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Resumo

Motivados pelas limitações do modelo de otimização de média-variância, nesta tese

propomos a construção de carteiras de investimento em cenários diferentes. Olhando

de modo diferente para como lidar com o risco e o retorno na construção de carteiras

de investimento, tentamos sugerir cenários mais realistas do que o cenário clássico.

Começamos por propor uma metodologia flex́ıvel para a construção de carteiras

de investimento, utilizando um modelo de otimização biobjetivo de assimetria/semiva-

riância. As soluções deste problema de otimização biobjetivo permitem ao investidor

analisar o compromisso eficiente entre a assimetria e a semivariância. Esta metodolo-

gia é utilizada empiricamente em quatro conjuntos de dados, obtidos na coleção de

Fama/French. A performance fora-da-amostra do modelo de assimetria/semivariância

foi aferida escolhendo três carteiras de investimento pertencentes a cada fronteira de

Pareto dentro-da-amostra e medindo a sua performance em termos do rácio de as-

simetria por semivariância, rácio de Sharpe e rácio de Sortino. Ambas as análises

de performance dentro-da-amostra e fora-da-amostra foram realizadas utilizando três

retornos alvo diferentes para os cálculos da semivariância. Os resultados mostram

que as carteiras de investimento eficientes de assimetria/semivariância são consisten-

temente competitivas quando comparadas com diferentes carteiras de investimento de

referência.

Posteriormente, estendemos o estudo do impacto da cardinalidade na performance

das carteiras de investimento, do cenário tradicional de média-variância a cenários mais

gerais que incluem momentos de ordem superior. Para cada cenário, nós propomos um

modelo biobjetivo que permite ao investidor analisar explicitamente o compromisso

eficiente entre a utilidade esperada e a cardinalidade. Aplicamos a metodologia pro-

posta a dados relativos a t́ıtulos pertencentes ao Índice do Mercado de Ações Português

(́Indice PSI 20). Os resultados emṕıricos mostram que, dentro-da-amostra, em todos

os cenários o equivalente certo e o rácio de Sharpe aumentam com o ńıvel de cardi-

nalidade. Os resultados também sugerem que não existem ganhos de performance,

dentro-da-amostra, em termos de equivalente certo, quando se consideram momentos

de ordem superior. Fora-da-amostra, a rotação da carteira de investimento aumenta
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até um certo ńıvel de cardinalidade, decrescendo posteriormente. Para certos ńıveis

de cardinalidade, existem ganhos em termos de equivalente certo e rácio de Sharpe

fora-da-amostra, quando são consideradas a assimetria e a curtose. Confirmamos a ro-

bustez destes resultados num conjunto maior de dados relativos a t́ıtulos pertencentes

ao Índice do Mercado de Ações da Zona Euro (́Indice EURO STOXX 50).

Finalmente, dentro de um cenário de maximização da utilidade com aversão rel-

ativa ao risco constante (CRRA), sugerimos a construção de duas carteiras de inves-

timento diferentes: uma carteira de investimento de baixa frequência e uma carteira

de investimento de alta frequência. Para dez ńıveis de aversão ao risco diferentes,

comparamos a performance de ambas a carteiras de investimento em termos de várias

medidas fora-da-amostra. Utilizando dados de catorze ações do Índice do Mercado de

Ações Francês (́Indice CAC 40), conclúımos que para todas as medidas de avaliação

de performance consideradas o “combate” é sempre “ganho” pela carteira de investi-

mento de alta frequência. Posteriormente, consideramos um cenário onde o investidor,

com preferências CRRA, tem dois objetivos: a maximização da utilidade esperada e a

minimização da iliquidez esperada da carteira de investimento. A utilidade-CRRA é

medida utilizando a volatilidade realizável, a assimetria realizável e a curtose realizável

da carteira de investimento, enquanto que a iliquidez da carteira de investimento é

medida utilizando o bem conhecido rácio de iliquidez de Amihud. Assim, o investidor

é capaz de realizar as suas escolhas diretamente no espaço bidimensional de utilidade

esperada/liquidez (EU/L). Conduzimos uma análise emṕırica no mesmo conjunto de

ações do Índice CAC 40. A robustez do modelo proposto é averiguada de acordo com a

performance fora-da-amostra de diferentes carteiras de investimento EU/L em relação

à carteira de investimento de variância mı́nima e à carteira de investimento em que

todos os t́ıtulos têm ponderações idênticas. Para diferentes ńıveis de aversão ao risco,

a carteiras de investimento EU/L são bastante competitivas e em vários casos consis-

tentemente superam aquelas carteiras de referência, em termos de utilidade, liquidez e

equivalente certo.

Classificação JEL: C44; C55; C58; C61; C63; C88; G11; G17

Palavras-chave: otimização de carteiras de investimento, maximização da utilidade,

semivariância, momentos de ordem superior, cardinalidade, dados de alta frequência,

momentos de ordem superior realizáveis, liquidez, performance fora-da-amostra, otimi-

zação multiobjetivo, otimização sem derivadas
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Abstract

Motivated by the limitations of the mean-variance optimization model, in this thesis

we propose to approach the portfolio selection problem with different frameworks.

Looking differently at how to deal with risk and return in portfolio construction, we

try to suggest more realistic frameworks than the classical one.

We begin by proposing a flexible methodology for portfolio choice, using a skew-

ness/semivariance biobjective optimization model. The solutions of this biojective

optimization problem allow the investor to analyze the efficient tradeoff between skew-

ness and semivariance. This methodology is used empirically on four datasets, col-

lected from the Fama/French data library. The out-of-sample performance of the

skewness/semivariance model was assessed by choosing three portfolios belonging to

each in-sample Pareto frontier and measuring their performance in terms of skew-

ness per semivariance ratio, Sharpe ratio and Sortino ratio. Both the in-sample and

the out-of-sample performance analyses were conducted using three different target

returns for the semivariance computations. The results show that the efficient skew-

ness/semivariance portfolios are consistently competitive when compared with several

benchmark portfolios.

Then we extend the study of the cardinality impact on the portfolio performance,

from the traditional mean-variance framework to more general frameworks that include

higher moments. For each framework, we propose a biobjective model that allows

the investor to explicitly analyze the efficient tradeoff between expected utility and

cardinality. We applied the proposed methodology to data from the Portuguese Stock

Market Index (PSI 20 Index). The empirical results show that, in-sample, the certainty

equivalent and the Sharpe ratio increase with the cardinality level in all frameworks.

The results also suggest that there are no performance gains, in-sample, in terms of

certainty equivalent, when higher moments are considered. Out-of-sample, the turnover

increases up to a certain cardinality level, then decreases. For certain cardinality levels,

there are gains in terms of out-of-sample certainty equivalent and Sharpe ratio, when

skewness and kurtosis are considered. We check the robustness of these results in a

large dataset from the Eurozone Stock Market Index (EURO STOXX 50 Index).
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Finally, within a CRRA-utility maximization framework, we suggest the construc-

tion of two different portfolios: a low and a high frequency portfolio. For ten different

risk aversion levels, we compare the performance of both portfolios in terms of several

out-of-sample measures. Using data on fourteen stocks of the French Stock Market

Index (CAC 40 Index), we conclude that the “fight” is always “won” by the high fre-

quency portfolio for all the considered performance evaluation measures. Then, we

consider a framework where the investor, with CRRA preferences, has two objectives:

the maximization of the expected utility and the minimization of the portfolio expected

illiquidity. The CRRA-utility is measured using the portfolio realized volatility, real-

ized skewness and realized kurtosis, while the portfolio illiquidity is measured using the

well-known Amihud illiquidity ratio. Therefore, the investor is able to make her choices

directly in the expected utility/liquidity (EU/L) bidimensional space. We conduct an

empirical analysis in the same set of stocks of the CAC 40 Index. The robustness of

the proposed model is analyzed taking into account the out-of-sample performance of

different EU/L portfolios relative to the minimum variance and equally weighted port-

folios. For different risk aversion levels, the EU/L portfolios are quite competitive and

in several cases consistently outperform those benchmarks, in terms of utility, liquidity

and certainty equivalent.

JEL Classification: C44; C55; C58; C61; C63; C88; G11; G17

Keywords: portfolio optimization, utility maximization, semivariance, higher mo-

ments, cardinality, high frequency data, realized higher moments, liquidity, out-of-

sample performance, multiobjective optimization, derivative-free optimization
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Chapter 1

Introduction

The importance of randomness in our lives is often underestimated. One day, at the

University of Chicago, while waiting for a meeting with his advisor, to discuss his

thesis topic, a PhD student had a casual conversation with a stockbroker. During the

conversation, the stockbroker suggested to the PhD student that he should consider

to study the application of mathematical methods to the stock market in his thesis.

As a result from following this specific advice, the Modern Portfolio Theory (MPT)

emerged, associated to the famous paper of Markowitz (1952).

In that seminal work, Markowitz has pointed out that a rule for portfolio choice in

which the investor only seeks to maximize the expected return is a poor one, since no

diversification is carried out. Following the prevailing theory at the time (systematized

by Williams, 1938), the investor could compute the expected return of each security

as a discounted return (making use of the discounted cash flow theory). Nevertheless,

if the investor was only concerned with the maximization of the portfolio’s expected

return (regardless of how it is computed), the portfolio would always be formed by only

one security, or by a combination of securities with equal expected returns. Motivated

by this fact, Markowitz proposed that, in addition to the maximization of the port-

folio’s expected return, the investor should seek to minimize the risk of the portfolio

(measured by the portfolio’s variance), thus promoting security diversification. This

mean-variance (MV) rule is mathematically given in the form of a MV optimization

model. Typically, the MV optimization model is formulated as a single objective opti-

mization problem, where the investor minimizes the portfolio’s variance for a given level

of expected return, over the set of feasible portfolios. By varying the level of expected

return, the set of nondominated portfolios can be identified in the MV bidimensional

space. This set of nondominated portfolios defines the efficient MV frontier.

According to the MPT, a rational investor should choose a portfolio on the efficient

MV frontier; therefore, this is a normative theory. According to Fabozzi et al. (2002,
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p.7), a normative theory “is one that describes a standard or norm of behavior that

investors should pursue in constructing a portfolio, in contrast to a theory that is actu-

ally followed.” Besides that, the theoretical consistency of the MPT with the rational

axioms of choice, proposed by Von Neumann and Morgenstern (1953), is dependent on

a quadratic utility function for the investor’s preferences or on the returns following a

Gaussian distribution.

As recently explained by Markowitz (2014), a quadratic utility function for the

investor’s preferences or the returns following a Gaussian distribution, are sufficient

conditions for the MV analysis. Still, these are not necessary conditions, since an

appropriate choice on the efficient MV frontier can correspond to an approximation

of the investor’s utility maximization for a variety of utility functions. However, if

the investor follows non-quadratic preferences and the distribution of the returns does

not correspond to a Gaussian distribution, a more realistic approach is required to the

portfolio choice.

MPT has been criticized both in theoretical and practical grounds. Over the years,

several studies have showed that the returns’ distribution does not follow a Gaussian

distribution (see, e.g., Mandelbrot, 1963; Fama, 1965; Beedles, 1979; Campbell et al.,

1997). Furthermore, the portfolios constructed according to the MV optimization

model tend to be very unstable, due to the ill-conditioning of the covariance ma-

trix, hence exhibiting a poor out-of-sample (OOS) performance. The estimation error

present in the estimates of the expected returns, the variances and the covariances is

too big to be overlooked (Chopra and Ziemba, 1993; Broadie, 1993). In fact, a provoca-

tive article by DeMiguel et al. (2009b) presents compelling evidence on this estimation

error problem. DeMiguel et al. (2009b) applied, on seven datasets, fourteen portfolio

choice models and showed that none was able to consistently beat (in terms of different

OOS performance measures) the equally weighted portfolio. Moreover, DeMiguel et al.

(2009b) showed that for a portfolio of 50 securities, based on the U.S. stock market,

it is necessary an estimation window of approximately 6000 months (500 years!) for

the MV optimization model to outperform the equally weighted strategy. Even models

designed to deal with estimation error need unreasonable large estimation windows to

outperform the equally weighted strategy (DeMiguel et al., 2009b).

Motivated by the limitations of the MPT, several improvements to the MV opti-

mization model have arisen in the literature. Such improvements have been achieved

through a better estimation of the covariance matrix, a better estimation of the vector

of expected returns and using more real constraints. Several studies have contributed

to a better estimation of the covariance matrix by using high-frequency data (see, e.g.,

Merton, 1980; Schwert, 1989; Hsieh, 1991; Andersen et al., 2001b), or, by applying

2



factor models (see, e.g., Chang et al., 1999; Ikeda and Kubokawa, 2016), shrinkage

estimators (see, e.g., Ledoit and Wolf, 2004a;b), robust optimization (see, e.g., Gold-

farb and Iyengar, 2003; Tütüncü and Koenig, 2004; Zhu and Fukushima, 2009; Gotoh

et al., 2013; Fernandes et al., 2016), and robust estimation (see, e.g., DeMiguel and No-

gales, 2009; Huo et al., 2012). Other studies contributed to a better estimation of the

expected return by applying Bayesian estimation (see, e.g., Klein and Bawa, 1976; Jo-

rion, 1986; Pastor, 2000; Pastor and Stambaugh, 2000), factor models (see, e.g., Fama

and French, 1992; 1993; 1996; Carhart, 1997; Fama and French, 2015; DeMiguel et al.,

2017), robust optimization (see, e.g., Goldfarb and Iyengar, 2003), using option-implied

information (see, e.g., DeMiguel et al., 2013), and exploiting stock return serial depen-

dence (see, e.g., DeMiguel et al., 2014). Finally, other studies have addressed the use of

better constraints, such as the inclusion of non-short selling constraints (see, e.g., Ja-

gannathan and Ma, 2003), the introduction of constraints to explore information about

the cross-sectional characteristics of securities (see, e.g., Brandt et al., 2009), the use

of performance-based regularization approaches (see, e.g., Ban et al., 2016), and the

introduction of norm constraints (see, e.g., Brodie et al., 2009; DeMiguel et al., 2009a;

Brito and Vicente, 2014).

In this thesis we follow a holistic approach suggesting and analyzing the construction

of data-driven portfolios beyond the MV optimization framework. Our main focus is

to contribute to the existing literature with more comprehensive and realistic models,

while using a minimum number of assumptions. Although we try to suggest models

that intend to be closer to reality, we are well aware of the limitations of modelling

complex systems, particularly financial systems. In general modelling and, particularly,

in financial modelling, it is extremely important to always bear in mind the eloquent

description of what a model is, given in Derman (2011, p.112): “There is a gap between

the model and the object of its focus. The model is not the object, though we may

wish it were. A model is a metaphor of limited applicability, not the thing itself.”

After the financial crisis of 2008, many criticisms have arisen to the type of models

used in the financial field. One of the best summary reflections about this issue was

written by Emanuel Derman and Paul Willmott, in 2009. In the document coined

as “The Financial Modelers’ Manifesto” (see Appendix A), the authors describe the

precautions to be undertaken in the construction and application of financial models.

We think it is truly important to put in practice the principles set out in “The Modelers’

Hippocratic Oath” (see Appendix A), presented in the referred manifesto.

This thesis results from the compilation of four articles (one published, two accepted

for publication and one submitted). Since the articles were written independently,

here we articulate them in order to provide the reader with a coherent sequence of
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the theoretical aspects of each proposed model, as well as the presentation of the

corresponding empirical findings. We seek to follow a logical sequence, eliminating any

redundancies between those articles. Accordingly, the organization of this thesis is as

follows.

Chapter 2 presents the MPT and discusses it limitations. Then, in order to over-

come some of the limitations of the MPT, we take one step forward and go beyond

the MV optimization framework, introducing the higher moments’ analysis in portfolio

choice. This more realistic approach is essential for the theoretical understanding of the

models proposed in the subsequent chapters. In Chapter 2 we define three important

benchmark portfolios, documented in the related literature as hard to beat strategies

in terms of OOS performance. These benchmark portfolios are used for performance

comparisons throughout the thesis.

Observing the investor’s aversion for losses (regarding some reference point), i.e.,

aversion for semivariance, and that the investor has preference to face higher probability

for extreme gains and limited losses, i.e., preference for positive skewness, in Chapter 3

we propose a flexible skewness/semivariance biobjective model. To the best of our

knowledge, for the first time in the literature, we overcome the endogeneity problem

of the cosemivariance matrix through a derivative-free algorithm. Independently of

the target return used in the semivariance computation, with the proposed model the

investor is able to directly analyze the efficient tradeoff between the portfolio skewness

and the portfolio semivariance. As an application example, an empirical exercise is

conducted using four datasets from the Fama/French data library and three different

target returns for the semivariance computation. [This chapter partially corresponds

to the published article Brito et al. (2016)]

Chapter 4 extends the analysis of the cardinality impact on the portfolio perfor-

mance from the classical MV framework to frameworks where higher moments are

considered (namely skewness and kurtosis). Furthermore, we analyze the performance

gains obtained with the inclusion of skewness and kurtosis, at different cardinality lev-

els. For the in-sample (IS) analysis we use, as performance measures, the certainty

equivalent and the Sharpe ratio. The OOS performance is assessed through the cer-

tainty equivalent, the Sharpe ratio, the turnover and the Sharpe ratio of returns net of

transaction costs. We present empirical results for the PSI 20 Index and for the EURO

STOXX 50 Index. [This chapter partially corresponds to the accepted for publication

article Brito et al. (2017c)]

In Chapter 5, motivated by the strong growth of the available high frequency data,

we assess the benefits of using such data in a portfolio choice framework and we pro-

pose a new approach for portfolio choice by means of an expected constant relative risk
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aversion (CRRA)-utility/liquidity model. All the empirical analysis is done on a set of

fourteen stocks from the French Stock Market Index (CAC 40 Index). This data was

provided by the European Financial Data Institute (EUROFIDAI). [This chapter par-

tially corresponds to the working paper Brito et al. (2017a) (submitted for publication)

and to the article Brito et al. (2017b), accepted for publication]

Finally, Chapter 6 presents the main conclusions and limitations of this thesis.
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Chapter 2

MPT, limitations and going further

In this chapter we begin by presenting the MPT (Markowitz, 1952; 1959), operationally

defined by a MV optimization model (Section 2.1). Then we discuss the two main

limitations of the MV optimization model (Section 2.2): the non-Gaussian distribution

of returns and the poor OOS performance of the MV portfolios. Finally, this chapter

ends by introducing the higher moments’ analysis in portfolio choice (Section 2.3),

which allows us to go beyond the MPT in the subsequent chapters.

2.1 The MV optimization model

This presentation of the MV optimization model follows the notation used in Brito and

Vicente (2014) and Brito et al. (2016). Here we designate a portfolio as a basket of

financial assets or securities. Portfolios can include, for example, stocks, bonds, curren-

cies or even derivatives1. Suppose that an investor has a universe of N securities where

she can allocate her wealth, W . The returns of each security i (with i = 1, . . . , N), at

time t (with t = 1, . . . , T ), are denoted by ri,t. Based on historical data, a portfolio

return matrix, RP , is defined as

RP =


r1,1 r2,1 . . . rN,1

r1,2 r2,2 . . . rN,2

. . . . . . . . . . . .

r1,T−1 r2,T−1 . . . rN,T−1

r1,T r2,T . . . rN,T

 , (2.1)

where T + 1 corresponds to the total number of price observations. The expected

1This thesis only deals empirically with stocks and portfolios of stocks; however the suggested
methodologies can be applied to any kind of financial assets.
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return of each security i, with i = 1, . . . , N , at time t is denoted by µi,t = Et (ri,t+1).

And µt = [ µ1,t µ2,t . . . µN,t ]
⊤, of dimension N × 1, is the vector of the expected

returns. Given the universe of N securities, at each time t there is a set of weights,

wi,t, i = 1, . . . , N , representing the proportional amounts of the total wealth, W ,

invested in the corresponding securities. Thus, a portfolio can be defined by an N × 1

vector wt = [w1,t w2,t . . . wN,t]
⊤ of weights, which have to satisfy the constraint

1⊤Nwt =
N∑
i=1

wi,t = 1, (2.2)

where 1N is the N × 1 vector of ones.

Denoting the portfolio return at time t as rp,t, the portfolio expected return,mt(rp,t+1),

can be written as

mt(rp,t+1) = Et(rp,t+1) = E(w1,tr1,t+1 + · · ·+ wN,trN,t+1)

= w1,tµ1,t + · · ·+ wN,tµN,t = µ⊤
t wt.

(2.3)

In turn, the variance of the portfolio return, vt(rp,t+1), is given by

vt(rp,t+1) = Et [rp,t+1 − Et(rp,t+1)]
2

= Et

[
N∑
i=1

wi,tri,t+1 − Et

(
N∑
i=1

wi,tri,t+1

)]2
.

(2.4)

Thereby,

vt(rp,t+1) =
N∑
i=1

N∑
j=1

Et[(ri,t+1 − µi,t)(rj,t+1 − µj,t)]wi,twj,t. (2.5)

Representing each entry i, j (with i, j = 1, . . . , N) of the covariance matrix Σt by

σij,t = Et[(ri,t+1 − µi,t)(rj,t+1 − µj,t)], (2.6)

we have

vt(rp,t+1) = w⊤
t Σtwt, (2.7)
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where ∀wt∈RN w⊤
t Σtwt ≥ 0, since the variance is always nonnegative. Thus, Σt is a

symmetric and positive semi-definite matrix. Typically Σt is assumed to be positive

definite. Otherwise, 0 would be an eigenvalue of Σt by definition. Thereby

∃wt∈RN (wt ̸=0N ) : Σtwt = 0N , (2.8)

with 0N representing the vector of dimension N × 1 where each entry is equal to 0.

This would lead to the existence of redundant securities (Cornnuejols and Tütüncü,

2007).

Accordingly, the portfolio standard deviation, σt(rp,t+1), is given by

σt(rp,t+1) =
√

w⊤
t Σtwt. (2.9)

The MPT (Markowitz, 1952; 1959) is based on the formulation of a MV optimization

model. The solution of that model is the portfolio of minimum variance for an expected

return not below a certain target value r. Therefore, the aim is to minimize the risk

for a given level of return. A standard formulation of the MV optimization model is

given as a convex quadratic programming (QP) problem

min
wt∈RN

w⊤
t Σtwt

subject to µ⊤
t wt ≥ r,

1⊤Nwt = 1,

wt ≥ 0N .

(2.10)

Problem (2.10) includes the usual additional constraint wt ≥ 0N , which excludes from

the feasible region the possibility of short selling.

Let w∗
t be an optimal solution of Problem (2.10). The Karush-Kuhn-Tucker (KKT)

conditions for Problem (2.10) can be written as
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2Σtw
∗
t − λ1µt − λ21N − ν = 0N ,

ν ≥ 0N , ν⊤w∗
t = 0,

λ1 ≥ 0, λ1(µ
⊤w∗

t − r) = 0,

µ⊤
t w

∗ ≥ r, 1⊤Nw
∗
t = 1, w∗

t ≥ 0N ,

(2.11)

for some λ1, λ2 ∈ R and ν ∈ RN . Since Problem (2.10) is a strictly convex problem

(the objective function is strictly convex and the feasible region is convex), if there is a

solution it is unique. The feasible region is bounded and closed, thus by the Weierstrass

theorem, if the feasible region is not empty, there is always a solution. Hence, if the

feasible region of Problem (2.10) is not empty then the problem has a unique solution,

i.e., the KKT 4-tuple (w∗
t , λ1, λ2, ν) can always be found (see Figure 2.1, for a graphical

illustration of how to find the optimal solution in a N = 2 case).

Figure 2.1: A graphical solution of the MV optimization model (an example when
N = 2)

1⊤Nwt = 1

optimal solution, w∗
t

µ⊤wt = r

feasible region

1

1

This figure illustrates the process of finding the optimal solution for Problem (2.10), when N = 2.

The figure represents the contour lines of the objective function (w⊤
t Σtwt), the feasible region defined

by the three constraints (µ⊤
t wt ≥ r ∧ 1⊤Nwt = 1 ∧ wt ≥ 0N ), and the optimal solution (w∗

t ) of

Problem (2.10).

The MV optimization model can be reformulated as a biobjective problem, which

consists of simultaneously minimizing the portfolio variance and maximizing the port-

folio expected return
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min
wt∈RN

vt(rp,t+1) = w⊤
t Σtwt

max
wt∈RN

mt(rp,t+1) = µ⊤
t wt

subject to wt ∈ Pt,

(2.12)

where Pt =
{
wt ∈ RN : 1⊤Nwt = 1 ∧ wt ≥ 0N

}
denotes the feasible region. It is easy to

prove that a solution of Problem (2.10) is nondominated, efficient or Pareto optimal for

Problem (2.12) (see Appendix B). Efficient portfolios are thus the ones that have the

minimum variance for at least a certain expected return, or, alternatively, those that

have the maximal expected return up to a certain variance. The efficient Pareto fron-

tier is typically represented as a bidimensional curve in the expected return-standard

deviation space (see Figure 2.2).

Figure 2.2: Efficient Pareto frontier for the MV optimization model

mt(rp,t+1)

σt(rp,t+1)

This figure illustrates the solution of the biobjective Problem (2.12). The vertical axis corresponds

to the expected return (mt(rp,t+1)) and the horizontal axis corresponds to the standard deviation

(σt(rp,t+1)).

Following Cornnuejols and Tütüncü (2007), one easy way to obtain the efficient

Pareto frontier (Figure 2.2) is to proceed as follows:

• Let rmax be the maximum return for an admissible portfolio;

• Find the minimum variance portfolio, wmin
t , solution of the strictly convex prob-

lem
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min
wt∈RN

w⊤
t Σtwt

subject to wt ∈ Pt;

• Define rmin = µ⊤
t w

min
t ;

• Define the function

σ : [rmin, rmax] → R | σ(r) =
√

(wr
t )

⊤Σwr
t ,

where wr
t is the optimal solution of Problem (2.10);

• The efficient Pareto frontier corresponds to the plot of each pair (σ(r), r), with

r ∈ [rmin, rmax].

Once the efficient Pareto frontier is determined, the investor can choose, along the

frontier, the portfolio that best fits her subjective preferences. The particular choice

will depend on the weight that the investor gives to the expected return and to the

portfolio variance (MV tradeoff).

In the efficient Pareto frontier there is a portfolio that deserves a special attention.

This portfolio (the ms portfolio) results from the maximization of the risk premium

per unit of risk; that is, the portfolio that maximizes the ratio between the reward

and the variability of the investment (reward-to-variability ratio). The ms portfolio is

obtained by maximizing the so-called Sharpe ratio

max
wt∈RN

SR =
µ⊤
t wt − rft√
w⊤

t Σtwt

subject to wt ∈ Pt,

(2.13)

where rft is the risk-free rate. Figure 2.3, illustrates how to find the ms portfolio

geometrically. This portfolio will be used as a benchmark portfolio in Chapter 3.

