHective contact force, and not to the increment of the contact force in the previous step. For c,
d and e equal to 1.0 the radius of the sphere becomes equal to B, and the norm of the admissible
increment for the contact force is equal to the norm of the contact force in the previous step. If
the value for c, d and e is generically c, the limiting sphere presents a radius of cB. The problem
is less restricted for c larger then one. The in6uence of the value for the parameter c is schematic
represented in Fig. 5(a). Three diHerent values for c are tested: 0.1, 1.0 and 1000.0. These values
were mixed with the values presented in Table 1. The results of the simulations performed for both
meshes are presented in Fig. 6.
The  rst conclusion that arises from these results is that the use of the contact force control

conducts to better results for mesh (a), since it is possible to attain higher displacements without
user intervention, in particular for small penalty values. The opposite occurs for mesh (b), where
the best results are obtained for the higher penalty values. For mesh (a), the contact with the punch
is performed in layers of elements in the direction Ox. So, for higher penalty values the nodes will
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Fig. 5. Schematic representation of the limiting zone, induced by the contact force control: (a) c, d and e equal and (b)
c, d and e diHerent values.

Fig. 6. Summary of the simulations performed with both meshes with the step increment control de ned by the parameters
c, d and e equal, and with the reference parameters of Table 1.

be attached with a ‘stick’ status to the punch, resulting in divergence problems. For mesh (b), there
are always just a few nodes contacting with the punch. So, if the penalty value is small it is more
di:cult to maintain the contact and divergence problems can occur.
Comparing Fig. 6 with Fig. 3, it can be observed that for p equal to 100.0 and c equal to 1.0,

the results obtained using the contact force control algorithm are signi cantly improved. This is also
what occurs for the simulations performed with the penalty parameter equal to 100000.0, c equal to
1000.0 and mesh (a). In this situation, the larger value for the penalty parameter guarantees more
contact nodes, and the lower control on the contact force allows a larger increment size. Another
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Fig. 7. Evolution of the normalizing parameter B with the punch displacement.

important conclusion concerns the CPU time associated with the lower value for c. This limitation
on the time step conduces to an enormous reduction of the parameter rmin. The result is an enormous
CPU time with no important improvements in the results. Taking as reference the mean CPU time
for the simulations with mesh (b) that attained the  nal displacement of 40:0 mm with no contact
force control, with the lower value of c the CPU time increases 150%. For these reasons, this lower
value for the parameter c was abandoned in the further simulations. In terms of the CPU time,
comparing equal displacements, it is also possible to conclude that mesh (a) is very time consuming
(about 3 times slower then mesh (b)). This occurs due to the characteristics of the mesh, since the
large value of the punch/die gap implies a strong rotation of the elements in the die shoulder. The
size of the elements of this mesh is too high to allow for rotation, conducing to very small time
steps and high CPU times. This problem is well solved with mesh (b). Taking as reference the mean
CPU time for the simulations with mesh (b) that attained the  nal displacement of 40:0 mm with no
contact force control, with c equal 1.0 the CPU time increases 7%, and with c equal 1000.0 the CPU
time decreases around 2%. Another important diHerence between the two meshes is the value of the
normalizing parameter B. Since for mesh (a) there are more nodes in contact with the blank holder,
this value is always smaller. In Fig. 7 the evolution of parameter B is shown for a representative
case of both meshes. The deformable node that controls the contact force parameter, during the
deformation process is always a node in the 6ange. This results from the high blank holder force
used, and that is the reason why the value of the parameter B is dictated by the distribution of the
blank holder force.
The second strategy in the contact force control algorithm is to consider an ellipsoid to determine

the value of the contact force limitation for the time step. In contrast with the previous strategy, this
apply diHerent values for the parameters c, d and e. In this study, only two cases are considered.
The  rst assumes a higher control on the normal contact force �n, which results in an ellipse in the
plane (�n; �t1 or 2) with the smallest axis in the direction �n. In the other case, the control is mainly
performed in tangential directions, which leads to an ellipse in plane (�n; �t1 or 2) with the smallest
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Fig. 8. Summary of the simulations performed with both meshes. The step increment control is performed with diHerent
values for the parameters c, d and e and the reference parameters of Table 1.

axis in the direction �t1 or 2. Both strategies are schematically represented in Fig. 5(b). The summary
of the performed simulations is presented in Fig. 8.
The resume shown in Fig. 8, discloses the importance of controlling the time step with the

contact force, in particular in situations where there are di:culties in the management of the contact
with friction. These di:culties are very sensitive to the penalty parameter, but the contact force
control allows for overcoming some of them. The introduction of the diHerent contact force control
parameters conduces, in some cases, to a reduction of the CPU time, especially when the tangential
forces are more controlled. But this improvement depends strongly on the penalty parameter. Taking
as reference the mean CPU time for the simulations with mesh (b) that attained the  nal displacement
of 40:0 mm with no contact force control, for a higher control on the normal contact force the CPU
time increases 3%, and for a higher control on the tangential contact force the CPU time decreases
around 8%.
Finally, a new set of simulations was performed, fully relaxing all the time step control parameters,

except the contact force ones. The results are presented in Fig. 9. Although these are not recom-
mended procedures for performing a simulation, this group of simulations demonstrates that the
contact force control combined with the appropriate penalty parameter can overcome some contact
problems.

4. Conclusions

This paper describes the latest improvements on the numerical stability of the  nite element code
DD3IMP. A general description of the mechanical model and of the numerical methods used in
the code is presented in order to depict the new strategy proposed. The code makes use of a fully
implicit algorithm of Newton–Raphson type to solve in a single iterative loop the non-linearities
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Fig. 9. Summary of the simulations performed with both meshes with the step increment control, where the parameters
c, d and e are equal and the other parameters relax.

associated with the frictional contact and the elastoplastic mechanical behaviour of the material. The
use of a Newton–Raphson method guarantees quadratic convergence of the iterative loop as long as
the approximated  rst solution is not far from the equilibrium. To assure this proximity, control on
the time increment is made by user-de ned parameters. These parameters are usually based on the
state variables. A new set of user-de ned parameters was introduced in order to control the time
step in function of the contact force increments.
This set of parameters allows for the overcoming of contact detection and status problems, espe-

cially in situations with a large percentage of nodes changing their contact status simultaneously. It
is clear from the presented results that the force control parameter cannot, by itself, solve all the
convergence problems that can arise during the simulation. Nevertheless, the association of this new
strategy with the other set of control parameters improves the numerical stability of the simulations.
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