2.2 Limitations of the MV optimization model

The MV optimization model (Markowitz, 1952; 1959), the Capital Asset Pricing model

(CAPM) (Sharpe, 1964) and the Black-Sholes model (BSM) (Black and Scholes, 1973),

are among the most prominent models of Modern Finance. The BSM, inspired in the

works of Bachelier (1900) and Osborne (1959), assumes that the securities’ returns
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Figure 2.3: Maximum Sharpe ratio portfolio

σt(rp,t+1)

mt(rp,t+1)

(0, rft )

ms portfolio (w∗
t )

CML

This figure illustrates how to find the ms portfolio (also known as the market portfolio), solution of

the nonlinear Problem (2.13), along the efficient Pareto frontier. The ms portfolio corresponds to the

tangency point between the capital market line (CML) - the line that is tangent to the Pareto frontier

and includes the point (0, rft ) - and the efficient Pareto frontier.

follow a Brownian motion. As explained in Mandelbrot and Hudson (2004), this as-

sumption implies that: 1) each price change is independent from the last price change

(more formally, the returns follow a random walk); 2) the generating process of the

price changes is always the same over time (in other words, the returns are stationary);

and 3) returns follow a Gaussian distribution. In the next five paragraphs we will

discuss how these three assumptions are not observed in practice. Our main focus will

be on the evidence against the third assumption (the assumption of a Gaussian distri-

bution for the securities returns). If we do not assume that the investor has quadratic

preferences, the theoretical consistency of the MV optimization model requires the as-

sumption that the returns’ distribution is Gaussian. However, as we will discuss, this

is not a realist assumption, thus becoming a major limitation of the MV optimization

model. This weakness is also shared by the CAPM, since it is an equilibrium model

based on the MV framework.

Several studies have revealed the nonconformity of the first assumption (indepen-

dence of the price changes) with reality (see, e.g., Jegadeesh, 1990; Ding et al., 1993;

Sadique and Silvapulle, 2001; Lewellen, 2002; DeMiguel et al., 2014; Huang et al., 2015).

For instance, some authors provide empirical evidence on the existence of a short-term

momentum pattern in different markets (see, e.g., Jegadeesh and Titman, 1993; Chang

et al., 1996; 2000a).
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Economic reasoning cannot support that the nature (the generator) of the securities

returns is always the same independently of the period (at least in the long run). It is

quite a strong assumption to think that the behavior (nature) of the stocks returns of

the Standard & Poor’s 500 Stock Index is the same for different periods, say 1926-1940

and 1960-1980, for example. As explained in Hsu (1984, p.13), “It is clear to many

economists that the stock market during the late 1920s and 1930s was quite different

from that after 1940 in regard to market institutions, regulations, margin requirements,

and the efficiency of the market allocating funds for productive purposes (other than

pure speculations).” This reasoning can be generalized to other periods and other

markets. In fact, financial returns have an evolutionary (nonstationary) nature in the

long run, which is probably related to regime switching (Hsu, 1984). Locally, the

stationary assumption holds with good results (see, e.g., Stărică and Granger, 2005,

for further details), but in the long run such assumption is shaky.

Now let us look at the third assumption, which states that the returns follow a

Gaussian distribution. A random variableX follows a Gaussian distribution, with mean

µ and variance σ2, if the probability of X taking values in the interval [a, b] ∈ R × R
is given by

Prob(a < X ≤ b) =
1√
2πσ2

∫ b

a

exp

{
−1

2

(
x− µ

σ

)2
}
. (2.14)

An important feature of the Gaussian distribution is that the probability of a devi-

ation declines exponentially as one moves away from the mean. This translates into the

so-called 68-95-99.7 rule (computed according Equation (2.14)): 68.27%, 95.45% and

99.73% of the observations are within the interval [m−zσ, m+zσ], with z = 1, 2 and 3,

respectively. Thus, events corresponding to 4σ deviations from the mean should be ex-

tremely rare (the probability of such occurrences is equal to 6.33× 10−5).

A simple exercise provides evidence against this Gaussian assumption. We collect

historical daily data on the S&P 500 Stock Market Index from January 1950 to May

20172. Figure 2.4 plots the daily changes (log returns) and the daily absolute changes

in standard deviations. Clearly we do not observe the 68-95-99.7 rule. Two events

stand out: the crash of October 1987 (an event that corresponds to 23σ!) and the

subprime crisis in October 2008 (an event that corresponds to 11σ!). Notice that

under the Gaussian assumption, the odds of an event such the crash of October 1987

would be 1 in 10117. Just compare the magnitude of this number with the age of the

2At the current date, July 2017, this data is publicly available, for example, at Yahoo Finance
(https://finance.yahoo.com/).
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universe (≈ 13.7× 109) or even with the number of particles in the universe (≈ 1080)!

Furthermore, during the 16941 days present in Figure 2.4 there are 97 days where price

changes exceed the 4σ threshold. Thus, large deviations occur far more frequently in

financial markets than the Gaussian distribution would predict.

Figure 2.4: Daily changes in the S&P 500

Jan,1960 Jan,1970 Jan,1980 Jan,1990 Jan,2000 Jan,2010

Date
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Daily changes (log returns) in the S&P 500
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25
Daily absolute log changes in the S&P 500 (in standard deviations)

This figure shows the daily returns and the absolute daily returns in standard deviations of the S&P

500. The sample covers the period since January 3, 1950 to May 2, 2017. The dotted lines, in the

first plot, defines the interval [−4σ, 4σ]. In the second plot, the dotted line, represents a standard

deviation of 4σ.

In fact, there is ample empirical evidence showing that the securities returns’ dis-

tribution is fat-tailed and skewed, therefore being more appropriately described by a

Paretian or Lévy stable (with the stable parameter α ∈ (1, 2)) distribution (Mandel-

brot, 1963; 1967; Fama, 1965; Rachev and Mittnik, 2000). A stable distribution has the

suitable (for modeling the securities returns’ distribution) property of being invariant

under addition, i.e., the normed sum of random variables that follow a stable distribu-

tion will tend towards a stable distribution as the number of variables increases (this

corresponds to the central limit theorem without the assumption of finite variance).

The Gaussian distribution is a particular case of a stable distribution, corresponding
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to the case when the stable parameter, α, is equal to 2. When 1 < α < 2, the distri-

bution has undefined variance. We need to point out, that although there is a broad

consensus that a Paretian distribution fits better to the financial data than a Gaussian

distribution, the estimation of α is itself subject to estimation error, thus conferring

model instability.

This important fat-tailed stylized fact of financial time series was also analyzed/ex-

plored in important papers associated to ARCH type (see, e.g., Engle, 1982; Bollerslev,

1986; Nelson, 1991; Zakoian, 1994; Tavares et al., 2008) and stochastic volatility models

(see, e.g., Taylor, 1986; Bai et al., 2003). Even in the specific case of the Portuguese

Stock Market Index (PSI 20 Index), we can find studies that analyze this issue (see,

e.g., Curto et al., 2003; Rege et al., 2013).

Although the empirical evidence is quite compelling, models are still being built

and practitioners are still operating, under the Gaussian distribution assumption. A

relevant example was the edge fund Long Term Capital Management (LTCM), founded

in 1994, which had among its principals Robert C. Merton and Myron S. Scholes (both

Nobel laureates in 1997). The fund took its investment decisions upon risk models

assuming a Gaussian framework. Then, the Asian financial crisis (in 1997) and the

Russian financial crisis (in 1998) simply crashed LTCM. By the end of August 1998, the

LTCM had lost $1, 710 millions in a month, which corresponds to a 8.3σ event (Jorion,

2000). Under the Gaussian assumption this event would occur, on average, once in

40, 000 times the age of the universe! As shown by Jorion (2000), if the risk models

used by LTCM, instead of assuming a Gaussian distribution, assumed a fat-tailed t-

distribution, the odds of such event would be a realistic number of 1 in 8 years (Jorion,

2000).

As we discussed previously, the assumption that returns follow a Gaussian distribu-

tion is violated in reality and it constitutes a major limitation of the MV optimization

model. In response to this limitation, Markowitz (2014) argues that normal distribu-

tions or quadratic utility functions are sufficient but not necessary conditions for the

optimality of MV portfolios. A careful choice on the MV efficient Pareto frontier can

approximately maximize the expected utility for a variety of utility functions. But,

clearly, if these hypotheses do not hold, another type of analysis is required.

Furthermore, the MV optimization model has shown to have a poor OOS perfor-

mance. The most important test to the validity of a portfolio choice model rests on the

portfolios’ OOS performance, commonly evaluated through a rolling window approach

(see Figure 2.5). The MV optimization model peremptorily fails this test. There is

a vast literature showing that the portfolios constructed according the MV optimiza-

tion model are unstable and exhibits a poor OOS performance (see, e.g., Michaud,
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1989; Chopra and Ziemba, 1993; Broadie, 1993; DeMiguel et al., 2009b). As explained

by Michaud (1989), the MV optimization model can be seen as a problem in two stages:

Firstly, the input parameters (expected returns, variances and covariances) are esti-

mated, typically, using historical data, and then the optimization routine is performed.

Thus, the estimation error present in the first stage is “optimized” in the second stage,

leading to the overestimation of some securities’ weights and to the underestimation of

others.

Figure 2.5: Rolling window approach
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/o/o/o /o/o/o
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This figure illustrates a rolling window approach. Following DeMiguel et al. (2009b), the idea is to

fix a certain estimation window length, say with D observations. For each one-period ahead, starting

from t = D+1, the previous D IS observations are used to estimate the input parameters of a certain

model and the portfolio is determined. Then the portfolio is held fixed and its OOS return is observed

in t. The estimation window is then moved forward one period and the portfolio return is observed

in the next OOS period. The process is repeated until exhausting the T periods of time. In the

end, there is a time series of T −D portfolio returns that can be used to compute OOS performance

measures (e.g., the OOS certainty equivalent, the OOS Sharpe ratio...)

When using the MV optimization model in a rolling window approach, the weights

tend to vary a lot from period-to-period, especially if short selling is allowed, due to

the presence of estimation error. In fact, it is not unusual for the weight of a particular

security to vary, in just one period, from one extreme to the opposite extreme in the

domain.

The poor OOS performance of the MV optimization model was exemplary evidenced

in DeMiguel et al. (2009b). The authors evaluated the MV optimization model (while

allowing for short selling) and some of its extensions, across seven empirical datasets,

and showed that none is consistently better (in terms of OOS certainty equivalent,
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OOS Sharpe ratio and turnover) than the equally weighted portfolio.

The equally weighted portfolio (ew portfolio) is the one in which the available

investor’s wealth is divided equally among the available securities, that is:

wi,t =
1

N
, i = 1, . . . , N. (2.15)

This portfolio corresponds to the adage “do not put all the eggs in the same basket”.

As described in Benartzi and Thaler (2001), many investors, pursuing diversification,

use the equally weighted portfolio to allocate their wealth. A well-known real example

of an equally weighted portfolio used as a benchmark index is the Thomson Reuters

Equal Weight Commodity Index (see Figure 2.6).

Figure 2.6: Thomson Reuters Equal Weight Commodity Index
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This figure describes the Thomson Reuters Equal Weight Commodity Index. At the current date,

July 2017, a detailed description of this index can be found at https://financial.thomsonreuters.

com/ .

DeMiguel et al. (2009b) simulate with the US equity market, and conclude that for

a portfolio with 25 securities an estimation window of approximately 3000 months (250

years!) is needed for the MV optimization model to outperform the equally weighted

portfolio. Moreover, as the number of available securities increases, the length of the

necessary estimation window increases accordingly. Arguably, this puzzling result is

due to the absence of estimation error and to the intrinsic high level of diversification of

the ew portfolio. Furthermore, the results presented in DeMiguel et al. (2009b) indicate
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that there is still much to be done aiming to reduce the estimation error present in

several portfolio choice models. The equally weighted portfolio is therefore an excellent

benchmarking strategy, that will be used in Chapter 3 and Chapter 5 of this thesis.

In order to mitigate the error present in the estimation of the various parameters

(expected returns, variances and covariances), several different approaches have been

proposed in the literature. For instance, Chang et al. (1999); Andersen et al. (2001a);

Goldfarb and Iyengar (2003); Ledoit and Wolf (2004a;b); DeMiguel and Nogales (2009)

propose procedures to improve the estimation of the covariance matrix; while Klein

and Bawa (1976); Jorion (1986); Fama and French (1992); Pastor and Stambaugh

(2000); DeMiguel et al. (2017) deal with the estimation of the expected return. In fact,

special attention has been devoted to the estimation of the expected returns, since

its estimation error is much bigger than the one in the covariance matrix (Merton,

1980; Chopra and Ziemba, 1993). Under the Gaussian distribution assumption, Merton

(1980) has shown, for the first time, that the accuracy of the estimation of the expected

return increases only with T , whereas the accuracy of the estimation of the variance

increases with the frequency Q of the observations for a fixed T . Additionally, Chopra

and Ziemba (1993) found that the estimation errors present in the estimation of the

expected returns are over ten times as costly (in terms of certainty equivalent loss) as

the estimation error present in the variances. Accordingly, Kan and Zhou (2007) have

observed that the estimation error of the expected returns have a larger influence on

the OOS performance.

Motivated by the difficulty in computing accurate estimates of the expected re-

turns, Jagannathan and Ma (2003) showed the superior OOS performance of the min-

imum variance portfolio (mv portfolio) with the constraint on non-short selling.

The mv portfolio corresponds to the solution of the following convex QP problem

min
wt∈RN

w⊤
t Σtwt

subject to 1⊤Nwt = 1,

wt ≥ 0N .

(2.16)

Jagannathan and Ma (2003) observed that the estimates of the mean returns are so

noisy that it is preferable to ignore these estimates at all and use only the covariance

matrix. The authors also have shown that not allowing for short selling on the minimum

variance portfolio has a regularizing effect (Jagannathan and Ma, 2003). Moreover, and

contrary to MPT, Baker et al. (2011) have documented and analyzed the so-called low-

volatility anomaly, i.e., stocks with higher variance have historically underperformed

low variance stocks. Thus, the mv portfolio tends to exhibit a good OOS performance.
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For this reason, the mv portfolio is used as a benchmark portfolio in Chapter 3 and

Chapter 5.

2.3 Portfolio choice with higher moments

In order to overcome some limitations of the MPT, in this thesis we explore the poten-

tial of new models for portfolio choice. The line of research is to built models where

return and risk are treated differently in comparison to the MV optimization model.

Driven by skeptical empiricism, we put aside the Gaussian framework and, without

forcing any assumption on the returns’ distribution, we look at higher statistical mo-

ments. In fact, there are several studies suggesting gains if, instead of considering just

the first two moments of the returns’ distribution, higher moments are also included in

the portfolio choice problem (see, e.g., Chunhachinda et al., 1997; Athayde and Flôres,

2004; Maringer and Parpas, 2009; Mencia and Sentana, 2009; Harvey et al., 2010).

We could include the higher moments directly into moment-based objective func-

tions, however, moment-based objective functions do not allow the study of the depen-

dence of the portfolio weights on the initial wealth, while the utility-based framework

allows us to investigate the dependence of the portfolio structure on different levels of

investment (Bamberg and Dorfleitner, 2013). In other words, in general, moment-based

objective functions do not necessarily fit with expected utility, as utility depends on

the initial wealth, while moments of the return distribution do not (see Bamberg and

Dorfleitner, 2013, for further details). Nevertheless, we highlight that a utility-based

framework is fully compatible with a framework based on the moments of returns, if

the investor considers a CRRA-utility (Bamberg and Dorfleitner, 2013). We have thus

decided to formulate the suggested models according to the expected utility maximiza-

tion criteria, where the dependence on the inicial wealth, W , can be studied. But

we would like to make it clear that the suggested models are not restricted to the

normative expected utility theory.

According to the expected utility theory, the standard utility maximization in-

vestor’s problem can be formulated as

max
wt∈RN

Et [u (rp,t+1)] = Et

[
u

(
N∑
i=1

wi,tri,t+1

)]
subject to wt ∈ Pt,

(2.17)

where u(·) is a Von Neumann and Morgenstern (1953) utility function. For example,

assuming that the investor’s preferences are described by a quadratic utility, the MV
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optimization model (see Problem (2.10) and Problem (2.12)) can be stated as

max
wt∈RN

µ⊤
t wt − ξ

2
w⊤

t Σtwt

subject to wt ∈ Pt,
(2.18)

where ξ ≥ 0 represents the investor’s absolute risk aversion parameter.

Instead of considering MV preferences, we follow Brandt et al. (2009) and assume

that the investor maximizes her expected utility, characterized by CRRA preferences.

The main reason why we adopt this particular utility function is the same one that

was stated by Brandt et al. (2009, p. 3421): “the advantage of CRRA utility is

that it incorporates preferences toward higher moments in a parsimonious manner. In

addition, the utility function is twice continuously differentiable, which allows us to use

more efficient numerical optimization algorithms that make use of the analytic gradient

and Hessian of the objective function.” Also, as referred in Aı̈t-Sahalia and Brandt

(2001, p. 1312): “CRRA preferences are by far the most popular objective function

in the portfolio choice literature. This is largely because the investor’s portfolio (and

consumption) policy is proportional to wealth and the value function is homothetic in

wealth.”

Assuming that the investor has CRRA preferences her utility can be given by

u (rp,t+1) =


(1 + rp,t+1)

1−γ

1− γ
if γ > 1,

log(1 + rp,t+1) if γ = 1,

(2.19)

where γ represents the relative risk aversion coefficient (the higher the value of γ the

more risk averse is the investor). Note that the mathematical definition of the CRRA-

utility presented in Equation (2.19) is exactly the same used in Brandt et al. (2009).

However, the standard definition of a CRRA-utility is

g (rp,t+1) =
(1 + rp,t+1)

1−γ − 1

1− γ
, γ > 1. (2.20)

This standard definition ensures that the CRRA-utility, g(·), when γ → 1 converges

to the log-utility3, log(·) (see Figure 2.7). However, notice that g(·) and u(·) represent
exactly the same preferences, since for γ > 1, g(·) = u(·)− 1

1−γ
, i.e., g(·) corresponds to

3Using the L’Hôpital’s rule:
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a positive affine transformation of u(·) (the expected utility form is preserved, see Mas-

Colell et al., 1995, for further details). In this thesis, for the sake of simplicity, we

use u(·), except in the first part of Chapter 5, where we use g(·), just to evidence a

particular pattern.

Figure 2.7: The CRRA utility function for different values of γ
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This figure plots the CRRA utility function, g(·), for different risk aversion parameters (γ =

1, 2, 3, 4 and 5). When γ → 1 the CRRA utility function collapses into log(1 + x).

Now, let us denote

vt (rp,t+1) = Et [rp,t+1 − Et (rp,t+1)]
2 ,

st (rp,t+1) = Et [rp,t+1 − Et (rp,t+1)]
3 ,

kt (rp,t+1) = Et [rp,t+1 − Et (rp,t+1)]
4 ,

(2.21)

as the portfolio variance, skewness and kurtosis at day t + 1, respectively. Then,

the fourth4 order Taylor expansion of the expected utility, Et [u (rp,t+1)], around the

expected return of the portfolio, Et (rp,t+1), is given by

lim
γ→1

(1 + rp,t+1)
1−γ − 1

1− γ
= lim

γ→1

−1 (1 + rp,t+1)
1−γ

−1
log(1 + rp,t+1) = log(1 + rp,t+1).

4The Taylor expansion of the expected utility is commonly truncated at order four, since there are
no theoretical indications, in terms of the investor’s preferences, for the inclusion of higher polynomial
terms (see, e.g., Kimball, 1993; Dittmar, 2002; Martellini and Ziemann, 2010, for further details).
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Et [u (rp,t+1)] ≈ u [Et (rp,t+1)] +
1

2!
u′′ [Et (rp,t+1)] vt (rp,t+1)

+
1

3!
u′′′ [Et (rp,t+1)] st (rp,t+1)

+
1

4!
u′′′′ [Et (rp,t+1)] kt (rp,t+1) .

(2.22)

Defining

θ1 [Et (rp,t+1)] = u [Et (rp,t+1)] , θ2 [Et (rp,t+1)] = −u′′ [Et (rp,t+1)]

2
,

θ3 [Et (rp,t+1)] =
u′′′ [Et (rp,t+1)]

6
, θ4 [Et (rp,t+1)] = −u′′′′ [Et (rp,t+1)]

24
,

(2.23)

where
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u [Et (rp,t+1)] =


[1 + Et (rp,t+1)]

1−γ

1− γ
if γ > 1,

log [1 + Et (rp,t+1)] if γ = 1,

u′′ [Et (rp,t+1)] =


−γ [1 + Et (rp,t+1)]

−(γ+1) if γ > 1,

− 1

[1 + Et (rp,t+1)]
2 if γ = 1,

u′′′ [Et (rp,t+1)] =


γ(γ + 1) [1 + Et (rp,t+1)]

−(γ+2) if γ > 1,

2

[1 + Et (rp,t+1)]
3 if γ = 1,

u′′′′ [Et (rp,t+1)] =


−γ(γ + 1)(γ + 2) [1 + Et (rp,t+1)]

−(γ+3) if γ > 1,

− 6

[1 + Et (rp,t+1)]
4 if γ = 1,

(2.24)

we can rewrite Equation (2.22) as

Et [u (rp,t+1)] ≈ θ1 [Et (rp,t+1)]− θ2 [Et (rp,t+1)] vt (rp,t+1)

+ θ3 [Et (rp,t+1)] st (rp,t+1)− θ4 [Et (rp,t+1)] kt (rp,t+1) .
(2.25)

In Equation (2.25), vt (rp,t+1) can be computed according Equation (2.7). In turn,

st (rp,t+1) can be computed as a third moment tensor and can be visualized as a N×N×
N cube in the three-dimensional space. It is possible to transform the skewness tensor

into a N × N2 matrix (see Athayde and Flôres, 2004, for further details). Following

this idea st (rp,t+1) can be computed as

st (rp,t+1) = Et [rp,t+1 − Et (rp,t+1)]
3 = w⊤

t Φt(wt ⊗ wt), (2.26)

where ⊗ denotes the Kronecker product and Φt is the coskewness matrix. The coskew-
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ness matrix of dimension N ×N2 can be represented by N Ai,t matrixes of dimensions

N ×N such that

Φt = [ A1,t | A2,t | · · · | AN,t ], (2.27)

where

Ai,t =



ai11,t ai12,t · · · ai1N,t

ai21,t ai22,t · · · ai2N,t

...
...

. . .
...

aiN1,t aiN2,t · · · aiNN,t


, (2.28)

and each element, aijk,t, is given by

aijk,t =
1

t

t∑
τ=1

(ri,τ − µi,τ )(rj,τ − µj,τ )(rk,τ − µk,τ ), (2.29)

with i, j, k = 1, . . . , N .

Analogously, kt (rp,t+1), can be computed as

kt (rp,t+1) = Et [rp,t+1 − Et (rp,t+1)]
4 = w⊤

t Ψt(wt ⊗ wt ⊗ wt), (2.30)

where Ψt is the cokurtosis matrix. The coskurtosis matrix corresponds to N2 matrixes

Bij,t of dimension N ×N such that

Ψt = [B11,t | B12,t | · · · | B1N,t | B21,t | B22,t | · · · | B2N,t | · · · | BN1,t | BN2,t | · · · | BNN,t] ,

(2.31)

with
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Bij,t =



bij11,t bij12,t · · · bij1N,t

bij21,t bij22,t · · · bij2N,t

...
...

. . .
...

bijN1,t bijN2,t · · · bijNN,t


, (2.32)

and where each element, bijkl,t, is given by

bijkl,t =
1

t

t∑
τ=1

(ri,τ − µi,τ )(rj,τ − µj,τ )(rk,τ − µk,τ )(rl,τ − µl,τ ), (2.33)

with i, j, k, l = 1, . . . , N .

According to the objective function given by Equation (2.25), we can formulate the

investor’s problem with higher moments as

max
wt∈RN

θ1 [Et (rp,t+1)]− θ2 [Et (rp,t+1)] vt (rp,t+1)

+θ3 [Et (rp,t+1)] st (rp,t+1)− θ4 [Et (rp,t+1)] kt (rp,t+1)

subject to wt ∈ Pt.

(2.34)
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Chapter 3

Efficient skewness/semivariance

portfolios

3.1 Introduction

With non-normal return distributions, the use of a downside risk measure is more

suitable than the traditional use of the variance (Nawrocki, 1999). Roy (1952) was the

first author to use a downside risk measure in portfolio selection, in the form of a “safety

first” rule, that measures the probability of outcomes falling below a predetermined

target return (Sing and Ong, 2000). Markowitz (1959) recognised the importance of

Roy’s work, arguing that there are more plausible measures of risk than the variance,

and proposed the use of a below-mean semivariance or a target return semivariance.

These metrics belong to a more general family of downside risk measures known as lower

partial moments (Bawa, 1975; Fishburn, 1977). Quirk and Saposnik (1962) confirmed

the theoretical superiority of the semivariance versus the variance, while Ang and Chua

(1979) showed the superiority of the target return semivariance relative to the below-

mean semivariance. However, the semivariance is seldom used in portfolio selection

problems due to the endogeneity of the cosemivariance.

On the grounds of the semivariance being a more plausible measure of risk than the

variance and the investor’s preferences and skewness being positively related (see, e.g.,

Arditti, 1975; Kraus and Litzenberger, 1976; Harvey and Siddique, 2000), we suggest a

direct analysis of the efficient tradeoff between skewness and semivariance by means of

a biobjective optimization problem. This methodology is flexible, in the sense that the

investor is free to choose the target return, required for the semivariance computation.

Another strong point is that skewness is interpreted as a third moment tensor and

the endogeneity issue of the cosemivariance matrix is addressed explicitly. Given the

endogeneity of the cosemivariance matrix, we use a derivative-free algorithm (based
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on direct multisearch (DMS)) to obtain the solution of the biobjective optimization

problem. DMS (see Appendix B) is a class of methods used in multiobjective opti-

mization (MOO) problems (see Appendix B) that does not use derivatives and does

not aggregate or scalarize any of the objective function components. It essentially

generalizes all direct-search methods of directional type from single to MOO. For a

complete description of DMS see the algorithmic framework in Custódio et al. (2011).

The contribution of this chapter is therefore twofold. First, we suggest a skew-

ness/semivariance biojective model that allows the investor to directly analyze the

efficient tradeoff between skewness and semivariance (regardless of the target return

used in the semivariance calculation). Second, through a derivative-free algorithm we

overcome the endogeneity problem of the cosemivariance matrix.

The empirical work is conducted on four datasets collected from the Fama/French

online data library. First, the Pareto frontiers on the skewness/semivariance space

are computed using three different target returns, corresponding to the returns of the

ms, the mv and the ew portfolios, respectively. Then, an extensive OOS performance

analysis is implemented on three efficient skewness/semivariance portfolios from the

IS Pareto frontiers: the portfolios with the maximum skewness per semivariance ratio,

with the maximum Sharpe ratio and with the maximum Sortino ratio. The OOS

performance is measured in terms of skewness per semivariance ratio, Sharpe ratio

and Sortino ratio. We conclude that the efficient portfolios exhibit a competitive OOS

performance compared with the three benchmark portfolios. One interesting result is

that in the four datasets, at least one of the three chosen efficient skewness/semivariance

portfolios consistently outperform the ew portfolio in terms of Sharpe ratio, which is

known to be difficult to achieve (DeMiguel et al., 2009b).

The rest of the chapter is organized as follows. In Section 3.2 it is shown that the

expected utility of a risk averse investor is an increasing function of the skewness and

a decreasing function of the semivariance. Section 3.3 presents the proposed model.

Section 3.4 shows the empirical results and, finally, Section 3.5 summarizes the main

findings and discusses future research.

3.2 Investor expected utility

3.2.1 Expected utility based on skewness

Let u(·) be the utility function of a typical investor. If instead of a fourth order Taylor

expansion (as considered in Equation (2.22)) of the expected utility, Et [u (rp,t+1)],

around the expected return of the portfolio, Et (rp,t+1), we consider the third order

approximation of the expected utility, as in Joro and Na (2006), then
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Et [u (rp,t+1)] ≈ u [Et (rp,t+1)] +
1

2!
u′′ [Et (rp,t+1)] vt (rp,t+1)

+
1

3!
u′′′ [Et (rp,t+1)] st (rp,t+1) .

(3.1)

Since u′′′ [Et (rp,t+1)] ≥ 0 (see Arditti (1967) and Kraus and Litzenberger (1976)), the

expected utility, Et [u (rp,t+1)], of a risk averse investor is an increasing function of

skewness, st (rp,t+1), which is consistent with the desirable properties for an investor’s

utility function (u′(·) > 0, u′′(·) < 0 and u′′′(·) > 0) suggested by Arrow (1971).

3.2.2 Expected utility based on semivariance

The semivariance can be defined as

svR,t(rp,t+1) = Et

{
[min(rp,t+1 −R, 0)]2

}
, (3.2)

where R represents a target return and should be independent of the probability dis-

tribution being ranked (Ang and Chua, 1979). If instead of the variance, we consider

the semivariance, then the utility function should have a kink at the reference point

R. On the basis of Koekebakker and Zakamouline (2009), the utility function has the

form

u(rp,t+1) =

 u+(rp,t+1) if rp,t+1 ≥ R,

u−(rp,t+1) if rp,t+1 < R,
(3.3)

where u+(·) is the utility function for gains and u−(·) is the utility function for losses.

This is in accordance with the descriptive framework proposed by Kahneman and

Tversky (1979). Considering the second order Taylor expansion approximation of

Et [u (rp,t+1)], around the target return, R, we have

Et [u (rp,t+1)] ≈


u+(R) + u′

+(R)Et [(rp,t+1 −R)] +
1

2
u′′
+(R)Et

[
(rp,t+1 −R)2

]
if rp,t+1 ≥ R,

u−(R) + u′
−(R)Et [(rp,t+1 −R)] +

1

2
u′′
−(R)Et

[
(rp,t+1 −R)2

]
if rp,t+1 < R.

(3.4)
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If the investor is risk averse in the domain of losses (the utility function for losses

is concave, u′′
−(·) < 0), then the expected utility, Et [u (rp,t+1)], is a decreasing function

of semivariance, svR,t(rp,t+1). Again, this is consistent with the desirable properties for

an investor’s utility function (u′(·) > 0, u′′(·) < 0 and u′′′(·) > 0).

3.3 The skewness/semivariance biobjective model

To overcome the limitation of the MV models, some researchers used downside risk

measures, which only gauge the negative deviations from a reference return level. One

famous downside risk measure was introduced in the “safety first” criterion (Roy, 1952).

Other downside risk measures were proposed, for example, in Bawa (1975); Fishburn

(1977); Harlow and Rao (1989); Nawrocki (1999). See Nawrocki (1999) for a survey on

downside risk measures.

Markowitz (1959) favored one of the best-known downside risk measures: the semi-

variance of returns. The semivariance can be handled by considering an asymmetric

cosemivariance matrix (Hogan and Warren, 1974) or considering a symmetric and ex-

ogenous cosemivariance matrix (Estrada, 2008). Another way of handling the semi-

variance is outside the stochastic environment, considering the fuzzy set environment

as in Huang (2008).

Following Markowitz (1959), the endogenous cosemivariance matrix is the approach

adopted here. Therefore the exact estimation of the semivariance of a portfolio,

svRt (rp,t+1), is obtained as

svRt (rp,t+1) =
N∑
i=1

N∑
j=1

wi,twj,tcsij,t = w⊤
t ΣR,t(wt)wt, (3.5)

where ΣR,t is the cosemivariance matrix in which each entry csij,t is given by

csij,t =
1

t− 1

∑
k∈U

(ri,k −R)(rj,k −R), (3.6)

with i, j = 1, . . . , N , and

U = {τ | rp,τ < R} ⊆ {1, . . . , t− 1} . (3.7)

The cosemivariance matrix is endogenous in the sense that a change in the portfolio’s
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weights affects the periods when the portfolio underperforms the benchmark, which in

turn affects the elements of the cosemivariance matrix (Estrada, 2008). Notice that the

target return, R, is a parameter that can be freely chosen by the investor, according

to her own preferences.

There is an intuitive explanation for why the skewness is important for the in-

vestor. Clearly, the investor has a preference for positive skewness in order to have

higher probability for extreme profit values and limited losses. Alderfer and Bierman

(1970) showed empirically that investors prefer positive skewness, even if this posi-

tive skewness is associated with a lower expected return. Arditti (1975), Kraus and

Litzenberger (1976) and Harvey and Siddique (2000) have shown theoretically that in-

vestors should prefer positive skewness. Moreno and Rodŕıguez (2009) showed that the

coskewness is taken into account by funds managers, representing an important factor

in the selection of securities. However, skewness is often neglected in the performance

evaluation literature, possibly due to computational difficulties (Joro and Na, 2006).

In this study, we propose the simultaneous consideration of the two investor’s ob-

jectives

• Maximizing the portfolio skewness: st(rp,t+1) = w⊤
t Φt(wt ⊗ wt),

• Minimizing the portfolio semivariance: svRt (rp,t+1) = w⊤
t ΣR,t(wt)wt,

over the set of feasible portfolios. In this case, the skewness/semivariance biobjective

optimization model can be written as

max
wt∈RN

w⊤
t Φt(wt ⊗ wt)

min
wt∈RN

w⊤
t ΣR,t(wt)wt

subject to wt ∈ Pt.

(3.8)

By solving Problem (3.8), we identify a skewness/semivariance Pareto frontier. A

portfolio in this frontier is such that there exists no other feasible one which simulta-

neously presents a higher skewness and a lower semivariance. Given such an efficient

frontier and a specific semivariance level, an investor may directly find the answers to

the questions of what is the optimal (higher) skewness level that can be chosen and

what are the portfolios leading to such a skewness level. Problem (3.8) has two ob-

jective functions, a linear constraint and N inequality constraints. The first objective,

w⊤
t Φt(wt⊗wt), is nonlinear but smooth. However, the second objective, w⊤

t ΣR,t(wt)wt,

is nonlinear and nonsmooth due to the endogeneity problem on the cosemivariance ma-

trix, ΣR,t(wt). We have thus decided to solve the problem through the DMS algorithm
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(see Appendix B, for a description of DMS). This derivative-free algorithm was pre-

viously and for the first time used in the portfolio selection framework for solving a

cardinality constrained problem (Brito and Vicente, 2014).

The skewness/semivariance biobjective model can be extensively explored by the

investor. It is clear that the gains of this approach in relation to the MV one are, in a

great extent, a function of the degree of asymmetry in the distribution of the portfolio

returns. Given this asymmetric property, a careful choice on a skewness/semivariance

efficient frontier can approximately maximize the expected utility for a variety of utility

functions, as we demonstrate in Section 3.2. Moreover, the proposed model is quite

flexible since it makes use of a general definition of the semivariance, by not restricting

the target return (in the related literature, the target return is often set to the mean of

the distribution). In fact, giving her specific preferences, the investor can choose this

parameter freely.

3.4 Empirical analysis

The empirical analysis is conducted on four datasets collected from the Fama/French

data library, which is publicly available (at the current date, July 2017) from the site:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

The datasets are constructed according to different criteria, and each one is composed

by portfolios, rebalanced annually at the end of June.

The SBM6 dataset corresponds to six portfolios based on size and book to market

ratio. These portfolios are the intersections of 2 portfolios based on size (market equity,

ME) and 3 portfolios based on the ratio of book equity to market equity (BE/ME).

The FF10 dataset corresponds to 10 industry portfolios.

The SOP25 dataset corresponds to 25 portfolios based on size and operating prof-

itability. These portfolios, are the intersections of 5 portfolios based on size (market

equity, ME) and 5 portfolios based on operating profitability (OP).

The BMOP25 dataset corresponds to 25 portfolios formed on book-to-market and

operating profitability. These portfolios, are the intersections of 5 portfolios formed

on the ratio of book equity to market equity (BE/ME) and 5 portfolios formed on

profitability (OP).

The overall sample for all four datasets is formed by monthly data from 07/1964 to

06/2014 (600 months). Table 3.1 reports some descriptive statistics for each dataset.

The monthly continuous returns showed, on average, negative skewness and a kurtosis

well above that of normal distribution. The application of the Jarque-Bera test for

normality to all the portfolios of each dataset (SBM6, FF10, SOP25 and BMOP25)
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showed that the null hypothesis of normality was rejected with p-values lower than 1%.

Table 3.1: Descriptive statistics

Dataset Mean Variance Skewness Kurtosis

SBM6 0.0105 0.0035 -0.5401 6.3148
FF10 0.0103 0.0043 -0.4678 6.5228
SOP25 0.0098 0.0034 -0.6280 6.3244
BMOP25 0.0114 0.0039 -0.5324 6.6087

This table reports some descriptive statistics for the four datasets collected from the Fama/French data

library. The reported values of skewness and kurtosis concern to the third and fourth standardized

moments, respectively. These statistics are averaged cross-sectionally.

3.4.1 IS analysis

We applied the dms5 solver (see Appendix B) to determine the Pareto frontier of the

skewness/semivariance biobjective optimization model (solution of Problem (3.8)) for

three different values of R: Rms, the return of the maximum Sharpe ratio portfolio6 (so-

lution of Problem (2.13)); Rmv, the return of the minimum variance portfolio (solution

of Problem (2.16)); and Rew, the return of the ew portfolio (given by Equation (2.15)).

In this empirical exercise, we choose these three different values for the target return,

R, in order to show the robustness of the model. However, this parameter can be freely

chosen according to the specific preferences of the investor.

Figures 3.1, 3.2 and 3.3, contain the plots of the Pareto frontiers, computed using

the overall sample period, for the SBM6 dataset, with target returns given by Rms, Rmv

and Rew, respectively. Similarly, we obtained the Pareto frontiers for the remaining

datasets (we do not report all the plots since similar patterns were found). For each

dataset, the efficient skewness/semivariance frontier differs according to the choice of

the target return, R, emphasizing the importance of this parameter in the proposed

approach.

As it is clear from the visualization of the plots, DMS was able to determine the

Pareto frontiers for the biobjective skewness/semivariance optimization problems (so-

lutions of Problem (3.8)) for all the instances considered. Thus, this methodology offers

a direct way for analyzing the efficient tradeoff between skewness and semivariance.

5This solver is public and available (at the current date, July 2017) by request at http://www.

mat.uc.pt/dms/.
6We considered as a risk-free asset the 90-day Treasury-Bills US. Such data is public and made

available (at the current date, July 2017) by the Federal Reserve, at the site www.federalreserve.

gov.
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Figure 3.1: SBM6 skewness/semivariance efficient frontier, with Rms as the target
return for semivariance computation

This figure shows the plot of the efficient skewness/semivariance frontier for the SBM6 dataset and

considering as target return Rms. The horizontal axis corresponds to the portfolio semivariance. The

vertical axis corresponds to the portfolio skewness.

Figure 3.2: SBM6 skewness/semivariance efficient frontier, with Rmv as the target
return for semivariance computation

This figure shows the plot of the efficient skewness/semivariance frontier for the SBM6 dataset and

considering as target return Rmv. The horizontal axis corresponds to the portfolio semivariance. The

vertical axis corresponds to the portfolio skewness.

3.4.2 OOS analysis

The validation of a new methodology for portfolio selection must be based on an

OOS performance analysis. This section deals with an extensive OOS analysis of the

efficient skewness/semivariance portfolios, constructed according to the proposed model

in Section 3.3, and compared with each of the benchmark portfolios: the ms portfolio

(see Problem (2.13)), the mv portfolio (see Problem (2.16)) and the ew portfolio (see
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Figure 3.3: SBM6 skewness/semivariance efficient frontier, with Rew as the target
return for semivariance computation

This figure shows the plot of the efficient skewness/semivariance frontier for the SBM6 dataset and

considering as target return Rew. The horizontal axis corresponds to the portfolio semivariance. The

vertical axis corresponds to the portfolio skewness.

Equation (2.15)).

The OOS analysis relies on a rolling window approach (see Figure 2.5). We con-

sidered an estimation window of 120 months, with an initial estimation period from

07/1964 to 06/1974. The evaluation period comprised 480 months, from 07/1974 to

06/2014. For each estimation window, the benchmark portfolios (the ms portfolio,

the mv portfolio and the ew portfolio) were computed. Then, the Pareto frontiers of

the skewness/semivariance biobjective optimization Problem (3.8) were determined,

considering Rms, Rmv and Rew as target returns for the semivariance computation. Fi-

nally, three efficient skewness/semivariance portfolios in each of the IS Pareto frontiers

were selected. The first one, wSSR, was the portfolio that maximizes a skewness per

semivariance ratio (SSR)

SSR =
w⊤

SSRΦ(wSSR ⊗ wSSR)

w⊤
SSRΣR(wSSR)wSSR

. (3.9)

The second one, wSR, was the portfolio that maximizes the Sharpe ratio (SR)

SR =
µ⊤wSR − rf√
w⊤

SRΣwSR

. (3.10)

The third one, wSOR, was the portfolio that maximizes the Sortino ratio (SOR)
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SOR =
µ⊤wSOR −R√

w⊤
SORΣR(wSOR)wSOR

. (3.11)

The numerator of these ratios for the chosen portfolios may be negative. Thus, in

order to have correct rankings, the denominators are modified as proposed by Israelsen

(2005). Finally, each portfolio is held fixed and its returns were observed over the next

month. The estimation window was then moved forward 1 month, and the returns

were calculated for the next month of the evaluation period. The process was thus

repeated until the end of the evaluation period was reached.

Performance measured by a skewness per semivariance ratio

We computed an OOS skewness per semivariance ratio, defined as the sample skewness,

ŝ, divided by the sample semivariance, ŝvR:

ŜSR =
ŝ

ŝvR
. (3.12)

Then, we computed the bootstrap p-values of the difference between the skewness per

semivariance ratio of each efficient skewness/semivariance portfolio and those of the

benchmarks. Since none of the differences were statistically significant, we decided do

not report these results here. Once the computed skewness per semivariance ratios are

negative (we are in the presence of negative skewness), in order to achieve a correct

rank of the portfolios, it is necessary to refine the ratios. We modified the denomina-

tor according the methodology proposed by Israelsen (2005). Thus we computed the

refined skewness per semivariance ratio as

ŜSRref =
ŝ

ŝv
ŝ/abs(ŝ)
R

, (3.13)

where abs(·) is the absolute value function.

Table 3.2 reports the refined skewness per semivariance ratios, when we choose as

a target return the maximum Sharpe ratio portfolio return (Rms). We can see that the

efficient skewness/semivariance portfolios wSR and wSOR have a higher refined skewness

per semivariance ratio than two (thems and the ew portfolios) of the three benchmarks

portfolios, for all the datasets. For the datasets with the highest number of securities

(SOP25 and BMOP25) all the efficient skewness/semivariance portfolios (wSSR, wSR
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and wSOR) have a higher refined skewness per semivariance ratio than two (the ms

and the ew portfolios) of the three benchmarks portfolios. The same pattern is found

when we choose as a target return the minimum variance portfolio return (Rmv) (see

Table 3.3) and the ew portfolio return (Rew) (see Table 3.4).

These results suggests the robustness of the efficiency provided by the skewness/

semivariance model.

Table 3.2: Portfolio refined skewness per semivariance ratios for the target return Rms

Strategy SBM6 #Rank FF10 #Rank SOP25 #Rank BMOP25 #Rank

ms portfolio -179.1711 4 -63.4597 4 -193.5598 5 -204.7025 5
mv portfolio -134.5284 1 -8.8977 1 -76.8224 1 -135.2051 1
ew portfolio -246.1647 6 -272.9040 6 -278.8570 6 -298.5436 6

Efficient skewness/semivariance portfolios

wSSR -216.9560 5 -90.9043 5 -151.9139 4 -182.6608 4
wSR -151.7857 2 -28.1328 2 -116.4111 2 -166.0968 2
wSOR -171.6702 3 -57.4604 3 -128.0863 3 -175.9555 3

This table reports, for each dataset, the monthly refined skewness per semivariance ratios using as

benchmark portfolios the maximum Sharpe ratio portfolio (ms portfolio), the minimum variance

portfolio (mv portfolio) and the equally weighted portfolio (ew portfolio). All the monthly refined

skewness per semivariance ratios values are multiplied by a factor of 109. The target return used in the

computation of the semivariance is the maximum Sharpe ratio portfolio return (Rms). This table also

reports the monthly refined skewness per semivariance ratios for the efficient skewness/semivariance

portfolios referred in Section 3.4.2: the maximum skewness per semivariance ratio portfolio (wSSR),

the maximum Sharpe ratio portfolio (wSR) and the maximum Sortino ratio portfolio (wSOR). The

correct rank of each portfolio according to the refined skewness per semivariance ratios is also reported.

Performance measured by the Sharpe ratio

Given the time series of monthly OOS returns, for each portfolio we computed the OOS

Sharpe ratio, defined as the sample mean of excess returns (over the risk-free asset),

m̂, divided by its sample standard deviation, σ̂:

ŜR =
m̂

σ̂
. (3.14)

The results are presented in Table 3.5. This table also reports the bootstrap p-

values (Ledoit and Wolf, 2008) for the statistical significance of the difference between

the Sharpe ratios of the benchmarks and the efficient skewness/semivariance portfolios.

For the SBM6 dataset, independently of the target return used in the computation of

the semivariance (Rms, Rmv or Rew), the efficient skewness/semivariance portfolio wSOR
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Table 3.3: Portfolio refined skewness per semivariance ratios for the target return Rmv

Strategy SBM6 #Rank FF10 #Rank SOP25 #Rank BMOP25 #Rank

ms portfolio -152.8876 4 -62.8689 4 -174.6185 5 -182.4181 4
mv portfolio -112.5562 1 -8.7818 1 -68.1002 1 -118.4064 1
ew portfolio -209.8894 6 -270.8331 6 -252.9930 6 -265.9876 6

Efficient skewness/semivariance portfolios

wSSR -185.5340 5 -92.3814 5 -141.7455 4 -184.6669 5
wSR -129.6049 2 -28.5004 2 -106.5681 2 -156.2354 2
wSOR -150.6649 3 -51.6755 3 -115.8668 3 -166.2062 3

This table reports, for each dataset, the monthly refined skewness per semivariance ratios using as

benchmark portfolios the maximum Sharpe ratio portfolio (ms portfolio), the minimum variance

portfolio (mv portfolio) and the equally weighted portfolio (ew portfolio). All the monthly refined

skewness per semivariance ratios values are multiplied by a factor of 109. The target return used in

the computation of the semivariance is the minimum variance portfolio return (Rmv). This table also

reports the monthly refined skewness per semivariance ratios for the efficient skewness/semivariance

portfolios referred in Section 3.4.2: the maximum skewness per semivariance ratio portfolio (wSSR),

the maximum Sharpe ratio portfolio (wSR) and the maximum Sortino ratio portfolio (wSOR). The

correct rank of each portfolio according to the refined skewness per semivariance ratios is also reported.

Table 3.4: Portfolio refined skewness per semivariance ratios for the target return Rew

Strategy SBM6 #Rank FF10 #Rank SOP25 #Rank BMOP25 #Rank

ms portfolio -161.6179 4 -65.4694 4 -180.9697 5 -185.5512 4
mv portfolio -119.8545 1 -9.2942 1 -71.0221 1 -120.5573 1
ew portfolio -221.9983 6 -279.9076 6 -261.7112 6 -270.2061 6

Efficient skewness/semivariance portfolios

wSSR -195.3805 5 -96.0909 5 -146.9785 4 -202.0638 5
wSR -135.8992 2 -29.6964 2 -109.3740 2 -155.2521 2
wSOR -153.7604 3 -60.1979 3 -123.1379 3 -176.1691 3

This table reports, for each dataset, the monthly refined skewness per semivariance ratios using as

benchmark portfolios the maximum Sharpe ratio portfolio (ms portfolio), the minimum variance

portfolio (mv portfolio) and the equally weighted portfolio (ew portfolio). All the monthly refined

skewness per semivariance ratios values are multiplied by a factor of 109. The target return used in

the computation of the semivariance is the equally weighted portfolio return (Rew). This table also

reports the monthly refined skewness per semivariance ratios for the efficient skewness/semivariance

portfolios referred in Section 3.4.2: the maximum skewness per semivariance ratio portfolio (wSSR),

the maximum Sharpe ratio portfolio (wSR) and the maximum Sortino ratio portfolio (wSOR). The

correct rank of each portfolio according to the refined skewness per semivariance ratios is also reported.

has a higher Sharpe ratio than all the three benchmark portfolios (the ms portfolio, the

mv portfolio and the ew portfolio). For all the target returns (Rms, Rmv and Rew), the

difference between the Sharpe ratios of the efficient skewness/semivariance portfolio

wSOR and the ew portfolio is statistically significant (at the 5% level).
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Table 3.5: OOS Sharpe ratios

Benchmark Strategy SBM6 FF10 SOP25 BMOP25

ms portfolio 0.2572 0.2736 0.2113 0.2993
mv portfolio 0.2480 0.3188 0.2130 0.2935
ew portfolio 0.2235 0.2115 0.1976 0.2357

Efficient skewness/semivariance portfolios

wSSR 0.2541 0.2689 0.2041 0.2624
(0.8941)ms(0.7353)mv(0.1459)ew (0.9201)ms(0.1139)mv(0.1628)ew (0.7463)ms(0.6315)mv(0.7431)ew (0.1586)ms(0.2474)mv(0.2559)ew

Rms wSR 0.2472 0.3078 0.2071 0.3151
(0.5155)ms(0.9471)mv(0.1858)ew (0.3477)ms(0.5874)mv(0.0230)ew (0.8352)ms(0.7041)mv(0.6054)ew (0.2279)ms(0.1418)mv(0.0000)ew

wSOR 0.2640 0.2829 0.2125 0.3019
(0.7343)ms(0.3846)mv(0.0320)ew (0.8065)ms(0.2142)mv(0.0732)ew (0.9481)ms(0.9840)mv(0.4366)ew (0.8876)ms(0.6927)mv(0.0030)ew

wSSR 0.2539 0.2676 0.2018 0.2596
(0.8761)ms(0.7430)mv(0.1429)ew (0.8921)ms(0.1074)mv(0.1698)ew (0.6813)ms(0.5395)mv(0.8391)ew (0.1339)ms(0.1974)mv(0.3071)ew

Rmv wSR 0.2485 0.3057 0.2077 0.3109
(0.5845)ms(0.9640)mv(0.1748)ew (0.3786)ms(0.5071)mv(0.0212)ew (0.8571)ms(0.7353)mv(0.5659)ew (0.3676)ms(0.2174)mv(0.0000)ew

wSOR 0.2629 0.2842 0.2097 0.3051
(0.7702)ms(0.3766)mv(0.0320)ew (0.8002)ms(0.2169)mv(0.0610)ew (0.9386)ms(0.8596)mv(0.5052)ew (0.7113)ms(0.5451)mv(0.0000)ew

wSSR 0.2540 0.2658 0.2004 0.2566
(0.8872)ms(0.7522)mv(0.1494)ew (0.8656)ms(0.1051)mv(0.1850)ew (0.6324)ms(0.5073)mv(0.8941)ew (0.0979)ms(0.1694)mv(0.3677)ew

R1/N wSR 0.2488 0.3050 0.2057 0.3127
(0.6099)ms(0.9365)mv(0.1688)ew (0.3921)ms(0.4835)mv(0.0240)ew (0.7802)ms(0.6611)mv(0.6547)ew (0.2814)ms(0.1948)mv(0.0000)ew

wSOR 0.2634 0.2806 0.2099 0.3073
(0.7642)ms(0.3876)mv(0.0280)ew (0.8661)ms(0.1942)mv(0.0856)ew (0.9540)ms(0.8601)mv(0.5097)ew (0.6142)ms(0.4953)mv(0.0000)ew

This table reports, the monthly Sharpe ratios using as benchmark portfolios the maximum Sharpe ra-

tio portfolio (ms portfolio), the minimum variance portfolio (mv portfolio) and the equally weighted

portfolio (ew portfolio). This table also reports the monthly Sharpe ratios for the efficient skew-

ness/semivariance portfolios referred in Section 3.4.2: the maximum skewness per semivariance ratio

portfolio (wSSR), the maximum Sharpe ratio portfolio (wSR) and the maximum Sortino ratio portfolio

(wSOR). The computation of the semivariance is carried out using three different values for the target

return: the maximum Sharpe ratio portfolio return (Rms), the minimum variance portfolio return

(Rmv) and the equally weighted portfolio return (Rew). In parenthesis are the bootstrap p-values of

the difference between the Sharpe ratio of each efficient skewness/semivariance portfolio from those of

the benchmarks: from the ms portfolio, from the mv portfolio and from the ew portfolio; respectively

in the first, second and third parenthesis. These p-values are computed according the Ledoit and

Wolf (Ledoit and Wolf, 2008) methodology.

In the case of the FF10 dataset, for all the target returns (Rms, Rmv and Rew), the

efficient skewness/semivariance portfolios wSR and wSOR have a higher Sharpe ratio

than two (the ms portfolio and the ew portfolio) of the three benchmark portfolios.

The difference between the Sharpe ratio of the efficient skewness/semivariance portfolio

wSR and the benchmark ew portfolio is always statistically significant (at the 5% level).

We do not observe statistically significant differences, between the Sharpe ratios

of the efficient skewness/semivariance portfolios and the benchmark portfolios, for the

SOP25 dataset. However, we can see that when the semivariance is computed using as

a target return Rms, the efficient skewness/semivariance portfolio wSOR has a higher

Sharpe ratio than two (the ms portfolio and the ew portfolio) of the three benchmark

portfolios.

Finally, for the BMOP25 dataset, independently of the target return used in the

computation of the semivariance, the efficient skewness/semivariance portfolios wSR

and wSOR have a higher Sharpe ratio than all the benchmark portfolios. The differences
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between the Sharpe ratios of these two efficient skewness/semivariance portfolios (wSR

and wSOR) and the benchmark ew portfolio are always statistically significant (at the

1% level).

These results show that the efficient skewness/semivariance portfolios are consis-

tently competitive, and often superior, comparatively to the benchmark portfolios. The

efficient skewness/semivariance portfolios consistently outperform the ew benchmark

portfolio. To achieve a higher Sharpe ratio, this analysis suggests that the investor

should choose a target return (for the computation of the semivariance) according to

the specific nature of the data.

Performance measured by the Sortino ratio

We computed the OOS Sortino ratio, defined as the sample mean of OOS excess returns

(over the target return R), m̂R, divided by their sample standard semideviation, σ̂R:

ŜOR =
m̂R

σ̂R

. (3.15)

Then, we computed the bootstrap p-values of the difference between the Sortino ratio

of each efficient skewness/semivariance portfolio from those of the benchmarks. Since

none of the differences were statistically significant, we decided not to report these

results here. This data present negative excess returns and in order to achieve a

correct rank of the considered portfolios, we modified the denominator according with

the methodology proposed by Israelsen (2005). The refined Sortino ratio is computed

as

ŜORref =
m̂R

σ̂
m̂R/abs(m̂R)
R

, (3.16)

where abs(·) is the absolute value function.

Table 3.6 reports the refined Sortino ratios when we choose as a target return for the

computation of the semivariance, the maximum Sharpe ratio portfolio return (Rms).

We can see that for the SBM6 dataset, the efficient skewness/semivariance portfolios

wSSR and wSOR have a higher refined Sortino ratio than all the benchmark portfolios.

In the case of the FF10 dataset, the efficient skewness/semivariance portfolios have a

higher refined Sortino ratio than one (the mv portfolio) of the benchmark portfolios.

The efficient skewness/semivariance portfolio wSOR, in the SOP25 dataset, has a higher

refined Sortino ratio than two (the mv portfolio and the ew portfolio) of the three
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benchmark portfolios. For the BMOP25 dataset, the efficient skewness/semivariance

portfolio wSR has the highest refined Sortino ratio among all the portfolios.

Table 3.6: Portfolio refined Sortino ratios for the target return Rms

Strategy SBM6 #Rank FF10 #Rank SOP25 #Rank BMOP25 #Rank

ms portfolio -1,850.8734 3 26,295.0701 1 -1,797.3958 1 -1,385.5948 2
mv portfolio -2,345.3327 5 -386.2736 6 -1,985.5274 6 -2,121.3854 5
ew portfolio -2,586.1178 6 -202.7054 2 -1,883.3336 3 -2,762.0948 6

Efficient skewness/semivariance portfolios

wSSR -1,681.2084 1 -269.2545 4 -1,916.3469 4 -1,792.7265 4
wSR -2,276.6401 4 -203.2169 3 -1,960.5951 5 -1,261.9732 1
wSOR -1,748.2885 2 -281.5840 5 -1,831.0087 2 -1,428.1312 3

This table reports, for each dataset, the monthly refined Sortino ratios using as benchmark portfolios

the maximum Sharpe ratio portfolio (ms portfolio), the minimum variance portfolio (mv portfolio)

and the equally weighted portfolio (ew portfolio). All the refined Sortino ratios values are multiplied

by a factor of 107. The target return used in the computation of the semivariance is the maximum

Sharpe ratio portfolio return (Rms). This table also reports the monthly refined Sortino ratios for

the efficient skewness/semivariance portfolios referred in Section 3.4.2: the maximum skewness per

semivariance ratio portfolio (wSSR), the maximum Sharpe ratio portfolio (wSR) and the maximum

Sortino ratio portfolio (wSOR). The correct rank of each portfolio according to the refined Sortino

ratios is also reported.

In Table 3.7 we can find the refined Sortino ratios for the case in which the target

return for the computation of the semivariance is the minimum variance portfolio

return (Rmv). For the SBM6 dataset, the efficient skewness/semivariance portfolio

wSOR has the highest refined Sortino ratio among all the portfolios. In the cases of

the FF10 and SOP25 datasets, the efficient skewness/semivariance portfolios have a

higher refined Sortino ratio than one (the mv portfolio) of the benchmark portfolios.

For the BMOP25 dataset, the efficient skewness/semivariance portfolio wSR has the

highest refined Sortino ratio among all the portfolios.

Finally, Table 3.8 presents the refined Sortino ratios for the case in which the target

return is the ew portfolio return (Rew). The efficient skewness/semivariance portfolio

wSOR has the highest refined Sortino ratio, among all the portfolios, in two cases (for

the SBM6 dataset and for the BMOP25 dataset). For the FF10 dataset, the efficient

skewness/semivariance portfolio wSR has a higher refined Sortino ratio than two (the

mv and the ew portfolios) of the three benchmark portfolios. In the case of the SOP25

dataset, the efficient skewness/semivariance portfolios have a higher refined Sortino

ratio than one (the mv portfolio) of the benchmark portfolios.

Once again, these results suggests the robustness of the efficiency provided by the

skewness/semivariance model.
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Table 3.7: Portfolio refined Sortino ratios for the target return Rmv

Strategy SBM6 #Rank FF10 #Rank SOP25 #Rank BMOP25 #Rank

ms portfolio 624,615.7422 2 128,181.0851 1 -48.4189 2 479,777.6342 2
mv portfolio 256,858.4995 6 -293.0277 6 -375.1476 6 -109.7444 5
ew portfolio 236,771.0943 5 -52.1048 2 -2.1300 1 -366.0381 6

Efficient skewness/semivariance portfolios

wSSR 607,874.5739 3 -202.6882 5 -202.9211 4 265,776.7251 4
wSR 355,161.3260 4 -133.4656 3 -252.2228 5 494,904.0660 1
wSOR 665,238.0489 1 -182.6976 4 -181.3330 3 479,179.7536 3

This table reports, for each dataset, the monthly refined Sortino ratios using as benchmark portfolios

the maximum Sharpe ratio portfolio (ms portfolio), the minimum variance portfolio (mv portfolio) and

the equally weighted portfolio (ew portfolio). All the refined Sortino ratios values are multiplied by a

factor of 107. The target return used in the computation of the semivariance is the minimum variance

portfolio return (Rmv). This table also reports the monthly refined Sortino ratios for the efficient

skewness/semivariance portfolios referred in Section 3.4.2: the maximum skewness per semivariance

ratio portfolio (wSSR), the maximum Sharpe ratio portfolio (wSR) and the maximum Sortino ratio

portfolio (wSOR). The correct rank of each portfolio according to the refined Sortino ratios is also

reported.

Table 3.8: Portfolio refined Sortino ratios for the target return Rew

Strategy SBM6 #Rank FF10 #Rank SOP25 #Rank BMOP25 #Rank

ms portfolio 4,624.7267 2 -366.1145 1 -636.8731 2 296,765.0953 3
mv portfolio -551.1163 5 -705.2135 3 -914.0883 6 -368.7736 5
ew portfolio -602.2495 6 -711.9219 4 -636.2648 1 -676.9208 6

Efficient skewness/semivariance portfolios

wSSR 1,629.8212 3 -739.1504 5 -825.3411 4 61,942.1459 4
wSR -405.5356 4 -589.4037 2 -850.8136 5 335,361.5320 2
wSOR 51,791.2377 1 -759.5383 6 -739.1028 3 338,761.2812 1

This table reports, for each dataset, the monthly refined Sortino ratios using as benchmark portfolios

the maximum Sharpe ratio portfolio (ms portfolio), the minimum variance portfolio (mv portfolio)

and the equally weighted portfolio (ew portfolio). All the refined Sortino ratios values are multi-

plied by a factor of 107. The target return used in the computation of the semivariance is the ew

portfolio return (Rew). This table also reports the monthly refined Sortino ratios for the efficient

skewness/semivariance portfolios referred in Section 3.4.2: the maximum skewness per semivariance

ratio portfolio (wSSR), the maximum Sharpe ratio portfolio (wSR) and the maximum Sortino ratio

portfolio (wSOR). The correct rank of each portfolio according to the refined Sortino ratios is also

reported.

3.5 Conclusions

In this chapter we have proposed a direct analysis of the efficient tradeoff between

skewness and semivariance through a skewness/semivariance biobjective optimization

problem. We computed skewness as a third moment tensor and overcame the endo-

42



geneity problem of the cosemivariance matrix using a derivative-free algorithm. To the

best of our knowledge, this is the first time that such an algorithm is used in this con-

text. The solver chosen for solving the skewness/semivariance biobjective optimization

problem is based on DMS. Direct-search methods based on polling are known to be ex-

tremely robust due to their directional properties (Conn et al., 2009). In fact, we have

observed its robustness in four empirical datasets collected from the Fama/French data

library, since DMS was capable of determining IS the Pareto frontier for the biobjective

skewness/semivariance problem, using three different target returns for the computa-

tion of the semivariance.

In addition, we performed an extensive OOS analysis. The results showed that the

efficient skewness/semivariance portfolios are consistently competitive when compared

with the benchmark portfolios, in terms of OOS Sharpe ratio. A surprising fact was

that at least one of the three chosen efficient skewness/semivariance portfolios, con-

sistently outperforms the ew portfolio in terms of OOS Sharpe ratio. The efficient

skewness/semivariance portfolios, also exhibited a consistently good performance in

terms of skewness per semivariance ratio and Sortino ratio, which suggests the robust-

ness of the efficiency provided by the skewness/semivariance model.

In the empirical analysis performed here we have just used three different target

returns for the computation of the semivariance. Other choices could have been made

(for example, the risk-free return or an index return). It is clear that the right choice

of this parameter depends on the nature of the data and has a profound impact on

the results. Within the skewness/semivariance model, the investor has the freedom to

choose this parameter according to any criteria that may suit her preferences. Besides,

we only evaluate the performance of three efficient skewness/semivariance portfolios

(chosen according to three different criteria). Other efficient portfolios could have been

evaluated.

The only constraint that we considered in the proposed model was the absence of

short selling, but the proposed skewness/semivariance model could readily incorporate

other constraints aiming to improve portfolio stability and/or performance. For in-

stance, we could consider turnover constraints in order to control the transaction costs

or introduce constraints to explore information about the cross-sectional characteristics

of securities, as in Brandt et al. (2009).
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Chapter 4

Portfolio management with higher

moments: The cardinality impact

4.1 Introduction

With the aim of improving the performance of the classical MV model, several modifi-

cations or alternative strategies have been proposed in the literature. One well-known

modification consists in imposing a cardinality constraint (a constraint that limits the

number of stocks in the portfolio) to the classical MV optimization model, leading to

the cardinality constrained MV model. This model can be seen as a mixed-integer

quadratic problem that is no longer solved in polynomial time, therefore most studies

have focused on providing efficient algorithms to solve this problem. These algorithms

vary from exact algorithms (Bienstock, 1996; Vielma et al., 2008; Bertsimas and Sh-

ioda, 2009) to heuristics (Chang et al., 2000b; Fieldsend et al., 2004; Cesarone et al.,

2009; Anagnostopoulos and Mamanis, 2011; Woodside-Oriakhi et al., 2011; Brito and

Vicente, 2014). With the aim of promoting regularization of ill conditioning, DeMiguel

et al. (2009a) constrained the Markowitz classical model by imposing a bound on the

l1-norm of the vector of portfolio weights. Since the l1-norm is the exact convex relax-

ation of the l0-norm (cardinality), DeMiguel et al. (2009a) indirectly studied the effect

of cardinality in the classical MV framework. A similar idea was explored in Brodie

et al. (2009).

Cardinality is a well-known measure of portfolio diversification. When cardinality

increases, the total risk of a portfolio decreases gradually, until a certain level of risk is

achieved. After that level, increases in cardinality only produce negligible reductions in

the risk level (see, e.g., Evans and Archer, 1968; Statman, 1987; Benartzi and Thaler,

2001). Therefore, the cardinality impact on portfolio performance is a very important

issue for both individual and institutional investors.
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This chapter focus on the analysis of the cardinality impact on the portfolio per-

formance, in the mean-variance (MV), mean-variance-skewness (MVS) and mean-

variance-skewness-kurtosis (MVSK) frameworks. Therefore, the analysis is conducted

not only on the impact of the cardinality constraint in each framework but also on the

benefits of considering higher moments in portfolio management. For the reasons ex-

plained in Section 2.3, and following Brandt et al. (2009), in this study we assume that

the investor maximizes her expected utility, characterized by CRRA preferences. This

is a common assumption in the related literature (see, e.g., Aı̈t-Sahalia and Brandt,

2001). Nevertheless, we point out that the presented procedures are quite flexible, and

may be applied to any other type of utility function. For each framework, we propose

a biobjective model that allows the investor to directly analyze the efficient tradeoff

between expected utility and cardinality. Given the nonsmoothness of the cardinal-

ity function and inspired in Brito and Vicente (2014), we have decided to solve each

biobjective model using a derivative-free solver based on DMS (see Appendix B).

The contribution of this chapter is twofold. First, this study extends the analysis

of the cardinality impact on the portfolio performance from the standard MV frame-

work to the MVS and MVSK frameworks. Second, we analyze the performance gains

(in terms of certainty equivalent and Sharpe ratio) when considering higher moments

(skewness and kurtosis) at different cardinality levels. The certainty equivalent, being

a measure that takes into account the expected utility, is therefore a more suitable

performance measure than the Sharpe ratio when comparing the three frameworks.

Although one needs to be careful when using the Sharpe ratio as a performance mea-

sure, especially in the MVS and MVSK frameworks (the ratio does not account for

skewness or kurtosis), this is one of the most widely used performance measures in the

literature, even in non MV settings (see, e.g., DeMiguel et al., 2009b). Although the

Sharpe ratio is intrinsically related to the MV framework, it is interesting to see how

the MVS and MVSK frameworks perform in this dimension in comparison with the

MV framework (even if the existence of performance gains, in terms of Sharpe ratio, of

the MVS and MVSK frameworks against the MV framework should be hard to get).

The empirical analysis is conducted on a dataset from the Portuguese Stock Market

Index (PSI 20 Index). The daily data is collected from Thomson Reuters Datastream®.

First, we compute the expected utility/cardinality efficient frontiers for each one of the

three frameworks and analyze the IS cardinality impact using as performance measures

the certainty equivalent and the Sharpe ratio. Second, we perform an OOS analysis

using the certainty equivalent, the Sharpe ratio, the turnover and the Sharpe ratio of re-

turns net of transaction costs. The results for each efficient expected utility/cardinality

portfolio in each of the three frameworks are reported.
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The results suggest that there are no performance gains IS (in terms of certainty

equivalent) when higher moments are considered, while in some cases the inclusion of

higher moments in the portfolio management framework leads to some significant gains

in terms of OOS certainty equivalent and Sharpe ratio.

As a kind of robustness check, we present some results for the OOS certainty equiv-

alent, Sharpe ratio, turnover and the net Sharpe ratio for a larger dataset from the

EURO STOXX 50 Index. The observed results are consistent with those for the PSI

20 Index.

The remainder of the chapter proceeds as follows. In Section 4.2 we describe our ap-

proach and the proposed models. The empirical application is presented in Section 4.3.

We conclude in Section 4.4.

4.2 Methodology

4.2.1 The expected utility/cardinality biobjective model

We assume that the investor wants to choose a portfolio taking into account two criteria:

an expected utility that considers several moments of the portfolio return and the

cardinality of the portfolio.

Let us consider the standard investor’s problem (see Problem (2.17)), with general

lower and upper bounds on the weights, that is,

max
wt∈RN

Et [u (rp,t+1)] = Et

[
u

(
N∑
i=1

wi,tri,t+1

)]
subject to 1⊤Nwt = 1,

LOi,t ≤ wi,t ≤ UPi,t, i = 1, . . . , N,

(4.1)

where LOi,t and UPi,t represent, respectively, lower and upper bounds on the weights.

Adding to Problem (4.1) a constraint that limits the number of active positions on

the portfolio (a cardinality constraint), we have
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max
wt∈RN

Et [u (rp,t+1)] = Et

[
u

(
N∑
i=1

wi,tri,t+1

)]
subject to card(wt) ≤ C

1⊤Nwt = 1,

LOi,t ≤ wi,t ≤ UPi,t, i = 1, . . . , N,

(4.2)

where card(wt) = |{i ∈ {1, ..., N} : wi,t ̸= 0}| and C ∈ {1, . . . , N}. Despite card(·)
being often called, in the literature, the l0-norm, it is not a norm due to the fact that

it does not satisfy the homogeneity property.

Motivated by Brito and Vicente (2014), here we suggest that cardinality should

be included as a second objective in the problem, instead of a constraint. Thus, we

reformulate Problem (4.2) as

max
wt∈RN

Et [u (rp,t+1)] = Et

[
u

(
N∑
i=1

wi,tri,t+1

)]
min

wt∈RN
card(wt)

subject to 1⊤Nwt = 1,

LOi,t ≤ wi,t ≤ UPi,t, i = 1, . . . , N.

(4.3)

The solution of Problem (4.3) is given by a Pareto frontier, i.e., as an efficient

expected utility/cardinality frontier. Efficient expected utility/cardinality portfolios

can be seen as those which have the maximum expected utility among all that have

at most a certain level of cardinality. The investor can thus directly analyze the effi-

cient tradeoff between expected utility and cardinality. The biobjective Problem (4.3)

has two objective functions, a linear constraint and 2N inequality constraints. The

first objective, Et [u (rp,t+1)], is nonlinear but smooth. However, the second objective,

card(wt), is a piecewise linear discontinuous function, and consequently it is nonlin-

ear and nonsmooth. Since derivative-free algorithms are applicable to black-box type

functions (see Appendix B), they are suitable to deal with the cardinality objective

function. According with Custódio et al. (2011), the dms solver has the best perfor-

mance among all derivative-free solvers for MOO optimization. We have thus decided

to solve Problem (4.3) using dms (see Appendix B).
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4.2.2 The MV, MVS and MVSK expected utility/cardinality

efficient frontiers

If the investor with CRRA preferences (see Equation (2.19)) considers the second order

Taylor expansion of the expected utility, Et [u (rp,t+1)], around the expected return of

the portfolio, Et (rp,t+1), the second member of Equation (2.22) is truncated at the

second term. Hence, in order to investigate the cardinality impact, the following model

can be solved when the investor has a MV expected utility

max
wt∈RN

θ1 [Et (rp,t+1)]− θ2 [Et (rp,t+1)] vt (rp,t+1)

min
wt∈RN

card(wt)

subject to 1⊤Nwt = 1,

LOi,t ≤ wi,t ≤ UPi,t, i = 1, . . . , N.

(4.4)

By solving Problem (4.4), we identify a MV expected utility/cardinality efficient

frontier. A portfolio in this frontier is such that there exists no other feasible one which

simultaneously presents a higher expected MV utility and a lower cardinality. Given

such an efficient frontier and a cardinality target, an investor may directly find the

answers to what is the optimal (highest) expected utility level that can be attained

while meeting the cardinality target and what are the portfolios leading to such an

expected utility level. The investor can thus directly examine the efficient tradeoff

between the MV expected utility and cardinality.

If the investor, besides the mean and variance, also considers the third moment (the

second member of Equation (2.22) is truncated at the third term), the following model

can be solved

max
wt∈RN

θ1 [Et (rp,t+1)]− θ2 [Et (rp,t+1)] vt (rp,t+1) + θ3 [Et (rp,t+1)] st (rp,t+1)

min
wt∈RN

card(wt)

subject to 1⊤Nwt = 1,

LOi,t ≤ wi,t ≤ UPi,t, i = 1, . . . , N.

(4.5)

By solving Problem (4.5), we identify a MVS expected utility/cardinality efficient

frontier. The investor can thus directly analyze the efficient tradeoff between the MVS

expected utility and cardinality.

When the investor considers all the moments present in Equation (2.22), the model
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to be solved is given by

max
wt∈RN

θ1 [Et (rp,t+1)]− θ2 [Et (rp,t+1)] vt (rp,t+1)

+θ3 [Et (rp,t+1)] st (rp,t+1)− θ4 [Et (rp,t+1)] kt (rp,t+1)

min
wt∈RN

card(wt)

subject to 1⊤Nwt = 1,

LOi,t ≤ wi,t ≤ UPi,t, i = 1, . . . , N.

(4.6)

By solving Problem (4.6), we identify a MVSK expected utility/cardinality efficient

frontier. The investor can thus directly analyze the efficient tradeoff between the MVSK

expected utility and cardinality.

4.3 Empirical performance

We tested the proposed methodology in one dataset based on the composition of the

Portuguese Stock Market Index (PSI 20 Index). We collected daily data from Thomson

Reuters Datastream®, for the time window from July 2007 to June 2014 (seven years).

We chose 20 stocks of companies that belonged to the PSI 20 Index at least once and

that were traded during all this time (some stocks changed designation, but all stocks

were quoted during the entire period under analysis). The composition of this dataset

is given in Table 4.1.

Table 4.1: The PSI 20 dataset

List of stocks

ALTRI SGPS MARTIFER
BANCO BPI MEDIA CAPITAL
BANCO COMR.PORTUGUES ’R’ MOTA ENGIL SGPS
BANCO ESPIRITO SANTO NOS SGPS
COFINA NOVABASE
EDP ENERGIAS DE PORTUGAL PHAROL SGPS
GI.GLB.INTEL.TECHS.SGPS PORTUCEL EMPRESA
IMPRESA SGPS SEMAPA
INAPA SONAE INDUSTRIA SGPS
JERONIMO MARTINS SONAE SGPS

This table lists the composition of the PSI 20 dataset used in the empirical work. Daily closing

prices, from July 2007 to June 2014, of these 20 stocks were collected from the Thomson Reuters

Datastream®.
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Some descriptive statistics of the returns, for the overall sample period, are reported

in Table 4.2.

Table 4.2: Descriptive statistics for the PSI 20 dataset

Number of days 1826

Minimum -0.1573

Median -0.0001

Maximum 0.2584

Mean -0.0002

Variance 0.0009

Skewness 0.8187

Kurtosis 15.6667

This table reports some descriptive statistics for the PSI 20 dataset (the composition of the dataset

is reported in Table 4.1). The reported values of skewness and kurtosis concern to the third and

fourth standardized moments, respectively. These statistics are averaged cross-sectionally, i.e., they

are computed for each stock and then the arithmetic mean is taken.

During the period under scrutiny the discrete daily returns of the PSI 20 stocks

presented, on average, a negative but near zero mean, positive skewness and about five

times above normal kurtosis.

We present the efficient expected utility/cardinality portfolios, with the expected

utility based on the MV, MVS and MVSK frameworks, in Section 4.3.1. In Sec-

tion 4.3.2, based on a rolling window approach (see Figure 2.5), we analyze the OOS

performance of these efficient portfolios. Both IS and OOS analysis were conducted

assuming that the investor has CRRA preferences and a parameter of relative risk

aversion equal to five (this is a common assumption, see, e.g., Brandt et al., 2009).

4.3.1 IS performance

We solved Problem (4.4), Problem (4.5) and Problem (4.6) for the general non-boundary

case (i.e., LOi,t = −∞ and UPi,t = +∞) using the dms solver7 (see Appendix B). Other

choices for the boundaries could be made; for instance, if short selling is undesirable

then LOi,t ≥ 0 and consequently UPi,t ≤ 1. We have decided to allow for short sell-

ing in order to make the models as general as possible and to avoid the possibility

7Following Chang et al. (2000b) and Jobst et al. (2010), in practice the true cardinality is approx-

imated by introducing a tolerance ε = 1%, such that card(wt) =
∑N

i=1 11{|wi,t|>ε}, where 11 represents
the indicator function.
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of getting Pareto frontiers with few feasible cardinality levels. Note that the greater

the restriction on the portfolio weights, the more likely it is to obtain Pareto frontiers

without all the feasible cardinality levels8 (these “missing points” correspond to strictly

dominated points). Allowing for short selling in each model does not make them less

realistic, since most markets around the world allow short positions and, particularly,

the Portuguese Securities Market Commission (CMVM) allows to perform short selling

in each one of the constituents of the PSI 20 Index.

In the IS analysis we used the overall sample period, from July 2007 to June 2014

(seven years). The efficient expected utility/cardinality frontiers9, for the MV, MVS

and MVSK frameworks, are plotted in Figure 4.1.

DMS aims to approximate the true Pareto frontier. Theoretically it is only possible

to prove that there is a limit point in a stationary form of the Pareto frontier, as no

aggregation or scalarization technique is incorporated (see Custódio et al., 2011, for

further details). However, some empirical applications have shown that this method

has a very good performance, even when applied to problems with discontinuous and

non-convex Pareto frontiers ( Custódio et al., 2011). In our application, we can observe

that DMS was effective, in the sense that it allowed us to obtain frontiers for the three

frameworks, and we have all the reasons to believe that they are good approximations

to the true Pareto frontiers. From the analysis of these frontiers the investor can thus

directly analyse the efficient tradeoff (in each framework) and choose (according to

some pre-established criteria), in the expected utility/cardinality space, the portfolio

that best fits her preferences.

Table 4.3 reports the certainty equivalent return for the MV, MVS and MVSK

frameworks. The certainty equivalent return, ĈE, is defined as

u(ĈE) = Et [u(rp,t+1)] , (4.7)

and can be interpreted as the risk-free rate that an investor is willing to accept in order

to give up a particular risky investment.

Tables 4.4, 4.5 and 4.6 report some descriptive statistics (the IS mean, m̂, standard

deviation, σ̂, standardized skewness, ŝstand, standardized kurtosis, k̂stand, expected util-

ity, û, and Sharpe ratio10, ŜR) for the MV, MVS and MVSK frameworks, respectively.

These tables also report the ratio between the IS Sharpe ratio of each efficient portfolio

8Theoretically the solutions of Problem (4.4), Problem (4.5) and Problem (4.6) can be a single
point that strictly dominates all the others.

9Note that, with the 1% threshold for the cardinality computation, the maximum cardinality level
that led to nondominated solutions was 16.

10Without loss of generality, in this chapter we set rft =0.
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Figure 4.1: Efficient expected utility/cardinality frontiers, for the MV, MVS and MVSK
frameworks

Efficient MV expected utility/cardinality portfolios

Efficient MVS expected utility/cardinality portfolios

Efficient MVSK expected utility/cardinality portfolios

This figure displays the efficient expected utility/cardinality frontiers. The vertical axis represents the

expected utility (MV, MVS and MVSK expected utility, respectively). The horizontal axis corresponds

to the cardinality.
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Table 4.3: IS certainty equivalent return

Efficient portfolios

Number of stocks MV MVS MVSK

1 -0.2499 -0.2637 -0.2762
2 -0.0171 -0.0245 -0.0280
3 0.5494 0.5498 0.5365
4 0.6475 0.6437 0.6340
5 0.7735 0.7814 0.7661
6 0.8469 0.8516 0.8536
7 0.9543 0.9694 0.9638
8 0.9970 1.0127 0.9936
9 1.0596 1.0457 1.0256
10 1.0976 1.1020 1.0795
11 1.1279 1.1319 1.1074
12 1.1626 1.1694 1.1463
13 1.1815 1.1846 1.1623
14 1.1859 1.1889 1.1665
15 1.1905 1.1930 1.1709
16 1.1956 1.1989 1.1760

This table lists the IS certainty equivalent return (ĈE) of the efficient expected utility/cardinality

portfolios. MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to the

efficient MVS expected utility/cardinality portfolios and MVSK refers to the efficient MVSK expected

utility/cardinality portfolios. All the certainty equivalent values are multiplied by a factor of 103.
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and the IS Sharpe ratio of the efficient portfolio with cardinality 16, ŜR/ŜR16 (corre-

sponding to the portfolio with the maximum cardinality level). This ratio can be seen

as a measure of the impact of portfolio diversification on the Sharpe ratio.

Table 4.4: IS analysis of the efficient MV expected utility/cardinality portfolios

Efficient portfolios

Number of stocks m̂ σ̂ ŝstand k̂stand û ŜR ŜR/ŜR16

1 0.0008 0.0204 -0.3440 8.4078 -0.2503 0.0385 0.3485 (0.0038)
2 0.0007 0.0164 -0.3867 7.5859 -0.2500 0.0398 0.3593 (0.0036)
3 0.0019 0.0233 -0.1037 5.2381 -0.2495 0.0816 0.7373 (0.0486)
4 0.0019 0.0225 -0.1122 5.3278 -0.2494 0.0847 0.7659 (0.0556)
5 0.0023 0.0248 -0.0292 4.8302 -0.2492 0.0929 0.8394 (0.1356)
6 0.0023 0.0238 -0.0045 5.3832 -0.2492 0.0948 0.8566 (0.1480)
7 0.0025 0.0252 0.1553 6.1148 -0.2490 0.1005 0.9081 (0.2685)
8 0.0025 0.0243 0.1966 6.3847 -0.2490 0.1014 0.9164 (0.2531)
9 0.0027 0.0256 0.0374 5.8750 -0.2489 0.1049 0.9484 (0.4015)
10 0.0028 0.0259 0.0250 5.7805 -0.2489 0.1067 0.9644 (0.4727)
11 0.0029 0.0265 0.0159 5.7081 -0.2489 0.1083 0.9792 (0.6155)
12 0.0029 0.0263 0.0460 5.5404 -0.2488 0.1094 0.9893 (0.7229)
13 0.0029 0.0261 0.0054 5.5654 -0.2488 0.1100 0.9946 (0.7778)
14 0.0029 0.0261 0.0037 5.5670 -0.2488 0.1102 0.9963 (0.8238)
15 0.0029 0.0262 0.0105 5.6330 -0.2488 0.1105 0.9986 (0.9426)
16 0.0029 0.0261 0.0144 5.4855 -0.2488 0.1106 1

This table reports the IS mean (m̂), standard deviation (σ̂), standardized skewness (ŝstand), standard-

ized kurtosis (k̂stand), expected utility (û) and the IS Sharpe ratio (ŜR) of each efficient MV expected

utility/cardinality portfolio. It also reports the ratio, ŜR/ŜR16, between the IS Sharpe ratio of each

efficient portfolio and the IS Sharpe ratio of the efficient portfolio with cardinality 16 (the highest

Sharpe ratio portfolio). The Ledoit and Wolf (2008) bootstrap p-values for the statistical significance

of the difference between the IS Sharpe ratio of the efficient portfolio with cardinality 16 and the

respective efficient portfolio are presented in parenthesis.

One interesting result is that, in each of the three frameworks, the IS certainty

equivalent and Sharpe ratio increases gradually with cardinality, until the maximum

cardinality level of 16 is achieved. Moreover, we computed the bootstrap p-values for

the statistical significance of the difference between the IS Sharpe ratio of the efficient

portfolio with cardinality 16 and each other efficient portfolio. These p-values were

computed according the Ledoit and Wolf (2008) robust methodology. For the MV

framework these bootstrap p-values show that only the portfolios with cardinality 1,

2 and 3, consistently offer a Sharpe ratio significantly lower than the Sharpe ratio of

the portfolio with cardinality 16. For the MVS and MVSK frameworks, this happens

only for the portfolios with cardinality 1 and 2. This seems to suggest that, for this

dataset, most of the diversification gains occur at cardinalities of 3 or 4.
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Table 4.5: IS analysis of the efficient MVS expected utility/cardinality portfolios

Efficient portfolios

Number of stocks m̂ σ̂ ŝstand k̂stand û ŜR ŜR/ŜR16

1 0.0008 0.0204 -0.3441 8.4074 -0.2503 0.0385 0.3486 (0.0034)
2 0.0006 0.0163 -0.3851 7.5589 -0.2500 0.0396 0.3584 (0.0040)
3 0.0019 0.0232 -0.1021 5.2614 -0.2495 0.0817 0.7395 (0.0620)
4 0.0019 0.0224 -0.1103 5.3212 -0.2494 0.0847 0.7661 (0.0734)
5 0.0023 0.0246 -0.0158 4.8868 -0.2492 0.0929 0.8408 (0.1476)
6 0.0023 0.0239 -0.0035 5.3673 -0.2492 0.0950 0.8596 (0.1672)
7 0.0026 0.0254 0.2250 6.7244 -0.2490 0.1005 0.9095 (0.2589)
8 0.0025 0.0245 0.2437 6.8288 -0.2490 0.1015 0.9180 (0.2599)
9 0.0026 0.0251 0.2110 6.3837 -0.2490 0.1033 0.9349 (0.3155)
10 0.0028 0.0259 0.0857 6.1959 -0.2489 0.1066 0.9642 (0.4797)
11 0.0029 0.0265 0.0792 6.1399 -0.2489 0.1082 0.9790 (0.6107)
12 0.0029 0.0263 0.1165 6.0007 -0.2488 0.1093 0.9893 (0.7099)
13 0.0029 0.0260 0.0742 5.9680 -0.2488 0.1099 0.9942 (0.7754)
14 0.0029 0.0261 0.0722 5.9641 -0.2488 0.1101 0.9960 (0.8268)
15 0.0029 0.0261 0.0727 5.8957 -0.2488 0.1102 0.9974 (0.8518)
16 0.0029 0.0262 0.0832 5.9889 -0.2488 0.1105 1

This table reports the IS mean (m̂), standard deviation (σ̂), standardized skewness (ŝstand), stan-

dardized kurtosis (k̂stand), expected utility (û) and the IS Sharpe ratio (ŜR) of each efficient MVS

expected utility/cardinality portfolio. It also reports the ratio, ŜR/ŜR16, between the IS Sharpe ratio

of each efficient portfolio and the IS Sharpe ratio of the efficient portfolio with cardinality 16 (the

highest Sharpe ratio portfolio). The Ledoit and Wolf (2008) bootstrap p-values for the statistical

significance of the difference between the IS Sharpe ratio of the efficient portfolio with cardinality 16

and the respective efficient portfolio are presented in parenthesis.
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Table 4.6: IS analysis of the efficient MVSK expected utility/cardinality portfolios

Efficient portfolios

Number of stocks m̂ σ̂ ŝstand k̂stand û ŜR ŜR/ŜR16

1 0.0008 0.0204 -0.3441 8.4074 -0.2503 0.0385 0.3497 (0.0038)
2 0.0006 0.0162 -0.3841 7.5402 -0.2500 0.0395 0.3589 (0.0044)
3 0.0019 0.0232 -0.1020 5.2611 -0.2495 0.0817 0.7418 (0.0566)
4 0.0019 0.0222 -0.1086 5.3120 -0.2494 0.0846 0.7675 (0.0624)
5 0.0023 0.0245 -0.0176 4.8963 -0.2492 0.0928 0.8426 (0.1488)
6 0.0024 0.0247 0.0047 5.0890 -0.2491 0.0966 0.8763 (0.1948)
7 0.0025 0.0246 0.1855 6.0367 -0.2490 0.1005 0.9124 (0.2460)
8 0.0025 0.0243 0.2066 6.4703 -0.2490 0.1015 0.9209 (0.2759)
9 0.0026 0.0249 0.1721 6.0183 -0.2490 0.1033 0.9375 (0.3251)
10 0.0027 0.0254 0.0649 6.0057 -0.2489 0.1062 0.9638 (0.4711)
11 0.0028 0.0259 0.0559 5.9411 -0.2489 0.1078 0.9783 (0.6153)
12 0.0028 0.0257 0.0920 5.7790 -0.2489 0.1090 0.9891 (0.7141)
13 0.0028 0.0255 0.0524 5.7804 -0.2488 0.1096 0.9943 (0.7774)
14 0.0028 0.0255 0.0517 5.7863 -0.2488 0.1098 0.9960 (0.8246)
15 0.0028 0.0255 0.0523 5.7182 -0.2488 0.1099 0.9975 (0.8472)
16 0.0028 0.0257 0.0599 5.7839 -0.2488 0.1102 1

This table reports the IS mean (m̂), standard deviation (σ̂), standardized skewness (ŝstand), stan-

dardized kurtosis (k̂stand), expected utility (û) and the IS Sharpe ratio (ŜR) of each efficient MVSK

expected utility/cardinality portfolio. It also reports the ratio, ŜR/ŜR16, between the IS Sharpe ratio

of each efficient portfolio and the IS Sharpe ratio of the efficient portfolio with cardinality 16 (the

highest Sharpe ratio portfolio). The Ledoit and Wolf (2008) bootstrap p-values for the statistical

significance of the difference between the IS Sharpe ratio of the efficient portfolio with cardinality 16

and the respective efficient portfolio are presented in parenthesis.
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In these tables, it may seem puzzling that there is not a clear decreasing trend of

the standard deviation of portfolio returns with the increase of cardinality. However,

we must point out that we are, in fact, maximizing the expected utility for each level

of cardinality. Therefore, with a marginal increase in the cardinality level, we may

choose a completely different set of stocks (and associated weights) for which the ben-

efits resulting from other moments of the return distribution (expected return and,

when applicable, skewness and/or kurtosis) more than offset a possible increase in the

standard deviation.

Results reported in Tables 4.3, 4.4, 4.5 and 4.6 point out that there are no signifi-

cant differences between the three frameworks in terms of IS certainty equivalent and

Sharpe ratio. For example, in each of the three frameworks the maximum certainty

equivalent return is achieved at the maximum cardinality level and the values of ĈE

are quite similar (0.11956%, 0.11989% and 0.11760%, respectively). Also the maximum

IS Sharpe ratio is found, in each of the three frameworks, at the maximum feasible

cardinality level and with similar values for ŜR (11.06%, 11.05% and 11.02%, respec-

tively). These results suggest that, IS, the consideration of higher moments does not

produce relevant gains (in terms of certainty equivalent) for an investor with CRRA

preferences (γ = 5).

4.3.2 OOS performance

The OOS analysis relies on a rolling window approach (see Figure 2.5), with an esti-

mation window of 1565 days. The initial estimation window begins in July 2007 and

ends in June 2013. There are 261 evaluation periods (days) until June 2014.

Table 4.7 reports the OOS certainty equivalent return (computed according Equa-

tion (4.7)), ĈE, for each one of the three frameworks.

Tables 4.8, 4.9 and 4.10 report some OOS statistics (the OOS mean, m̂, standard

deviation, σ̂, standardized skewness, ŝstand, standardized kurtosis, k̂stand, expected util-

ity, û, and Sharpe ratio, ŜR) for the MV, MVS and MVSK frameworks, respectively.

When the numerator of the Sharpe ratio (ŜR) is negative, it should be refined in order

to achieve a correct rank of the portfolios. Once again we use the Israelsen (2005)

methodology:

ŜRref =
m̂

σ̂m̂/abs(m̂)
, (4.8)

where abs(·) is the absolute value function. Note that the refined Sharpe ratio (ŜRref )

is equal to the Sharpe ratio (ŜR) when the numerator is nonnegative; in this case,
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Table 4.7: OOS certainty equivalent return

Efficient portfolios

Number of stocks MV MVS MVSK

1 -0.3605 -0.1337 -0.2635
2 -0.2165 -0.2886 -0.5271
3 -1.3200 -1.2945 -1.1657
4 -1.4815 -1.4850 -1.6058
5 -0.5165 -0.7985 -1.1355
6 -1.2108 -1.0303 -1.0729
7 -0.9808 -1.3350 -1.0559
8 -1.5770 -1.2233 -1.2436
9 -1.3603 -1.0098 -1.1505
10 -0.7319 -1.0514 -0.7085
11 -0.8519 -0.9998 -0.9240
12 -0.8622 -0.8066 -0.5946
13 -0.8368 -0.7737 -0.6427
14 -0.7461 -0.7586 -0.5603
15 -0.7741 -0.7319 -0.6841
16 -0.7593 -0.7701 -0.7048

This table lists the OOS certainty equivalent return (ĈE) of the efficient expected utility/cardinality

portfolios. MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to the

efficient MVS expected utility/cardinality portfolios and MVSK refers to the efficient MVSK expected

utility/cardinality portfolios. All the certainty equivalent values are multiplied by a factor of 103.
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Equation (4.8) is equivalent to Equation (3.14).

Table 4.8: OOS analysis of the efficient MV expected utility/cardinality portfolios

Efficient portfolios

Number of stocks m̂ σ̂ ŝstand k̂stand û ŜR ŜR/ŜR16 ŜRref

1 0.0001 0.0137 -0.1952 4.1943 -0.2504 0.0084 0.1472 (0.5781) 0.0084
2 0.0002 0.0137 0.8597 8.7178 -0.2502 0.0177 0.3105 (0.5961) 0.0177
3 -0.0002 0.0209 -0.3217 5.2709 -0.2513 -0.0100 -0.1750 (0.0888) -0.0000
4 -0.0001 0.0231 0.0797 4.9952 -0.2515 -0.0065 -0.1137 (0.0624) -0.0000
5 0.0011 0.0249 -0.3433 4.3266 -0.2505 0.0430 0.7555 (0.6273) 0.0430
6 0.0006 0.0266 -0.4120 5.1481 -0.2512 0.0231 0.4060 (0.1562) 0.0231
7 0.0009 0.0272 -0.2345 3.8378 -0.2510 0.0329 0.5784 (0.1998) 0.0329
8 0.0004 0.0278 -0.3922 4.6299 -0.2516 0.0146 0.2569 (0.0282) 0.0146
9 0.0008 0.0287 -0.3905 4.4395 -0.2514 0.0266 0.4675 (0.0750) 0.0266
10 0.0015 0.0294 -0.3697 4.5972 -0.2507 0.0508 0.8928 (0.6575) 0.0508
11 0.0015 0.0301 -0.3385 4.3533 -0.2509 0.0490 0.8606 (0.4619) 0.0490
12 0.0016 0.0309 -0.4063 4.5166 -0.2509 0.0520 0.9129 (0.8708) 0.0520
13 0.0017 0.0312 -0.3999 4.5208 -0.2508 0.0538 0.9456 (0.5527) 0.0538
14 0.0018 0.0314 -0.3855 4.6060 -0.2507 0.0573 1.0064 (0.9100) 0.0573
15 0.0018 0.0314 -0.3909 4.5925 -0.2508 0.0563 0.9885 (0.6667) 0.0563
16 0.0018 0.0314 -0.4056 4.6114 -0.2508 0.0569 1 0.0569

This table reports the OOS mean (m̂), standard deviation (σ̂), standardized skewness (ŝstand), stan-

dardized kurtosis (k̂stand), expected utility (û) and the OOS Sharpe ratio (ŜR) of each efficient MV

expected utility/cardinality portfolio. It also reports the ratio, ŜR/ŜR16, between the OOS Sharpe

ratio of each efficient portfolio and the OOS Sharpe ratio of the efficient portfolio with cardinality 16.

The Ledoit and Wolf (2008) bootstrap p-values for the statistical significance of the difference between

the IS Sharpe ratio of the efficient portfolio with cardinality 16 and the respective efficient portfolio

are presented in parenthesis. The OOS refined Sharpe ratio (ŜRref ) of each efficient MV expected

utility/cardinality portfolio is also reported. The refined OOS Sharpe ratio was computed according

to the Israelsen (2005) methodology.

The OOS certainty equivalent does not exhibit a clear trend with cardinality. In

the MV framework, the best OOS certainty equivalent is achieved for the portfolio

with cardinality equal to 2 (-0.02165%). The bootstrap p-values (computed according

the classical methodology of Efron and Tibshirani, 1994) for the difference between the

OOS certainty equivalent of the efficient MV portfolio with cardinality 2 and the OOS

certainty equivalent of the MVS and MVSK portfolios with the same cardinality level

(equal to 2) are both equal to 0.000. However, in the MVS and MVSK frameworks,

the best OOS certainty equivalent return is achieved for the portfolios with cardinality

equal to 1 (-0.01337% and -0.02635%, respectively for each framework). The bootstrap

p-values for the difference between the OOS certainty equivalent of the efficient MV

portfolio with cardinality 1 and the OOS certainty equivalent of the MVS and MVSK

portfolios with the same cardinality level (equal to 1) are both equal to 0.000. These

results suggest gains in considering skewness and kurtosis, for some cardinality levels.
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Table 4.9: OOS analysis of the efficient MVS expected utility/cardinality portfolios

Efficient portfolios

Number of stocks m̂ σ̂ ŝstand k̂stand û ŜR ŜR/ŜR16 ŜRref

1 0.0003 0.0137 -0.2027 4.2231 -0.2501 0.0249 0.4410 (0.7243) 0.0249
2 0.0002 0.0134 0.8635 9.2178 -0.2503 0.0113 0.2001 (0.5447) 0.0113
3 -0.0002 0.0208 -0.3166 5.3093 -0.2513 -0.0091 -0.1618 (0.1044) -0.0000
4 -0.0001 0.0231 -0.0339 5.2009 -0.2515 -0.0059 -0.1053 (0.0726) -0.0000
5 0.0008 0.0254 -0.3214 4.1134 -0.2508 0.0334 0.5918 (0.3915) 0.0334
6 0.0007 0.0264 -0.2889 4.2218 -0.2510 0.0282 0.4994 (0.2456) 0.0282
7 0.0006 0.0274 -0.4334 4.5700 -0.2513 0.0219 0.3888 (0.0690) 0.0219
8 0.0007 0.0278 -0.3456 4.1169 -0.2512 0.0270 0.4788 (0.0852) 0.0270
9 0.0011 0.0287 -0.3050 4.4441 -0.2510 0.0382 0.6770 (0.2444) 0.0382
10 0.0011 0.0290 -0.3803 4.5557 -0.2511 0.0385 0.6829 (0.1652) 0.0385
11 0.0013 0.0302 -0.3448 4.4666 -0.2510 0.0445 0.7889 (0.3589) 0.0445
12 0.0016 0.0306 -0.3728 4.5447 -0.2508 0.0523 0.9269 (0.9046) 0.0523
13 0.0017 0.0311 -0.4084 4.5232 -0.2508 0.0555 0.9840 (0.8580) 0.0555
14 0.0018 0.0313 -0.3878 4.5733 -0.2508 0.0565 1.0026 (0.9690) 0.0565
15 0.0018 0.0313 -0.3999 4.5931 -0.2507 0.0575 1.0196 (0.5287) 0.0575
16 0.0018 0.0313 -0.4143 4.5854 -0.2508 0.0564 1 0.0564

This table reports the OOS mean (m̂), standard deviation (σ̂), standardized skewness (ŝstand), stan-

dardized kurtosis (k̂stand), expected utility (û) and the OOS Sharpe ratio (ŜR) of each efficient MVS

expected utility/cardinality portfolio. It also reports the ratio, ŜR/ŜR16, between the OOS Sharpe

ratio of each efficient portfolio and the OOS Sharpe ratio of the efficient portfolio with cardinality 16.

The Ledoit and Wolf (2008) bootstrap p-values for the statistical significance of the difference between

the IS Sharpe ratio of the efficient portfolio with cardinality 16 and the respective efficient portfolio

are presented in parenthesis. The OOS refined Sharpe ratio (ŜRref ) of each efficient MVS expected

utility/cardinality portfolio is also reported. The refined OOS Sharpe ratio was computed according

to the Israelsen (2005) methodology.
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Table 4.10: OOS analysis of the efficient MVSK expected utility/cardinality portfolios

Efficient portfolios

Number of stocks m̂ σ̂ ŝstand k̂stand û ŜR ŜR/ŜR16 ŜRref

1 0.0002 0.0138 -0.1811 4.1731 -0.2503 0.0155 0.2763 (0.6363) 0.0155
2 -0.0001 0.0123 -0.2762 4.3074 -0.2505 -0.0116 -0.2069 (0.3833) -0.0000
3 -0.0001 0.0206 -0.3015 5.5200 -0.2512 -0.0042 -0.0752 (0.1414) -0.0000
4 -0.0003 0.0228 0.0790 4.9650 -0.2516 -0.0130 -0.2318 (0.0508) -0.0000
5 0.0005 0.0251 -0.2708 4.3071 -0.2511 0.0185 0.3304 (0.1702) 0.0185
6 0.0006 0.0257 -0.2989 4.3997 -0.2511 0.0238 0.4246 (0.1846) 0.0238
7 0.0007 0.0265 -0.2967 3.8895 -0.2511 0.0277 0.4939 (0.1394) 0.0277
8 0.0007 0.0273 -0.4212 4.4027 -0.2512 0.0248 0.4410 (0.1260) 0.0248
9 0.0008 0.0274 -0.4249 4.5070 -0.2512 0.0283 0.5044 (0.0764) 0.0283
10 0.0014 0.0283 -0.4169 4.5242 -0.2507 0.0480 0.8545 (0.4993) 0.0480
11 0.0013 0.0295 -0.4497 4.6709 -0.2509 0.0448 0.7974 (0.3523) 0.0448
12 0.0017 0.0298 -0.3885 4.6517 -0.2506 0.0567 1.0100 (0.9812) 0.0567
13 0.0017 0.0304 -0.3968 4.5750 -0.2506 0.0573 1.0199 (0.8254) 0.0573
14 0.0019 0.0307 -0.3844 4.6244 -0.2506 0.0608 1.0838 (0.1760) 0.0608
15 0.0017 0.0307 -0.4052 4.6198 -0.2507 0.0570 1.0148 (0.6133) 0.0570
16 0.0017 0.0307 -0.4072 4.6057 -0.2507 0.0561 1 0.0561

This table reports the OOS mean (m̂), standard deviation (σ̂), standardized skewness (ŝstand), stan-

dardized kurtosis (k̂stand), expected utility (û) and the OOS Sharpe ratio (ŜR) of each efficient MVSK

expected utility/cardinality portfolio. It also reports the ratio, ŜR/ŜR16, between the OOS Sharpe

ratio of each efficient portfolio and the OOS Sharpe ratio of the efficient portfolio with cardinality

16. The Ledoit and Wolf (2008) bootstrap p-values for the statistical significance of the difference

between the IS Sharpe ratio of the efficient portfolio with cardinality 16 and the respective efficient

portfolio are presented in parenthesis. The OOS refined Sharpe ratio (ŜRref ) of each efficient MVSK

expected utility/cardinality portfolio is also reported. The refined OOS Sharpe ratio was computed

according to the Israelsen (2005) methodology.
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As we can see in Table 4.7, both the efficient MVS and the efficient MVSK portfolios

outperform the efficient MV portfolios for eight cardinality levels (cardinality equal to

1, 3, 6, 8, 9, 12, 13 and 15).

From the analysis of the refined Sharpe ratios, we conclude that the best OOS

performance is achieved by portfolios with cardinality 14, for the MV and MVSK

frameworks, and 15, for the MVS framework. For these cardinalities, the best portfolio

is either the one obtained within the MVSK framework (for cardinality 14) or the

one obtained within the MVS framework (for cardinality 15). However, we cannot

reach strong conclusions regarding whether or not there are gains in considering higher

moments, since the bootstrap p-values indicate that the performance of these portfolios

is never significantly better than the one of the portfolios obtained within the MV

framework.

Tables 4.8 to 4.10 also report, for each of the three frameworks, the ratio, ŜR/ŜR16,

between the OOS Sharpe ratio of each efficient portfolio and the OOS Sharpe ratio

of the efficient portfolio corresponding to the maximum cardinality of 16. Based on

these ratios, we computed (according to the methodology of Ledoit and Wolf 2008)

the bootstrap p-values for the statistical significance of the difference between the

OOS Sharpe ratio of the efficient portfolio with cardinality 16 and each other efficient

portfolio. Except for the difference between the OOS Sharpe ratio of the MV portfolio

with cardinality 8 and the MV portfolio with cardinality 16 (where the first is lower

than the second), none of these differences were significant. This means that, for the

three frameworks and except to the previous referred case, none of the efficient expected

utility/cardinality portfolios presents a Sharpe ratio significantly higher or significantly

lower than the Sharpe ratio of the efficient portfolio with cardinality 16.

Table 4.11 reports the bootstrap p-values of the difference between the OOS Sharpe

ratio of each pair of frameworks (MV vs MVS, MV vs MVSK, and MVS vs MVSK) for

the same cardinality level. The efficient MVS portfolios outperform the MV portfolios,

in terms of Sharpe ratio, for nine cardinality levels (1, 3, 4, 6, 8, 9, 12, 13 and 15). Also

for nine cardinality levels (1, 3, 6, 8, 9, 12, 13, 14, 15), the efficient MVSK portfolios

outperform the MV portfolios. In total, for 75% of the cardinality levels (12 in 16),

the efficient MV portfolios are outperformed either by the corresponding efficient MVS

portfolios or by the corresponding efficient MVSK portfolios (although none of the

differences are statistically significant at the 5% significance level). This suggests that,

for those cardinality levels, there may be small gains in considering higher moments

(skewness and kurtosis).

Given the time series of daily OOS returns, for each efficient portfolio considered,

we computed the portfolio turnover, defined as the average, over all time periods, of the
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Table 4.11: Bootstrap p-values for the Sharpe ratios

Efficient portfolios

Number of stocks MV vs MVS MV vs MVSK MVS vs MVSK

1 0.1794 (MVS) 0.4851 (MVSK) 0.1648 (MVS)
2 0.5515 (MV) 0.4803 (MV) 0.4713 (MVS)
3 0.8930 (MVS) 0.3801 (MVSK) 0.3439 (MVSK)
4 0.9540 (MVS) 0.5007 (MV) 0.3787 (MVS)
5 0.4251 (MV) 0.0658 (MV) 0.1792 (MVS)
6 0.6323 (MVS) 0.9478 (MVSK) 0.6743 (MVS)
7 0.1862 (MV) 0.6331 (MV) 0.5469 (MVSK)
8 0.4759 (MVS) 0.5353 (MVSK) 0.8630 (MVS)
9 0.4171 (MVS) 0.8924 (MVSK) 0.2198 (MVS)
10 0.1746 (MV) 0.7409 (MV) 0.2513 (MVSK)
11 0.4935 (MV) 0.5563 (MV) 0.9672 (MVSK)
12 0.9658 (MVS) 0.4541 (MVSK) 0.3415 (MVSK)
13 0.7003 (MVS) 0.3705 (MVSK) 0.2941 (MVSK)
14 0.7960 (MV) 0.1132 (MVSK) 0.0426 (MVSK)
15 0.6179 (MVS) 0.7844 (MVSK) 0.7674 (MVS)
16 0.7816 (MV) 0.6415 (MV) 0.7890 (MVS)

This table lists the bootstrap p-values of the difference between the Sharpe ratio of each pair of

frameworks. MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to the

efficient MVS expected utility/cardinality portfolios, and MVSK refers to the efficient MVSK expected

utility/cardinality portfolios. The bootstrap p-values were computed according the Ledoit and Wolf

(2008) methodology. In parenthesis there is the indication of the framework with the highest Sharpe

ratio.
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absolute changes in weights (corresponding to trades) across the N available stocks:

turnover =
1

#periods

#periods∑
t=1

N∑
i=1

(∣∣wi,t+1 − wh
i,t

∣∣) , (4.9)

where wi,t+1 is the weight of stock i after rebalancing at time t + 1 and wh
i,t is that

weight before rebalancing at time t+ 1. Thus, wh
i,t, is computed as

wh
i,t = wi,t−1

1 + ri,t
1 + rp,t

, (4.10)

where ri,t is the return at time t of the stock i and rp,t is the return at time t of the port-

folio. The results are reported in Table 4.12. In all the three frameworks, the turnover

begins by increasing up to a certain cardinality level (around 8 or 9, which corresponds

to about 50% of the maximum cardinality level). This is somehow expected, since the

increase in the number of stocks should increase the transaction costs. However, after

reaching that cardinality level, we observe, in all the three frameworks, the non-intuitive

fact that the turnover decreases when the cardinality increases. The explanation for

this result is that the small fluctuations of the portfolio weights compensate the incre-

ment of the number of stocks in the portfolio. Thus, in this case, from the cardinality

level of about 8 (around 50% of the maximum cardinality), increasing the cardinality

of a portfolio allows the investor to reduce transaction costs.

In order to assess the impact of transaction costs in the performance of the different

strategies, we computed the OOS Sharpe ratio of returns net of transaction costs,

defined as

ŜRtc =
m̂tc

σ̂tc

, (4.11)

where m̂tc = m̂ − tc is the OOS time series of the mean of the returns (m̂) deducted

by transaction costs (tc) and σ̂tc is the standard deviation of the OOS returns after

transaction costs. We used proportional transaction costs defined as11

11Based on the information received from several stock brokers in the Lisbon Stock Exchange
(Euronext Lisbon), for the stocks in the PSI 20 Index the proportional transaction cost was set equal
to 30 basis points per transaction.
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Table 4.12: Portfolio turnover

Efficient portfolios

Number of stocks MV MVS MVSK

1 5.2542 3.7711 5.8529
2 12.1198 9.7732 12.9851
3 11.2775 11.6299 12.7648
4 45.3348 38.2224 44.9272
5 44.7624 45.2611 60.5814
6 55.2793 50.5924 60.7667
7 53.1998 49.3179 59.9827
8 69.7246 60.9169 78.7103
9 61.6530 62.8226 76.8444
10 47.1448 51.1774 56.6053
11 44.4329 47.8681 53.4236
12 32.5758 39.6748 43.4849
13 33.5141 32.5745 34.4450
14 33.6567 33.2447 36.7984
15 30.0968 29.0990 33.1650
16 28.9799 29.7610 33.4280

This table lists the portfolio turnover of the efficient expected utility/cardinality portfolios. MV refers

to the efficient MV expected utility/cardinality portfolios, MVS refers to the efficient MVS expected

utility/cardinality portfolios and MVSK refers to the efficient MVSK expected utility/cardinality

portfolios.
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The refined Sharpe ratios after transaction costs for the efficient portfolios are reported

in Table 4.13. The inclusion of transaction costs may lead to completely different results

(see, e.g., Brito and Vicente, 2014; DeMiguel et al., 2014; DeMiguel and Olivares-Nadal,

2016). Not taking into account the transaction costs in the OOS analysis may result

in the misleading conclusion that diversification is not an important issue in portfolio

management. For example, Brodie et al. (2009) have implemented a specific algorithm

in order to construct sparse portfolios (portfolios with low cardinality) in the classical

MV setting. Their empirical OOS results, for two sets of portfolios constructed by

Fama and French (FF48 and FF100), indicate that sparse portfolios outperform (in

terms of Sharpe ratio) the equally weighted portfolio, suggesting that diversification

does not produce positive results OOS (for the FF48 dataset, the Sharpe ratio even

exhibits a decreasing trend with cardinality). However, the authors do not account for

transaction costs, limiting the real applicability of their findings.

The results that we obtained for the net Sharpe ratios highlight that in the three

frameworks, the pattern of the net Sharpe ratios is inversely related with the turnover

pattern, i.e., the net Sharpe ratios decrease to a certain level of cardinality (around 8 or

9) and then increases with the cardinality level. For all frameworks, the portfolio with

the minimum cardinality of 1 is the portfolio with the highest refined Sharpe ratio after

transaction costs. This is in agreement with previous studies suggesting that sparse

portfolios tend to exhibit a good performance (see, e.g., Brodie et al., 2009). However,

the results that we obtain go further and suggest that for sufficiently large levels of

cardinality, there are gains with diversification.

In Table 4.14 we report the bootstrap p-values of the difference between the Sharpe

ratio after transaction costs for each pair of frameworks (MV vs MVS, MV vs MVSK,

and MVS vs MVSK) given a specific cardinality level. From the comparison between

the MV and the MVS portfolios we found that the MVS portfolios outperform the

MV portfolios (the differences being statistically significant) for nine cardinality levels

(1, 2, 4, 6, 7, 8, 13, 14 and 15). Looking to the MV and the MVSK portfolios, we

found that the MVSK portfolios outperform the MV portfolios only for two cardinality

levels (2 and 4), but the differences are not statistically significant. Summarizing, the

MV portfolios underperform at least one of the efficient portfolios from the two other

frameworks for 9 of 16 cardinality levels. This indicates that when transaction costs are

taken into account, there are sometimes gains (in terms of Sharpe ratio) in considering
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Table 4.13: Refined Sharpe ratios of returns net of transaction costs

Efficient portfolios

Number of stocks MV MVS MVSK

1 -0.0566 -0.0406 -0.0631
2 -0.1297 -0.1024 -0.1255
3 -0.1845 -0.1896 -0.2058
4 -0.8184 -0.6921 -0.8038
5 -0.8744 -0.9002 -1.1893
6 -1.1531 -1.0444 -1.2229
7 -1.1312 -1.0588 -1.2446
8 -1.5160 -1.3237 -1.6839
9 -1.3875 -1.4105 -1.6457
10 -1.0867 -1.1639 -1.2563
11 -1.0476 -1.1319 -1.2325
12 -0.7891 -0.9492 -1.0138
13 -0.8198 -0.7939 -0.8202
14 -0.8280 -0.8151 -0.8845
15 -0.7394 -0.7138 -0.7976
16 -0.7126 -0.7303 -0.8026

This table reports the refined Sharpe ratios of returns net of transaction costs for each efficient

expected utility/cardinality portfolio. MV refers to the efficient MV expected utility/cardinality

portfolios, MVS refers to the efficient MVS expected utility/cardinality portfolios and MVSK refers

to the efficient MVSK expected utility/cardinality portfolios. The refined net Sharpe ratios were

computed according the Israelsen (2005) methodology.
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the skewness, for certain cardinality levels.

Table 4.14: Bootstrap p-values for the net Sharpe ratios

Efficient portfolios

Number of stocks MV vs MVS MV vs MVSK MVS vs MVSK

1 0.0002 (MVS) 0.0002 (MV) 0.0002 (MVS)
2 0.0002 (MVS) 0.1527 (MVSK) 0.0018 (MVS)
3 0.0002 (MV) 0.0002 (MV) 0.0002 (MVS)
4 0.0002 (MVS) 0.9999 (MVSK) 0.0002 (MVS)
5 0.5037 (MV) 0.0002 (MV) 0.0002 (MVS)
6 0.0006 (MVS) 0.0002 (MV) 0.0002 (MVS)
7 0.0002 (MVS) 0.0002 (MV) 0.0002 (MVS)
8 0.0006 (MVS) 0.0002 (MV) 0.0002 (MVS)
9 0.2841 (MV) 0.0002 (MV) 0.0002 (MVS)
10 0.0002 (MV) 0.0002 (MV) 0.0002 (MVS)
11 0.0002 (MV) 0.0002 (MV) 0.0002 (MVS)
12 0.0002 (MV) 0.0002 (MV) 0.0002 (MVS)
13 0.0002 (MVS) 0.0002 (MV) 0.0002 (MVS)
14 0.0014 (MVS) 0.0002 (MV) 0.0002 (MVS)
15 0.0002 (MVS) 0.0002 (MV) 0.0002 (MVS)
16 0.0002 (MV) 0.0002 (MV) 0.0002 (MVS)

This table lists the bootstrap p-values of the difference between the net Sharpe ratios of two different

frameworks. MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to the

efficient MVS expected utility/cardinality portfolios, and MVSK refers to the efficient MVSK expected

utility/cardinality portfolios. The bootstrap p-values were computed according the Ledoit and Wolf

(2008) methodology. The framework with the highest Sharpe ratio is indicated in parenthesis.

The cardinality becomes an even more important issue in datasets with a larger

number of stocks. In order to provide an indication of whether certain patterns found

in the results discussed above (for the PSI 20 Index) remain valid in larger datasets,

we decided to apply the methodology to a dataset from the EURO STOXX 50 Index

(see Table 4.15).

Similarly to the PSI 20 dataset, the daily discrete returns of the EURO STOXX 50

dataset (see Table 4.16), presented, on average, negative but near zero mean, positive

skewness and above normal kurtosis.

We applied, to the EURO STOXX 50 dataset, exactly the same rolling window

approach (see Figure 2.5) described in the beginning of this Section. Table 4.17 reports

the OOS certainty equivalent (solution of Equation (4.7)), ĈE, for the MV, MVS and

MVSK frameworks12.

12Similarly to the case of the PSI 20 dataset, the introduction of a threshold of 1% for the cardinality
computation reduced the maximum cardinality level that led to nondominated solutions. In the case
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Table 4.15: The EURO STOXX 50 dataset

List of stocks

AIR LIQUIDE IBERDROLA
AIRBUS GROUP INDITEX
ALLIANZ (XET) ING GROEP
ANHEUSER-BUSCH INBEV INTESA SANPAOLO
ASML HOLDING L’OREAL
ASSICURAZIONI GENERALI LVMH
AXA MUENCHENER RUCK (XET)
BANCO SANTANDER ORANGE
BASF (XET) PHILIPS ELTN KONINKLIJKE
BAYER (XET) REPSOL YPF
BBV.ARGENTARIA RWE (XET)
BMW (XET) SAINT GOBAIN
BNP PARIBAS SANOFI
CARREFOUR SAP (XET)
CRH (DUB) SCHNEIDER ELECTRIC SE
DAIMLER (XET) SIEMENS (XET)
DANONE SOCIETE GENERALE
DEUTSCHE BANK (XET) TELEFONICA
DEUTSCHE POST (XET) TOTAL
DEUTSCHE TELEKOM (XET) UNIBAIL-RODAMCO
E ON (XET) UNICREDIT
ENEL UNILEVER CERTS
ENI VINCI
ESSILOR INTL VIVENDI
GDF SUEZ VOLKSWAGEN PREF (XET)

This table lists the composition of the EURO STOXX 50 dataset. Daily closing prices, from July

2007 to June 2014, of these 50 stocks (from the EURO STOXX 50 Index) were collected from the

Thomson Reuters Datastream®.
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Table 4.16: Descriptive statistics for the EURO STOXX 50 dataset

Number of days 1826

Minimum -0.1298

Median 0.0001

Maximum 0.1667

Mean 0.0002

Variance 0.0005

Skewness 0.3399

Kurtosis 10.2218

This table reports some descriptive statistics for the EURO STOXX 50 dataset (the composition of

the dataset is reported in Table 4.15). The reported values of skewness and kurtosis, concern to the

third and fourth standardized moments, respectively. These statistics are averaged cross-sectionally,

i.e., they are computed for each stock and then the arithmetic mean is taken.

From the results in Table 4.17 we can see that, similarly to what occurred with

PSI 20 dataset, the certainty equivalent does not show a clear trend with increasing

cardinality, and the best certainty equivalent values always occur at a low cardinality

level (cardinality 2 for all frameworks).

Table 4.18 reports the bootstrap p-values (computed according the Ledoit and Wolf,

2008 robust methodology) of the difference between the OOS Sharpe ratio of each

pair of frameworks (MV vs MVS, MV vs MVSK, and MVS vs MVSK) for the same

cardinality level. Table 4.18 also reports, for each cardinality level, which framework

shows the highest Sharpe ratio. For most cardinality levels, either the MVS or the

MVSK efficient portfolios outperform the efficient MV portfolios, but such differences

are never statistically significant.

The results for the OOS certainty equivalent and Sharpe ratio, both suggest gains,

for certain cardinality levels, in considering higher moments. These results are in

accordance with the results obtained for the PSI 20 dataset.

Similarly to what occurred with the PSI 20 dataset, the turnover exhibits a non-

monotonic pattern (see Table 4.19). In all the frameworks we observe that the turnover

begins by increasing up to a certain cardinality level (17 in the EURO STOXX 50

dataset case, which corresponds to 42.5% of the maximum cardinality level), then de-

creases. However, starting from the cardinality level equal to 24 we observe, again, an

increase in the turnover. Then, for high cardinality levels, the trend ceases to be clear.

of the EURO STOXX 50 dataset the maximum cardinality is equal to 40.
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Table 4.17: Certainty equivalent return for the EURO STOXX 50 dataset

Efficient portfolios

Number of stocks MV MVS MVSK

1 -1.1228 -1.2180 -0.8401
2 -0.7150 -0.8362 -0.5988
3 -1.6367 -1.5413 -1.5261
4 -1.3593 -1.2041 -1.3267
5 -1.7554 -1.8701 -1.6846
6 -2.1226 -2.3514 -1.9385
7 -2.2929 -2.3568 -2.3579
8 -2.8023 -2.9306 -2.8663
9 -3.0445 -2.9943 -2.9719
10 -3.4889 -3.3824 -2.9750
11 -3.4794 -3.5896 -3.3237
12 -3.4635 -3.7971 -3.5398
13 -3.6888 -4.1857 -3.7955
14 -3.8448 -4.1124 -3.9549
15 -4.0945 -4.3040 -4.0928
16 -4.0015 -4.2972 -4.0927
17 -3.9952 -4.1224 -4.0040
18 -4.0168 -4.1569 -4.1108
19 -4.0383 -4.1908 -4.2306
20 -4.2002 -4.1429 -4.3419
21 -4.1040 -4.3728 -4.3479
22 -4.1218 -4.2493 -4.1209
23 -4.1219 -4.2553 -3.9249
24 -4.3303 -4.2030 -4.1561
25 -4.1947 -4.2743 -4.1720
26 -4.2986 -4.2314 -4.1753
27 -4.0887 -4.1126 -4.1933
28 -4.0956 -3.9658 -4.0411
29 -4.1652 -4.0173 -4.0393
30 -4.1568 -4.0311 -4.0897
31 -4.1389 -4.1134 -4.0677
32 -4.1234 -4.0914 -4.0499
33 -4.1076 -4.0932 -4.0833
34 -3.8679 -4.0807 -4.0476
35 -3.9078 -4.0378 -4.0585
36 -4.2453 -3.9664 -3.9836
37 -3.7742 -3.9499 -3.9635
38 -3.9052 -3.9963 -4.0322
39 -3.7590 -3.9894 -4.0615
40 -3.9687 -3.9451 -3.9964

This table lists the OOS certainty equivalent return (ĈE) of the efficient expected utility/cardinality

portfolios. MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to the

efficient MVS expected utility/cardinality portfolios and MVSK refers to the efficient MVSK expected

utility/cardinality portfolios. All the certainty equivalent values are multiplied by a factor of 1000.
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Table 4.18: Bootstrap p-values for the Sharpe ratios, for the EURO STOXX 50 dataset

Efficient portfolios Bootstrap p-values

Number of stocks MV vs MVS MV vs MVSK MVS vs MVSK

1 0.8018 (MVS) 0.3827 (MVSK) 0.3101 (MVSK)
2 0.5583 (MVS) 0.4371 (MVSK) 0.2486 (MVSK)
3 0.5211 (MV) 0.7361 (MVSK) 0.8246 (MVSK)
4 0.4119 (MV) 0.9116 (MVSK) 0.5945 (MVS)
5 0.6313 (MVS) 0.8864 (MVSK) 0.3275 (MVSK)
6 0.4409 (MVS) 0.2242 (MVSK) 0.0058 (MVSK)
7 0.6443 (MVS) 0.5523 (MV) 0.8484 (MVS)
8 0.7281 (MVS) 0.4811 (MV) 0.5559 (MVSK)
9 0.5077 (MV) 0.6737 (MVSK) 0.6775 (MVSK)
10 0.6395 (MV) 0.0772 (MVSK) 0.0940 (MVSK)
11 0.7806 (MVS) 0.6211 (MVSK) 0.4017 (MVSK)
12 0.1296 (MVS) 0.4769 (MV) 0.3759 (MVSK)
13 0.0636 (MVS) 0.4425 (MV) 0.2064 (MVSK)
14 0.2040 (MVS) 0.3207 (MV) 0.7620 (MVSK)
15 0.5417 (MVS) 0.9442 (MVSK) 0.5455 (MVSK)
16 0.1772 (MVS) 0.5427 (MV) 0.3493 (MVSK)
17 0.5688 (MVS) 0.6474 (MVSK) 0.8520 (MVSK)
18 0.5113 (MVS) 0.5085 (MV) 0.9474 (MVSK)
19 0.5303 (MVS) 0.2328 (MV) 0.5893 (MVS)
20 0.6087 (MV) 0.2346 (MV) 0.0310 (MVS)
21 0.2791 (MVS) 0.0963 (MV) 0.5367 (MVSK)
22 0.7271 (MVS) 0.6437 (MVSK) 0.9012 (MVSK)
23 0.9340 (MVS) 0.3761 (MVSK) 0.2244 (MVSK)
24 0.2460 (MV) 0.6237 (MVSK) 0.4115 (MVSK)
25 0.8732 (MVS) 0.8746 (MVSK) 0.9968 (MVSK)
26 0.5815 (MV) 0.6839 (MVSK) 0.8890 (MVSK)
27 0.8546 (MVS) 0.4657 (MV) 0.4809 (MVS)
28 0.3017 (MV) 0.8048 (MVSK) 0.3069 (MVS)
29 0.1588 (MV) 0.3917 (MVSK) 0.5469 (MVS)
30 0.2401 (MV) 0.8660 (MVSK) 0.1978 (MVS)
31 0.4591 (MV) 0.8498 (MVSK) 0.4647 (MVSK)
32 0.3927 (MV) 0.6527 (MVSK) 0.6903 (MVSK)
33 0.4287 (MV) 0.9848 (MVSK) 0.3715 (MVSK)
34 0.3655 (MVS) 0.2334 (MV) 0.6139 (MVSK)
35 0.5713 (MVS) 0.0819 (MV) 0.1556 (MVS)
36 0.1554 (MV) 0.3589 (MVSK) 0.3579 (MVS)
37 0.4453 (MVS) 0.1414 (MV) 0.3659 (MVS)
38 0.9948 (MVS) 0.6247 (MV) 0.3119 (MVS)
39 0.2218 (MVS) 0.0321 (MV) 0.1838 (MVS)
40 0.6309 (MVS) 0.5311 (MV) 0.1858 (MVS)

This table lists the bootstrap p-values of the difference between the Sharpe ratio of each pair of

frameworks. MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to the

efficient MVS expected utility/cardinality portfolios, and MVSK refers to the efficient MVSK expected

utility/cardinality portfolios. The bootstrap p-values were computed according the Ledoit and Wolf

(2008) methodology. In parenthesis there is the indication of the framework with the highest Sharpe

ratio.
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Table 4.19: Portfolio turnover, for the EURO STOXX 50 dataset

Efficient portfolios

Number of stocks MV MVS MVSK

1 13.9087 13.8344 15.0348
2 13.1303 14.6790 15.0737
3 40.1251 44.3824 49.4342
4 56.0273 60.3688 64.7256
5 50.1175 60.7830 55.5558
6 80.3495 78.7964 83.3818
7 84.5984 82.0087 87.8145
8 81.9265 97.1036 102.5520
9 72.5228 96.7480 97.5971
10 107.1080 130.0243 130.8012
11 133.0312 132.0839 144.8024
12 138.5046 142.4454 148.6940
13 138.0521 150.0048 146.9185
14 141.3580 138.2097 141.5113
15 137.1693 137.6385 148.3001
16 139.5588 143.8476 149.4672
17 141.5487 141.7356 153.4877
18 126.5044 131.2663 136.0524
19 125.1619 124.8980 129.0187
20 123.9810 126.5021 127.5923
21 125.7462 120.8936 122.2386
22 118.0602 120.9263 122.4530
23 117.5878 119.5078 121.6786
24 118.8219 122.2902 130.7216
25 127.2803 134.0256 135.8087
26 128.9391 135.6442 136.8285
27 129.0486 136.3405 139.5051
28 136.1073 139.2059 140.4296
29 135.3056 137.4664 143.2948
30 139.4502 139.4577 143.5130
31 136.3280 141.3910 141.2399
32 136.1948 140.3978 143.4964
33 133.0652 141.9928 142.5606
34 141.7797 142.7401 141.0815
35 136.6671 140.6893 143.4869
36 166.3403 142.3293 142.4093
37 145.4961 138.7303 144.4675
38 166.2088 160.9871 157.5376
39 145.6927 139.3858 146.6295
40 137.5481 139.7157 141.8584

This table lists the portfolio turnover of the efficient expected utility/cardinality portfolios. MV refers to the efficient

MV expected utility/cardinality portfolios, MVS refers to the efficient MVS expected utility/cardinality portfolios and

MVSK refers to the efficient MVSK expected utility/cardinality portfolios.
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Regarding the net Sharpe ratio (see Table 4.20), as for the PSI 20 dataset, we

observe that sparse portfolios tend to exhibit the best performance: in all the three

frameworks the efficient portfolios corresponding to the cardinality level equal 2 are

the portfolios with the highest refined net Sharpe ratio. Finally, we notice that, for the

EURO STOXX 50 dataset, the MV efficient portfolios outperform the MVS and the

MVSK efficient portfolios for most cardinalities.

4.4 Conclusions

This chapter extends the analysis of the cardinality impact in the portfolio performance

from the standard MV framework to frameworks with higher moments, namely by

considering the skewness and kurtosis. We propose a biobjective model that allows

the direct analysis of the efficient tradeoff between expected utility and cardinality.

This analysis was conducted assuming an investor with CRRA preferences (with a

relative risk aversion parameter of five). Although we have assumed a specific form for

the investor’s utility, the proposed methodology may easily be applied to any utility

function.

We have conducted an empirical application of the proposed methodology to a

dataset based on the Portuguese Stock Market Index (PSI 20 Index). The IS results

show that both the certainty equivalent and the Sharpe ratio increase with the cardi-

nality level and suggest that there are no gains, in terms of certainty equivalent, when

considering higher moments. When transaction costs are not considered, the OOS

results on the certainty equivalent and Sharpe ratio do not show a clear trend with

cardinality. However, the turnover increases up to a certain level of cardinality and

then decreases. This result leads to another interesting result that the OOS net Sharpe

ratio – that is, the Sharpe ratio net of transaction costs – decreases up to a certain car-

dinality level, then increases and afterwards behaves more erratically for larger values

of the cardinality. So, for an important range of cardinality levels, diversification has

a positive effect when transaction costs are taken into account.

We also used a dataset based on the EURO STOXX 50 Index in order to check

the robustness of the OOS results. Since in this dataset we have a larger number of

stocks, we are able to build portfolios with a larger cardinality. We notice that, for

larger levels of cardinality, the turnover and the net Sharpe ratio no longer show a

clear trend. After an initial increase in turnover, and the subsequent decrease, the

turnover increases again and tends to behave more erratically. Similarly, after an

initial decrease in the net Sharpe ratio, and the subsequent increase, the net Sharpe

ratio decreases again and tends to behave more erratically. This indicates that the
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Table 4.20: Refined Sharpe ratios of returns net of transaction costs, for the EURO
STOXX 50 dataset

Efficient portfolios

Number of stocks MV MVS MVSK

1 -0.1360 -0.1395 -0.1426
2 -0.1073 -0.1237 -0.1213
3 -0.4877 -0.5414 -0.5870
4 -0.6547 -0.7181 -0.7536
5 -0.6448 -0.7818 -0.7024
6 -1.0447 -1.0544 -1.0964
7 -1.1716 -1.1325 -1.2033
8 -1.2258 -1.4757 -1.4913
9 -1.0991 -1.5041 -1.4862
10 -1.6402 -2.0026 -1.9751
11 -2.0884 -2.0941 -2.2504
12 -2.2377 -2.2704 -2.3405
13 -2.2362 -2.4233 -2.3268
14 -2.3225 -2.2756 -2.2848
15 -2.2672 -2.2993 -2.4405
16 -2.3264 -2.3787 -2.4668
17 -2.3837 -2.3738 -2.5310
18 -2.1571 -2.2256 -2.2903
19 -2.1514 -2.1606 -2.2140
20 -2.1534 -2.2148 -2.1834
21 -2.2019 -2.1345 -2.1065
22 -2.0808 -2.1540 -2.1216
23 -2.0638 -2.1430 -2.1198
24 -2.1094 -2.2029 -2.2845
25 -2.2693 -2.4090 -2.3981
26 -2.3133 -2.4471 -2.4359
27 -2.3214 -2.4474 -2.4920
28 -2.4312 -2.5182 -2.5045
29 -2.4173 -2.4838 -2.5619
30 -2.4952 -2.5202 -2.5465
31 -2.4408 -2.5786 -2.5069
32 -2.4298 -2.5431 -2.5554
33 -2.3817 -2.5873 -2.5390
34 -2.5413 -2.5894 -2.5184
35 -2.4547 -2.5517 -2.5375
36 -2.9631 -2.5736 -2.5236
37 -2.6060 -2.5100 -2.5616
38 -2.9530 -2.9100 -2.7977
39 -2.6082 -2.5201 -2.6066
40 -2.4691 -2.5253 -2.5195

This table reports the refined Sharpe ratios of returns net of transaction costs for each efficient expected util-

ity/cardinality portfolio. MV refers to the efficient MV expected utility/cardinality portfolios, MVS refers to the efficient

MVS expected utility/cardinality portfolios and MVSK refers to the efficient MVSK expected utility/cardinality port-

folios. The refined net Sharpe ratios were computed according the Israelsen (2005) methodology.
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best level of cardinality should be a concern for investors wanting to diversify their

portfolios, and we cannot assume that a larger cardinality is always better.

In this study we assumed that the investor has CRRA preferences with a relative

risk aversion of five. In future research we are also interested in studying the sensitivity

of these results to different choices of the relative risk aversion level and also to different

utility functions (e.g. hyperbolic absolute risk aversion (HARA)-utility).
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Chapter 5

Portfolio choice with high

frequency data

5.1 Introduction

The availability of high frequency financial databases has increased in recent years,

which has opened new fields of research both in financial economics and financial

econometrics. Although Merton (1980) has observed that the variance can be accu-

rately estimated as the sum of the realizations of the squared intraday returns, the

researchers attention has been devoted to ARCH type (Engle, 1982; Bollerslev, 1986;

Nelson, 1991) and stochastic volatility models (Taylor, 1986), at least until the end of

the 90s. Nevertheless, based on the work of Schwert (1989) and Hsieh (1991), authors

such as Andersen et al. (2001b) and Barndorff-Nielsen and Shephard (2002) began to

use intraday data to estimate the variance as the sum of squared returns, sampled at

very short intraday intervals. This new approach, known in the literature as realized

volatility, has a straightforward reasoning: since the sample path of the variance is con-

tinuous, the accuracy of the variance estimates increases with the sampling frequency

(Merton, 1980). Moreover, it is quite appealing as it is a model-free and an error-free

measure of volatility (because it is observable) which converges to the quadratic varia-

tion (Andersen et al., 2006). Several useful surveys on realized volatility can be found

in the literature (see, e.g., Barndorff-Nielsen and Shephard, 2005; Andersen et al.,

2006; McAleer and Medeiros, 2008; Meddahi et al., 2011). Papers like Andersen et al.

(2001a), Andersen et al. (2001b), Areal and Taylor (2002), and Koopman et al. (2005)

use the realized volatility in univariate frameworks. Other papers, like Andersen et al.

(2003), Flemming et al. (2003), Barndorff-Nielsen and Shephard (2004), Liu (2009), Fan

et al. (2012), and Hautsch et al. (2012) extend the approach to multivariate cases.

With the remarkable growth of related literature, special attention has been given to
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two ubiquitous problems when dealing with high frequency financial data: market mi-

crostructure noise and asynchronous price observations. The most common response

to the presence of microstructure noise has been to reduce the sampling frequency to

some arbitrary level, say 5-minutes or 30-minutes (Andersen et al., 2001a; Hansen and

Lunde, 2006). Another possibility is to use all the available high frequency data (sec-

onds, milliseconds) and taking explicitly into account the microstructure noise in the

volatility estimation (Aı̈t-Sahalia et al., 2005a;b; 2011). Regarding the nonsynchronous

price observations, Barndorff-Nielsen et al. (2011) have proposed the well-known re-

alized kernel estimator for the multivariate case, which has the advantage of being a

positive-definite estimator, quite suitable for dealing with asynchronous data.

The approaches originally defined for realized volatility can be extended, with equal

interest and potential, to higher moments. Neuberger (2012) introduced the realized

skewness as the sum of the 3rd power of returns, while Amaya et al. (2015) defined the

realized kurtosis as the sum of the 4th power of returns.

Concerning the variance estimation, there are already some studies suggesting the

existence of benefits in using high frequency data (see, e.g., Flemming et al., 2003; Liu,

2009). On the other hand, Amaya et al. (2015) have found a negative effect of skewness

and a positive effect of kurtosis on weekly stock returns. However, an important

question remains open: are there performance gains, for portfolio choice purposes,

in the joint use of the three realized moments (variance, skewness and kurtosis)? In

Section 5.3, we try to contribute, empirically, to answering this question.

The majority of studies in portfolio choice assume that securities’ returns are the

only source of information. However, the subprime crisis, which led to a worldwide

market liquidity crisis, has highlighted the importance of liquidity not only for each

particular investor but also for the achievement of the allocative rationale inherent

to financial markets. Liquidity is the easiness to trade a security. Although quite

simple to enunciate, liquidity is an elusive concept, and in fact, one may enumerate

three main dimensions of a liquid market: depth (high quantities available for sale

or purchase away from the current market price), breadth (large number of market

participants) and resiliency (price impacts caused by trading are small and transitory).

Some authors have found a positive relationship between stock returns and alternative

proxies for liquidity: Amihud and Mendelsen (1986) and Datar et al. (1998) used as

a liquidity proxy the bid-ask spread; Brennan and Subrahmanyam (1996) used price

impacts; Easley et al. (2002) used the probability of informed trading (PIN). Other

papers found the existence of commonality and predictability in liquidity (Chordia

et al., 2001; Hasbrouck and Seppi, 2001; Huberman and Halka, 2001; Amihud, 2002;

Pastor and Stambaugh, 2003).
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It is known that liquidity is a direct function of the implicit and explicit trading

costs. However, the quantification of these costs is not a trivial task, not only due to

its conceptual vagueness but also, sometimes, due to the lack of information. Thus,

there are several proxies to measure liquidity: bid-ask spread, trading volume, turnover,

quote size and price impact. Goyenko et al. (2009) compared different liquidity measures

and found that the Amihud illiquidity ratio (Amihud, 2002) is one of the best liquidity

proxies, having a strong correlation with several other liquidity measures.

Section 5.4 presents a new methodology for portfolio choice in the expected utility-

liquidity space. The proposed EU/L model allows the investor to identify the optimal

portfolios, which have the maximum expected utility, computed with higher moments,

among all that provide at least a certain expected level of liquidity. In this section,

we also consider high frequency data by using realized estimators as the inputs of the

optimization model.

The remainder of this chapter proceeds as follows. Section 5.2 explains the proce-

dures for estimating higher moments using high frequency data. Section 5.3 conducts

an empirical application on fourteen stocks of the French Stock Market Index (CAC

40 Index) comparing between several low and high frequency portfolios. Section 5.4

presents the expected utility-liquidity problem (EU/L problem) and performs an em-

pirical exercise (on the same set of fourteen stocks from the CAC 40 Index). Finally,

Section 5.5 presents the main conclusions.

5.2 The investor’s problem with higher realized mo-

ments

When the available intraday trading data suffer from nonsynchronous trading effects,

this induces potentially serious biases in the moments and co-moments of returns

(Campbell et al., 1997, p. 84-98). In such case, we should adopt some procedure

in order to synchronize the data. One possible way to accomplish this, is using the all

refresh-time method (Barndorff-Nielsen et al., 2011). This method will be summarily

described in Section 5.3.1.

Suppose that for each stock, i = 1, . . . , N , we have Q synchronized intraday price

observations, in day t+1 we have Pt+(q/Q), with q = 1, . . . , Q, price observations. Note

that the closing price of day t+1 is given by Pt+(Q/Q) = Pt+1. In this setting, the daily

realized variance (Andersen et al., 2001a) at day t + 1, for each individual stock i, is

given by

81



rvqi,t+1 =

Q∑
q=1

r2i,t+(q/Q), (5.1)

where ri,t+(q/Q) is the return of stock i in the intraday period q. For each pair of stocks,

i and j, with i, j = 1, . . . , N , the corresponding daily realized covariance, at day t+ 1,

is given by

rcovQi,j,t+1 =

Q∑
q=1

ri,t+(q/Q)rj,t+(q/Q). (5.2)

The daily portfolio realized variance can thus be computed as

rvt+1 = w⊤
t+1RΣt+1wt+1, (5.3)

where RΣt+1 represents the realized covariance matrix. Each entry, cij,t+1, of the RΣt+1

matrix is given by

cij,t+1 =
1

t

t∑
τ=1

Q∑
q=1

ri,τ+(q/Q)rj,τ+(q/Q). (5.4)

Analogously to the realized variance approach, the daily realized skewness (Neu-

berger, 2012) at day t+ 1, for each individual stock i, can be defined as

rsQi,t+1 =

Q∑
q=1

r3i,t+(q/Q). (5.5)

The realized coskewness matrix can be computed as a N × N2 matrix (adapt-

ing the procedure, for the computation of the coskewness matrix, described in detail

by Athayde and Flôres, 2004). According to this procedure, the daily portfolio realized

skewness can be computed as

rst+1 = w⊤
t+1RΦt+1(wt+1 ⊗ wt+1), (5.6)
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where RΦt+1 is the realized coskewness matrix and ⊗ represents the Kronecker product.

The realized coskewness matrix corresponds to N matrixes RAi,t+1 of dimension N×N

such that

RΦt+1 = [ RA1,t+1 | RA2,t+1 | · · · | RAN,t+1 ], (5.7)

where

RAi,t+1 =



rai11,t+1 rai12,t+1 · · · rai1N,t+1

rai21,t+1 rai22,t+1 · · · rai2N,t+1

...
...

. . .
...

raiN1,t+1 raiN2,t+1 · · · raiNN,t+1


, (5.8)

where each element, raijk,t+1, is given by

raijk,t+1 =
1

t

t∑
τ=1

Q∑
q=1

ri,τ+(q/Q)rj,τ+(q/Q)rk,τ+(q/Q), (5.9)

with i, j, k = 1, . . . , N .

Finally, the daily realized kurtosis (Amaya et al., 2015) at day t + 1, for each

individual stock i, can be defined as

rkQ
i,t+1 =

Q∑
q=1

r4i,t+(q/Q). (5.10)

The daily portfolio realized kurtosis, can be obtained by computing the following

products

rkt+1 = w⊤
t+1RΨt+1(wt+1 ⊗ wt+1 ⊗ wt+1), (5.11)

where RΨt+1 represents the realized cokurtosis matrix. The RΨt+1 matrix corresponds

to N2 matrixes RBij,t+1 of dimension N ×N such that
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RΨt+1 = [RB11,t+1 | RB12,t+1 | · · · | RB1N,t+1 | RB21,t+1 | RB22,t+1 | · · · | RB2N,t+1 | · · · | RBN1,t+1 | RBN2,t+1 | · · · | RBNN,t+1] ,

(5.12)

with

RBij,t+1 =



rbij11,t+1 rbij12,t+1 · · · rbij1N,t+1

rbij21,t+1 rbij22,t+1 · · · rbij2N,t+1

...
...

. . .
...

rbijN1,t+1 rbijN2,t+1 · · · rbijNN,t+1


, (5.13)

and where each element, rbijkl,t+1, is given by

rbijkl,t+1 =
1

t

t∑
τ=1

Q∑
q=1

ri,τ+(q/Q)rj,τ+(q/Q)rk,τ+(q/Q)rl,τ+(q/Q), (5.14)

with i, j, k, l = 1, . . . , N .

As discussed before, we propose the use of intraday data to compute the realized

moments as inputs of Problem (2.34):

Vt (rp,t+1) ≈ rvt = w⊤
t RΣtwt,

St (rp,t+1) ≈ rst = w⊤
t RΦt(wt ⊗ wt),

Kt (rp,t+1) ≈ rkt = w⊤
t RΨt(wt ⊗ wt ⊗ wt).

(5.15)

Hence, Problem (2.34) can be reformulated as

max
wt∈RN

θ1 [Et (rp,t+1)]− θ2 [Et (rp,t+1)] rvt + θ3 [Et (rp,t+1)] rst − θ4 [Et (rp,t+1)] rkt

subject to wt ∈ Pt.

(5.16)

Notice that in estimating the daily return, ri,t+1, of each stock i (with i = 1, . . . , N),

from high-frequency data, only the first and last price observations will matter:

84



ri,t+1 =

Q∑
q=1

[
ln(Pi,t+(q/Q))− ln(Pi,t+((q−1)/Q))

]
=

[
ln(Pi,t+(1/Q))− ln(Pi,t)

]
+
[
ln(Pi,t+(2/Q))− ln(Pi,t+(1/Q))

]
+ . . .

+
[
ln(Pi,t+1)− ln(Pi,t+(Q−1/Q))

]
= [ln(Pi,t+1)− ln(Pi,t)] .

(5.17)

Consequently, the estimation of the daily portfolio mean, Et (rp,t+1), is given by Equa-

tion (2.3).

5.3 On the gains of using high frequency data and

higher moments in portfolio selection

In this section, motivated by the work of Brandt et al. (2009), we consider a CRRA-

utility framework to incorporate, not only the first two moments of the returns distri-

bution, but also the skewness and kurtosis into the portfolio selection problem. The

methodological design is the following: firstly, for a given risk aversion level we build

two utility-maximizing portfolios - one based on daily data (which we designate by low

frequency portfolio, w(low), corresponding to the solution of Problem (2.34)) and the

other based on intraday data (the high frequency portfolio, w(high), corresponding to

the solution of Problem (5.16)); then, we compare the OOS performance of the low and

high frequency portfolios for ten different risk aversion levels, using several measures

(the OOS utility, mean, variance, skewness, kurtosis, Sharpe ratio and turnover).

The analysis is conducted on a dataset of fourteen stocks from the French Stock

Market Index (CAC 40 Index) for a five-year period (January 1999 to December 2003).

These data were provided by the EUROFIDAI (European Financial Data Institute),

and were not subjected to any kind of sample selection. These fourteen stocks are con-

stituents of the French Stock Market Index (CAC 40 Index) at the current date (July,

2017). The empirical evidence is very clear: the high frequency portfolios outperform

the low frequency portfolios for every measure and for every risk aversion coefficient.
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5.3.1 Empirical analysis

Data description

We compared the performance of the low frequency portfolio (solution of Problem (2.34))

with that of the high frequency portfolio (solution of Problem (5.16)), using a dataset

from the CAC 40 Index (Euronext Paris). The dataset was provided by the EUROFIDAI

and corresponds to fourteen French stocks (see Table 5.1). These stocks were traded

during all the sample period in the French Stock Market (Euronext Paris) and belonged

to the CAC 40 Index at least once (but not necessarily always). All stocks are currently

constituents of the CAC 40 Index (July, 2017). For each stock, we have access to in-

traday data gathered during each trading session (from 09:00 a.m. to 17:30 p.m., local

time) for a total of 1260 trading days, from January 1999 to December 2003. In these

files, for each stock, among many other information, we just retained the transactions

timestamps, the stock trading prices and the traded number of securities.

Table 5.1: The fourteen stocks from the France Stock Market Index (CAC 40)

Stock Designation

AIR LIQUIDE LVMH
AXA MICHELIN

CARREFOUR PERNOD RICARD
DANONE SAINT-GOBAIN

ESSILOR INTL SANOFI-AVENTIS
FRANCE TELECOM TOTAL

L’OREAL UNIBAL

This table lists the composition of the dataset used in the empirical analysis. The intraday data, on

these stocks, were provided by the EUROFIDAI.

The intraday price observations, for the fourteen stocks, were not synchronized.

Refresh-time methods used for synchronizing intraday trading among stocks include

the pairwise refresh-time method and the all refresh-time method. The pairwise refresh-

time method synchronizes the trading for each pair of stocks separately, allowing us

to retain more data points (compared to the all refresh-time method); however, the

resulting covariance matrix is not necessarily positive definite. In turn, the all refresh-

time method synchronizes all stocks simultaneously and ensures that the resulting

covariance matrix is positive definite (see Barndorff-Nielsen et al., 2011, for further

details).

To ensure the positive-definiteness of the covariance matrix, in this Chapter we

chose the all refresh-time method (Barndorff-Nielsen et al., 2011). This method was

implemented through a C++ routine. Briefly, this method can be described as follows:
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• Let τ1 be the first intraday period at day t+1 where all the available stocks have

changed their price at least once since the market opening;

• Let τ2 be the first intraday period at day t+1 where all the available stocks have

changed their price at least once since τ1;

• Proceeding in this way, allows the sequential definition of timestamps τq, with

q ∈ {1, . . . , Q}, until τq is defined, corresponding to the market closure;

• Then we can compute the intraday returns for each stock i ∈ {1, . . . , N}, in

irregularly spaced but perfectly synchronous intervals

ri,t+τq = ln(Pi,t+τq)− ln(Pi,t+τq−1), with q = 2, . . . , Q. (5.18)

After overcoming the nonsynchronous trading problem, we obtained an average of

about 49 synchronized price changes per day, which corresponds to an average duration

of around 10-minutes (see Figure 5.1). From this figure it also visible an increasing trend

in the trading frequency during the period under analysis. Hereafter, when estimating

the realized moments, it is assumed that microstructure noise does not exist.

Figure 5.1: Averaged (on the fourteen stocks) number of intraday price changes per
day

This figure reports the averaged (over the fourteen stocks) number of changes in the intraday price

observations for each day. The horizontal axis corresponds to the number of trading days. In the

vertical axis is the average number of intraday price changes. The horizontal dashed line represents

the averaged (on the overall sample) number of price changes per day (equal to 49.4584 price changes).

Performance of the Models

To compare the performance of the low frequency portfolio (w(low)) with that of the

high frequency portfolio (w(high)), we used a rolling window approach (see Figure 2.5)
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for a total of 255 evaluation periods (days), for the year of 2003. The first estimation

window ranges from the first trading day of January 1999 to the last trading day of

December 2002. The low frequency portfolio (solution of Problem (2.34)) and the high

frequency portfolio (solution of Problem (5.16)) were computed for ten risk aversion

levels, γ = 1, . . . , 10. From the recorded OOS daily returns for each portfolio (w(low)

and w(high)) we computed the OOS utility, ĝ, given by

ĝ =


(1 + m̂)1−γ − 1

1− γ
if γ > 1,

log(1 + m̂) if γ = 1,

(5.19)

where m̂ represents the OOS mean return. The results are reported in Table 5.2.

We can observe that, for all the ten different risk aversion levels, the high frequency

portfolio always outperforms the low frequency portfolio in terms of OOS utility.

Table 5.2: OOS portfolio utility (ĝ)

Risk Aversion Level Low Frequency Portfolio (w(low)) High Frequency Portfolio (w(high))

γ = 1 -13.0449 -6.9156

γ = 2 -1.3885 4.8674

γ = 3 1.1692 9.3592

γ = 4 2.3758 12.4280

γ = 5 7.6371 17.5120

γ = 6 12.4940 20.9860

γ = 7 16.0260 22.9050

γ = 8 18.3800 24.8660

γ = 9 20.5960 25.8180

γ = 10 22.2090 26.7570

This table reports the OOS utility ĝ of each low frequency portfolio (w(low)) and high frequency

portfolio (w(high)) for ten different risk aversion levels. All the OOS utility values are multiplied by a

factor of 105.

The investor wants to achieve the portfolio with the highest mean and skewness

and the lowest variance and kurtosis, therefore the superiority of the high frequency

portfolios may be the result of its dominance in any of these dimensions. Strikingly,

regardless of the risk aversion coefficient, the high frequency portfolio is able to outper-

form the low frequency portfolio in terms of OOS mean (see Table 5.3), OOS variance
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(see Table 5.4), OOS skewness (see Table 5.5) and OOS kurtosis (see Table 5.6).

Table 5.3: OOS portfolio mean (m̂)

Risk Aversion Level Low Frequency Portfolio (w(low)) High Frequency Portfolio (w(high))

γ = 1 -13.0441 -6.9154

γ = 2 -1.3884 4.8676

γ = 3 1.1692 9.3605

γ = 4 2.3759 12.4310

γ = 5 7.6385 17.5195

γ = 6 12.4988 20.9990

γ = 7 16.0351 22.9230

γ = 8 18.3935 24.8906

γ = 9 20.6154 25.8485

γ = 10 22.2339 26.7929

This table reports the OOS mean (m̂) of each low frequency portfolio (w(low)) and high frequency

portfolio (w(high)) for ten different risk aversion levels. All the m̂ values are multiplied by a factor of

105.

Table 5.4: OOS portfolio variance (v̂)

Risk Aversion Level Low Frequency Portfolio (w(low)) High Frequency Portfolio (w(high))

γ = 1 22.2365 19.4203

γ = 2 19.1773 17.7894

γ = 3 18.2156 17.1653

γ = 4 17.4455 16.6957

γ = 5 16.6210 15.7214

γ = 6 16.1818 15.0494

γ = 7 15.9180 14.5053

γ = 8 15.7023 14.0070

γ = 9 15.5145 13.5888

γ = 10 15.3684 13.2560

This table reports the OOS variance (v̂) of each low frequency portfolio (w(low)) and high frequency

portfolio (w(high)) for ten different risk aversion levels. All the v̂ values are multiplied by a factor of

105.

These results present a quite strong evidence in the sense that for any possible OOS

performance measure, involving any of the four moments (mean, variance, skewness
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Table 5.5: OOS portfolio skewness (ŝ)

Risk Aversion Level Low Frequency Portfolio (w(low)) High Frequency Portfolio (w(high))

γ = 1 -50.3308 -18.4611

γ = 2 -24.1452 -8.8852

γ = 3 -18.0263 -6.4945

γ = 4 -13.4717 -5.6325

γ = 5 -11.0233 -5.0495

γ = 6 -9.7057 -4.7543

γ = 7 -8.9234 -4.4501

γ = 8 -8.3188 -4.0176

γ = 9 -7.7254 -3.7165

γ = 10 -7.3257 -3.5138

This table reports the OOS skewness (ŝ) of each low frequency portfolio (w(low)) and high frequency

portfolio (w(high)) for ten different risk aversion levels. All the ŝ values are multiplied by a factor of

107.

Table 5.6: OOS portfolio kurtosis (k̂)

Risk Aversion Level Low Frequency Portfolio (w(low)) High Frequency Portfolio (w(high))

γ = 1 77.6808 30.0367

γ = 2 34.1095 15.9259

γ = 3 24.5314 12.3103

γ = 4 17.9085 10.5034

γ = 5 14.1409 8.9305

γ = 6 12.3113 8.0342

γ = 7 11.2616 7.3969

γ = 8 10.5364 6.8483

γ = 9 9.9493 6.4514

γ = 10 9.5555 6.1645

This table reports the OOS kurtosis (k̂) of each low frequency portfolio (w(low)) and high frequency

portfolio (w(high)) for ten different risk aversion levels. All the k̂ values are multiplied by a factor of

108.

and kurtosis), the high frequency portfolio always exhibits a better performance than

the low frequency portfolio. For instance, we can consider the Sharpe ratio, ŜR (see

Equation (3.14)). When the numerator (the OOS mean) of ŜR is negative, the ratio
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is refined according to Israelsen (2005) and corresponds to Equation (4.8). Table 5.7

presents the results for the refined Sharpe ratio. The results show that the low fre-

quency portfolio always underperforms the high frequency portfolio, for any of the

considered risk aversion level.

Table 5.7: OOS portfolio refined Sharpe ratio (ŜRref )

Risk Aversion Level Low Frequency Portfolio (w(low)) High Frequency Portfolio (w(high))

γ = 1 -0.0019 -0.0010

γ = 2 -0.0002 3.6495

γ = 3 0.8663 7.1446

γ = 4 1.7988 9.6206

γ = 5 5.9249 13.9725

γ = 6 9.8255 17.1175

γ = 7 12.7095 19.0331

γ = 8 14.6785 21.0312

γ = 9 16.5510 22.1740

γ = 10 17.9350 23.2709

This table reports the OOS refined Sharpe ratios (ŜRref ) of each low frequency portfolio (w(low))

and high frequency portfolio (w(high)) for ten different risk aversion levels. All the ŜRref values are

multiplied by a factor of 103.

Finally, we also compare the low and high frequency portfolio’s turnover. The

turnover is here defined as the average, over all time periods, of the absolute changes

in weights across the N available stocks (see Equation (4.9)).

The results are reported in Table 5.8. The same pattern, presented in the previous

OOS performance evaluation measures, was found, i.e., for the ten different relative risk

aversion levels the high frequency portfolios outperform the low frequency portfolios.

So, in the presence of proportional transaction costs, the high frequency portfolios

provide a saving in trading costs, implying that the superiority of these portfolios

increase after trading cost are taking into account.

We also highlight that, for all the performance evaluation measures, a surprising

pattern was found: the OOS performances, both for the low and high frequency port-

folios are increasing functions of the risk aversion level (γ). A possible explanation

for this puzzling pattern may lie on the fact that with the increase of the risk aver-

sion level, the constructed portfolios become closer to the minimum variance portfolio.

The minimum variance portfolio tends to exhibit a superior OOS performance (see,

e.g., Jagannathan and Ma, 2003; DeMiguel et al., 2009b). Furthermore, it has been
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Table 5.8: Portfolio turnover

Risk Aversion Level Low Frequency Portfolio (w(low)) High Frequency Portfolio (w(low))

γ = 1 0.0952 0.0797

γ = 2 0.0640 0.0575

γ = 3 0.0593 0.0508

γ = 4 0.0550 0.0446

γ = 5 0.0483 0.0382

γ = 6 0.0427 0.0335

γ = 7 0.0379 0.0319

γ = 8 0.0348 0.0300

γ = 9 0.0319 0.0277

γ = 10 0.0291 0.0254

This table reports the turnover of each low frequency portfolio (w(low)) and high frequency portfolio

(w(high)) for ten different risk aversion levels.

documented in the literature that stocks with higher variance tend to underperform

low variance stocks (Baker et al., 2011).

5.4 Portfolio choice with high frequency data: CRRA

preferences and the liquidity effect

In this section, we suggest the construction of expected utility-liquidity portfolios. By

solving the proposed expected utility-liquidity (EU/L) problem, the investor will be

able to identify the portfolios, which have the maximum expected utility among all that

provide at least a certain expected liquidity level. We also assume that the investor has

a CRRA-utility. However, it is worth noticing that the proposed methodology is appli-

cable to any other type of utility function. In this study, we consider the fourth order

Taylor expansion of the expected utility, around the portfolio expected return. Thus

the expected utility is a function of the portfolio expected return, variance, skewness

and kurtosis. Relying on intraday transaction data, we use the daily estimates of the

portfolio’s moments as inputs for the optimization model, using as estimators the port-

folio realized variance, realized skewness and realized kurtosis. In addition, since we

are interested on the relationship between liquidity and the behaviour of stock prices,

following Goyenko et al. (2009) and Chiang and Zheng (2015), the daily illiquidity level

is measured by the intraday Amihud illiquidity ratio (Amihud, 2002).
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For the empirical application we also use intraday data on the same set of fourteen

French stocks used in the previous section. Nevertheless, we extend the time period

to the maximum length which we have access, i.e., seven years (from January 1999 to

December 2005, which corresponds to 14.5GB of raw data). IS we compute the EU/L

Pareto frontier for a moderately risk averse investor. The EU/L Pareto frontier shows

the existence of a positive relationship between the expected utility and the expected

illiquidity. OOS, we compute three different EU/L optimal portfolios (according to

three different, pre-established, illiquidity levels) and compare their performance with

two hard to beat benchmark portfolios: the minimum variance and the equally weighted

portfolios. The EU/L optimal portfolios are very competitive and in most cases are

able to consistently beat the benchmarks. This is observable in terms of OOS utility,

liquidity and certainty equivalent. These results hold for different risk aversion levels,

which indicates that the proposed EU/L model is quite robust.

5.4.1 The EU/L Problem

As referred by Goyenko et al. (2009) and Chiang and Zheng (2015), the Amihud illiq-

uidity ratio is one of the best proxies to measure stock liquidity since it has a strong

correlation with several other measures of liquidity. We define the Amihud illiquidity

ratio for stock i at day t+ 1, ARi,t+1 as

ARi,t+1 =
1

Q

Q∑
q=1

|ri,t+(q/Q)|
voli,t+(q/Q)

, (5.20)

where ri,t+(q/Q) represents the return of stock i in the intraday period q, and voli,t+(q/Q)

the corresponding trading volume in euros.

In this section, we suggest the construction of efficient portfolios, where the investor

maximize her expected utility while taking into account the liquidity level associated

to those portfolios. Thereby, motivated by Problem (5.16) and using the Amihud illiq-

uidity ratio as a liquidity measure, we propose the following expected utility-liquidity

(EU/L) problem

max
wt∈RN

θ1 [Et (rp,t+1)]− θ2 [Et (rp,t+1)] rvt + θ3 [Et (rp,t+1)] rst − θ4 [Et (rp,t+1)] rkt

subject to ι⊤t wt ≤ ιtarget,

wt ∈ Pt,

(5.21)
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where ιt represents the vector of dimension N × 1, with elements equal to the ex-

pected Amihud illiquidity ratio (computed according to Equation (5.20)) of each stock

i = 1, . . . , N , and ιtarget is a given illiquidity upper limit. The objective function of

the EU/L problem (Problem (5.21)) is a continuous nonlinear but smooth function,

all constraints are linear and the feasible space is compact (it is a bounded and closed

space). Given these properties, the existence of a maximum for the EU/L problem is

guaranteed by the well-known Weierstrass theorem. By solving Problem (5.21) for dif-

ferent values of ιtarget, which can be done by using any standard nonlinear optimization

software for constrained optimization, one can identify the efficient EU/L frontier, i.e.

those portfolios which have the maximum expected utility among all feasible portfolios

that provide at least a certain level of expected liquidity.

5.4.2 Empirical Application

The Data

The empirical exercise was conducted over the same set of stocks presented in Section

5.3.1, i.e., fourteen French stocks (see Table 5.1) from the CAC 40 Index (the data was

provided by the EUROFIDAI). Nevertheless, in this case we have access to intraday

data for a total of 1777 trading days, from January 1999 to December 2005. Since the

intraday price observations were not synchronized, we used the all refresh-time method

(Barndorff-Nielsen et al., 2011) as presented in Section 5.3.1. After the synchronization

procedure, there are on average about 61 prices changes per day (see Figure 5.2), which

corresponds to an average trading frequency of 8-minutes. From Figure 5.2 it also

visible that the trading intensity has increased on average about five times during the

period under scrutiny.

The proposed methodology (described in Section 5.4.1) was implemented in MATLAB.

By default, MATLAB has a 16 digit precision, which ensures the inexistence of relevant

rounding errors when computing the realized moments and co-moments13. Addition-

ally, we have computed the condition number of the realized covariance (Equation

(5.4)), realized coskewness (Equation (5.7)) and realized cokurtosis (Equation (5.12))

matrixes (for all the sample period) and we have obtained the values of 8.56, 10.26

and 22.88, respectively. This suggests that the estimates of the realized moments and

13The most critical co-moment, in terms of possible rounding errors, is cokurtosis, since it involves
summing returns raised to the fourth power. Concerning this co-moment, we start by noticing that,
in the dataset, we have double digit stock prices (no higher). With double digit stocks prices and ticks
of 1c, high frequency returns can be as low as 10−4 and their fourth power can be of the 10−16 order.
In turn, the highest value that the realized cokurtosis takes is of the 10−4 order. Therefore, since
we work with a 16 digit precision, in the computation of the realized cokurtosis at least 4 significant
digits of the fourth power of the high frequency returns are preserved.
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Figure 5.2: Averaged number of intraday price changes

This figure reports the averaged (over the fourteen stocks) number of changes in the intraday price

observations for each day. The horizontal axis corresponds to the number of trading days. In the

vertical axis is the average number of intraday price changes. The horizontal line represents the

averaged (on the overall sample) number of price changes per day (equal to 61.4347 price changes).

co-moments are relatively stable.

We can look to the EU/L problem (Problem (5.21)) as a biobjective problem

max
wt∈RN

θ1 [Et (rp,t+1)]− θ2 [Et (rp,t+1)] rvt + θ3 [Et (rp,t+1)] rst − θ4 [Et (rp,t+1)] rkt

min
wt∈RN

ι⊤wt

subject to wt ∈ Pt.

(5.22)

The solution of Problem (5.22) is given in the form of a Pareto frontier in the

expected utility-illiquidity space, allowing the investor to directly analyze the efficient

tradeoff between these two dimensions. Problem (5.22) can be solved using a MOO

algorithm. Motivated by previous works (see Brito et al., 2016; 2017c) and since the

first objective, θ1 [Et (rp,t+1)]−θ2 [Et (rp,t+1)] rvt+θ3 [Et (rp,t+1)] rst−θ4 [Et (rp,t+1)] rkt,

is a highly nonlinear function, we have decided to use a derivative-free solver based on

DMS (see Appendix B).

Setting the IS period equal to all the available time window (January 1999 to

December 2005), we applied the solver dms (see Appendix B) to determine the EU/L

Pareto frontier. Figure 5.3 contains the plot of the EU/L Pareto frontier for an investor

with a constant relative risk aversion parameter equal to 5 (see Equation (2.19)).

From the analysis of Figure 5.3, we can observe a positive relationship between the
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Figure 5.3: EU/L Pareto frontier

This figure reports the solution of the EU/L biobjective Problem (Problem (5.22)). The vertical

axis corresponds to the first objective function (expected utility) and the horizontal axis represents

the second objective function (expected illiquidity). This solution is for a moderate risk aversion

parameter (γ = 5).

expected utility and the expected illiquidity14.

Portfolio constraints commonly used in practice (e.g. turnover constraints, buy-in

threshold constraints, cardinality constraints) can be introduced and explored in the

proposed EU/L model. For example, if we introduce a turnover constraint15 we obtain

a different EU/L frontier (see Figure 5.4). From the comparison between the EU/L

Pareto frontier (see Figure 5.3) and the EU/L Pareto frontier with a turnover constraint

(see Figure 5.4), it is possible to verify that the inclusion of a turnover constraint leads

to a deterioration of the portfolios in the two considered objectives (expected utility

and expected illiquidity) although the frontier maintains its convexity.

OOS Results and Sensitivity to Risk Aversion

In order to analyze the robustness of the efficient portfolios on the EU/L space, this

subsection compares the OOS performance of three different EU/L optimal portfolios

in relation to two benchmark portfolios.

The three chosen EU/L optimal portfolios are: wι10 , wι50 and wι90 , the portfolios

that correspond to the solution of Problem (5.21) for ιtarget = ι10, ιtarget = ι50 and

ιtarget = ι90, respectively, where ιy represents the yth percentile of the expected illiq-

14The same pattern was found for two different choices of the relative risk aversion parameter (γ = 1
and γ = 10).

15A turnover constraint can be formulated as

N∑
i=1

|wi,t+1 − w0
i,t| ≤ h, where w0

i,t is the reference

portfolio and h is the turnover upper bound.
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Figure 5.4: EU/L Pareto frontier with a turnover constraint

This figure reports the solution of the EU/L biobjective Problem (Problem (5.22)) with the inclusion

of a turnover constraint (the reference portfolio was the equally weighted portfolio and the turnover

upper bound was set to 5%). The vertical axis corresponds to the first objective function (expected

utility) and the horizontal axis represents the second objective function (expected illiquidity). This

solution is for a moderate risk aversion parameter (γ = 5).

uidity across all stocks. Hence, by construction, the aggregate level of liquidity of the

resulting efficient portfolios diminishes with the increasing percentile.

Previous works, such as Jagannathan and Ma (2003); DeMiguel et al. (2009b); Brito

et al. (2016), have showed the good OOS performance of the well-known minimum

variance portfolio, mv portfolio (solution of Problem (2.16)), and the equally weighted

portfolio, ew portfolio (defined by Equation (2.15)). In this study, we have thus decided

to use these two portfolios as benchmark portfolios.

We used a rolling window approach (see Figure 2.5) for the OOS performance

evaluation. We considered an estimation window of 1520 days, while the remaining

257 days are used for evaluating the OOS performance measures. The first estimation

window is from January 1999 to December 2004, and January 3, 2005 is the first

day where we evaluate the out-of-sample performance. For each estimation window,

we computed the two benchmark portfolios, mv portfolio and ew portfolio, using the

daily returns and three optimal EU/L portfolios, wι10 , wι50 and wι90 , for each of three

different levels of risk aversion (γ = 1, γ = 5 and γ = 10), using intraday data. Then

each portfolio was held fixed and its daily returns were observed over the next day.

The estimation window was then moved forward one day, and the daily returns were

computed for the next day of the evaluation period. The process was thus repeated

until exhausting the 257 trading days of 2005.

Table 5.9 presents some OOS descriptive statistics. The returns of all portfolios

present above normal kurtosis and are skewed. For γ = 1 and γ = 5, all the EU/L
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portfolios present a higher OOS mean than the benchmark portfolios (with higher

OOS standard deviation, also). It is interesting to notice that the most liquid EU/L

portfolio, wι10 , has a higher OOS mean than the benchmark portfolios, for two different

risk aversion levels (γ = 1 and γ = 5).

Table 5.9: OOS descriptive statistics

Descriptive statistics m̂ σ̂ ŝstand k̂stand

Benchmark portfolios

mv portfolio 0.00072746 0.0068 -0.0407 3.3707
ew portfolio 0.00069979 0.0064 -0.1181 3.5758

EU/L portfolios

γ = 1

wι10 0.00077098 0.0085 0.2823 4.5101
wι50 0.00075402 0.0084 0.2350 4.5533
wι90 0.00077375 0.0085 0.2836 4.5155

γ = 5

wι10 0.00074280 0.0075 -0.0281 3.4576
wι50 0.00074384 0.0075 -0.0260 3.4545
wι90 0.00074411 0.0075 -0.0258 3.4547

γ = 10

wι10 0.00070052 0.0073 -0.2337 3.7339
wι50 0.00071437 0.0073 -0.2407 3.7289
wι90 0.00070040 0.0073 -0.2340 3.7342

This table reports the OOS mean (m̂), standard deviation (σ̂), standardized skewness (ŝstand) and

standardized kurtosis (k̂stand) for each portfolio. The benchmark portfolios, mv and ew portfolios,

refer to the minimum variance and equally weighted portfolios, computed using daily data. The three

portfolios wι10 , wι50 and wι90 , denote the optimal expected utility/liquidity portfolios considering

percentiles 10, 50 and 90 of the overall illiquidity spectrum across all stocks, and are computed using

intraday data. For the computation of the EU/L optimal portfolios we considered three different levels

of risk aversion: γ = 1, γ = 5 and γ = 10.

Given the time series of daily OOS returns for each portfolio (two benchmark port-

folios and nine EU/L optimal portfolios), we computed three performance evaluation

measures. The OOS utility, û, defined as
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û =


(1 + m̂)1−γ

1− γ
if γ > 1,

log(1 + m̂) if γ = 1,

(5.23)

where m̂ corresponds to the OOS mean return. The OOS illiquidity, ι̂, defined as

the averaged OOS portfolio illiquidity, and the certainty equivalent, ĈE (see Equa-

tion(4.7)). Recall that, the certainty equivalent can be interpreted as the risk-free rate

that an investor is willing to accept in order to give up a particular risky portfolio.

The results for these three performance evaluation measures are presented in Tables

5.10 to 5.12.

The three EU/L optimal portfolios (wι10 , wι50 and wι90) have a consistently lower

illiquidity level than the benchmark portfolios (the mv and ew portfolios), for any

of the considered risk aversion levels. A possible explanation for this result is that

liquidity has a persistent nature, thus the most liquid stocks ex-ante tend to be the

most liquid ones ex-post. This result highlights the robustness of the EU/L model in

building reliably liquid portfolios.

The robustness of the EU/L model is also reflected in the OOS utility, û, results.

For γ = 1 and γ = 5, all the EU/L portfolios consistently show a significant (at a

5% significance level) higher utility than the benchmarks portfolios. In turn, when

the investor is more sensitive to losses, the case of γ = 10, all the EU/L portfolios

significantly underperform one of the benchmark portfolios (the mv portfolio) and

slightly outperform the other (the ew portfolio).

In terms of OOS certainty equivalent return, ĈE, for a low (γ = 1) and a moderate

(γ = 5) risk aversion levels, the three chosen EU/L portfolios present a competitive

certainty equivalent (compared with the benchmark portfolios). However, this pattern

does not hold for γ = 10: here the EU/L portfolios clearly underperform the bench-

mark portfolios in terms of certainty equivalent return. We must note that both the

utility and the certainty equivalent do not take the liquidity into account; since the

EU/L portfolios must also take into account liquidity, it is not surprising that they

underperform (or at least some of them underperform) the benchmark portfolios.

In addition to the three aforementioned performance measures, we decided to in-

clude in this OOS analysis the Sharpe ratio16 (see Equation (3.14)) and net Sharpe

ratio17 (see Equation (4.11)). Since the Sharpe ratio is one of the most referenced OOS

16When the numerator was negative, the ratio was refined in order to achieve a correct rank of the
portfolios, according the Israelsen (2005) methodology (see Equation (4.8)).

17As commonly assumed in the literature (see, e.g., Balduzzi and Lynch, 1999; DeMiguel et al.,
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Table 5.10: OOS performance evaluation for γ = 1

Performance measures û ι̂ ĈE

Benchmark portfolios

mv portfolio 7,271.9328 3.7452 7,041.6351
ew portfolio 6,995.4703 4.7819 6,790.0271

EU/L portfolios

wι10 7,706.8555 2.7257 7,346.4346
(0.0079)mv(0.0024)ew (0.0000)mv(0.0000)ew (0.0028)mv(0.0017)ew

wι50 7,537.3783 2.7632 7,186.4844
(0.0204)mv(0.0021)ew (0.0000)mv(0.0000)ew (0.0049)mv(0.0191)ew

wι90 7,734.4585 2.7253 7,374.1947
(0.0011)mv(0.0045)ew (0.0000)mv(0.0000)ew (0.0041)mv(0.0054)ew

This table reports the OOS utility (û), illiquidity (ι̂) and certainty equivalent (ĈE), for each portfolio.

All the presented OOS values are multiplied by a factor of 107. In parenthesis are the bootstrap p-

values of the difference between the respective performance measure of each EU/L portfolio and the

benchmark portfolios, denoted by the superscripts mv and ew, respectively. These bootstrap p-values

were computed according the classical methodology proposed by Efron and Tibshirani (1994).

Table 5.11: OOS performance evaluation for γ = 5

Performance measures û ι̂ ĈE

Benchmark portfolios

mv portfolio -2,492,738.6332 3.7452 6,109.4671
ew portfolio -2,493,014.3079 4.7819 5,957.4286

EU/L portfolios

wι10 -2,492,585.7349 3.1594 6,019.1712
(0.0075)mv(0.0030)ew (0.0000)mv(0.0000)ew (0.0524)mv(0.0918)ew

wι50 -2,492,575.3643 3.1595 6,029.8099
(0.0051)mv(0.0000)ew (0.0000)mv(0.0000)ew (0.0599)mv(0.0353)ew

wι90 -2,492,572.6882 3.1596 6,032.4879
(0.0049)mv(0.0000)ew (0.0000)mv(0.0000)ew (0.0847)mv(0.0141)ew

This table reports the OOS utility (û), illiquidity (ι̂) and certainty equivalent (ĈE), for each portfolio.

All the presented OOS values are multiplied by a factor of 107. In parenthesis are the bootstrap p-

values of the difference between the respective performance measure of each EU/L portfolio and the

benchmark portfolios, denoted by the superscripts mv and ew, respectively. These bootstrap p-values

were computed according the classical methodology proposed by Efron and Tibshirani (1994).

performance evaluation measures in the literature and the net Sharpe ratio allows the

2009b; DeMiguel and Olivares-Nadal, 2016) and according to Equation (4.12), we set the proportional
transaction costs equal to 50 basis points per transaction. Thus the cost of a trade over all stocks is
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Table 5.12: OOS performance evaluation for γ = 10

Performance measures û ι̂ ĈE

Benchmark portfolios

mv portfolio -1,103,862.9229 3.7452 4,943.2142
ew portfolio -1,104,137.6161 4.7819 4,914.1740

EU/L portfolios

wι10 -1,104,130.3797 3.4059 4,318.0065
(0.0000)mv(0.2212)ew (0.0000)mv(0.0000)ew (0.0000)mv(0.0000)ew

wι50 -1,104,130.8790 3.2626 4,316.6101
(0.0000)mv(0.3077)ew (0.0000)mv(0.0000)ew (0.0000)mv(0.0000)ew

wι90 -1,104,130.1621 3.2626 4,317.1349
(0.0000)mv(0.2402)ew (0.0000)mv(0.0000)ew (0.0000)mv(0.0000)ew

This table reports the OOS utility (û), illiquidity (ι̂) and certainty equivalent (ĈE), for each portfolio.

All the presented OOS values are multiplied by a factor of 107. In parenthesis are the bootstrap p-

values of the difference between the respective performance measure of each EU/L portfolio and the

benchmark portfolios, denoted by the superscripts mv and ew, respectively. These bootstrap p-values

were computed according the classical methodology proposed by Efron and Tibshirani (1994).

analysis of the impact of transaction costs, we decided to investigate how the EU/L

portfolios behave in these two performance evaluation measures comparatively to the

benchmark portfolios.

Table 5.13 shows the results for these two additional performance evaluation mea-

sures, the Sharpe ratio (ŜR) and the net Sharpe ratio (ŜRtc). Regarding the Sharpe

ratios, we can observe that it is for a moderate risk aversion level (γ = 5) that the

EU/L portfolios achieve the highest values. However, for the different risk aversion

levels the benchmark portfolios always outperform the EU/L portfolios. As we noticed

for the utility and the certainty equivalent measures, this is not surprising, since the

EU/L portfolios must also take into account liquidity and higher moments.

When we consider the transaction costs (by computing the net Sharpe ratio), we

observe that, all the EU/L portfolios are not able to beat the two benchmark portfolios.

This was somehow expected, since the EU/L portfolios present a higher turnover (see

Equation (4.9)) than the benchmarks (see Table 5.14). It is well-known in the literature

that the mv and ew portfolios present a much lower turnover than other alternative

strategies (see, e.g, DeMiguel et al., 2009b).

defined as

tc =

#periods∑
t=1

0.5%

N∑
i=1

(∣∣wi,t+1 − wh
i,t

∣∣) .
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Table 5.13: OOS Sharpe ratios and net refined Sharpe ratios

Sharpe ratios Net refined Sharpe ratios

Benchmark portfolios

mv portfolio 1,031.7464 -0.6939
ew portfolio 1,053.0251 -0.5152

EU/L portfolios

γ = 1

wι10 862.2577 -7.8601
(0.2713)mv(0.3219)ew (0.0010)mv(0.0010)ew

wι50 854.8575 -11.9545
(0.2627)mv(0.3189)ew (0.0010)mv(0.0010)ew

wι90 865.6784 -8.0057
(0.2591)mv(0.3291)ew (0.0010)mv(0.0010)ew

γ = 5

wι10 952.1998 -2.8132
(0.2855)mv(0.5435)ew (0.0010)mv(0.0010)ew

wι50 953.6620 -2.8126
(0.3095)mv(0.5525)ew (0.0010)mv(0.0010)ew

wι90 954.0161 -2.8065
(0.2933)mv(0.5559)ew (0.0010)mv(0.0010)ew

γ = 10

wι10 921.3735 -1.6135
(0.2130)mv(0.3673)ew (0.0010)mv(0.0010)ew

wι50 940.7258 -2.5132
(0.2649)mv(0.4453)ew (0.0010)mv(0.0010)ew

wι90 921.0850 -1.6095
(0.2175)mv(0.3703)ew (0.0010)mv(0.0010)ew

This table reports the OOS Sharpe ratio (ŜR) and net Sharpe ratio, (ŜRtc), for each portfolio.

All the OOS Sharpe ratios and net Sharpe ratios are multiplied by a factor of 104. Note that, for

the net Sharpe ratios case, the presented values refer to the refined ratios according to the Israelsen

(2005) methodology. In parenthesis are the bootstrap p-values of the difference between the respective

performance measure of each EU/L portfolio and those of the benchmarks: the mv portfolio and the

ew portfolio, in the first and second parenthesis, respectively. These p-values were computed according

the robust methodology, developed specifically for the Sharpe ratio, of Ledoit and Wolf (2008).
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Table 5.14: Portfolio turnover

Turnover

Benchmark portfolios

mv portfolio 0.8462
ew portfolio 0.6747

EU/L portfolios

γ = 1

wι10 7.2378
wι50 11.1241
wι90 7.3724

γ = 5

wι10 2.9733
wι50 2.9729
wι90 2.9666

γ = 10

wι10 1.7698
wι50 2.7296
wι90 1.7653

This table reports the portfolio turnover for each portfolio. All the turnover values are multiplied by

a factor of 102. The portfolio turnover is computed according Equation (4.9).

5.5 Conclusions

Nowadays the use of big data seems to offer a competitive advantage in many fields.

Particularly in Finance, the increasing availability of huge sets of high frequency fi-

nancial data encourages the emergence of new investment strategies built on all that

information.

In this chapter, we have analyzed the practical benefits of using intraday information

in portfolio choice. We have considered a general framework where the investor wants to

maximize her CRRA-utility. The expected utility was modeled using not only the two

first moments of the returns distribution but also the skewness and the kurtosis. Within

this framework, for a given risk aversion level, we have constructed two portfolios: a

low frequency portfolio, solution of the portfolio choice problem where the inputs are

obtained from daily data, and a high frequency portfolio, solution of the portfolio choice

problem where the inputs are obtained from intraday data.

The empirical results, based on fourteen stocks from the CAC 40 Index, showed a
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superior daily OOS performance of the high frequency portfolio over the low frequency

portfolio. For ten different risk aversion levels, each high frequency portfolio outper-

formed the corresponding low frequency portfolio in terms of several OOS measures

(utility, mean, variance, skewness, kurtosis, Sharpe ratio and turnover). This empir-

ical evidence suggests the existence of practical real gains when high frequency data

is taken into account in portfolio choice. This is in accordance with one elementary

principle in statistics: ceteris paribus, more data is desirable to less.

In this chapter we also proposed a new methodology for portfolio choice. We suggest

that the investor may build her portfolios according to the utility maximization criteria,

but, at the same time, taking into account a desired level of liquidity. The proposed

EU/L model allows the investor to identify the portfolios which have the maximum

expected utility among all that provide at least a certain expected level of liquidity. The

investor can thus directly analyze the efficient tradeoff between expected utility and

expected liquidity and, accordingly, make her choices in the expected utility-liquidity

space.

The empirical application, using high frequency data on fourteen stocks from the

CAC 40 Index, showed a positive relationship between the expected utility and the

expected illiquidity.

The analysis of the OOS performance, for different levels of risk aversion, revealed

that the EU/L portfolios are usually competitive with the minimum variance and

equally weighted portfolios. These two benchmarks were always beaten in terms of

liquidity, but they sometimes performed better in terms of utility and certainty equiv-

alent, and they were always better in terms of Sharpe ratio. This shows that, in

order to achieve a higher liquidity, the EU/L portfolios must sometimes sacrifice other

performance measures. Finally, the results for the net Sharpe ratio show that the

EU/L portfolios tend to exhibit a higher turnover than the two considered benchmark

portfolios.

The sample used in the EU/L analysis, already comprises a period of sharp de-

creasing prices (the dot-com bubble in 2000). As future work, it would be interesting

to test the proposed model in face of more recent “black swan events” (the global fi-

nancial crisis (2008-2009) and the sovereign debt crisis in Europe (2011)). Although it

is not easy to have access to reliable intraday data, as future work we would like to test

the informational impact of using high frequency data in comparison with using daily

data, especially after these events. We are also interested in refining the computation

of trading costs and to test the model’s robustness to other utility functions (beyond

the considered CRRA-utility).
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Chapter 6

Final conclusions

With this thesis we tried to contribute, theoretically and empirically, to the literature

on portfolio choice under uncertainty. Motivated by the innumerable empirical evidence

against the Gaussian returns’ distribution assumption, we emphasized the importance

of considering higher moments (instead of just considering the mean and the variance)

in portfolio choice. In this way we can avoid the Gaussian returns’ distribution assump-

tion, which is breached in several financial markets. Following Brandt et al. (2009), we

have shown how straightforward it is to incorporate higher moments in the investor’s

utility maximization problem, with the investor’s preferences being characterized by

a CRRA-utility. Thus, we dealt with the return and the risk in a different way from

what is traditionally done in the MPT. Based on the existing literature, we argued

that the rational investor is not only interested in maximizing the portfolio return and

minimizing the portfolio variance, but he also seeks to maximize the portfolio skewness

and to minimize the portfolio kurtosis.

We began by discussing the limitations of MPT, in Chapter 2. We discussed the

need to abandon the Gaussian returns’ distribution assumption, when the data tell

us that it does not fit reality. The MV optimization model, being based on this as-

sumption is a flawed model. In addition, the documented (in several studies) poor

OOS performance of the MV optimization model, suggests that we have to develop

other methodologies that lead to the birth of a “new” MPT. Based on these two main

limitations, we can say that the MV optimization model has weak descriptive and

predictive powers. In order to overcome these limitations, we proposed the inclusion

of higher moments (namely, skewness and kurtosis) in the investor’s portfolio choice

problem. In the subsequent chapters of this thesis, we discussed the potential of some

methodologies, all of which considering the inclusion of higher moments.

In Chapter 3 we proposed a methodology to construct portfolios in a skewness/

semivariance bidimensional space. The use of skewness is justified by the intuitive

105



investor’s preference for positive skewness (limited losses and higher probability of an

extreme favorable outcome) and by her willingness to sacrifice expected return for pos-

itive skewness (reason why we have not considered the expected return as an objective

in the proposed model). In turn, the use of the portfolio semivariance in this model

shows two important aspects: 1) assuming that just one measure is used to quantify

the portfolio risk, there are more plausible measures than the traditional portfolio vari-

ance to quantify this risk; 2) the reference point (benchmark return in the semivariance

computation) used to define losses is defined according to the investor’s beliefs (risk has

a subjective nature!). We dealt with the semivariance explicitly and we overcame the

endogeneity problem of the cosemivariance matrix through a derivative-free algorithm.

The empirical application evidenced a competitive OOS performance of the portfolios

constructed according to the skewness/semivariance biobjective model, for three dif-

ferent benchmark returns (used in the computation of the semivariance). Some of the

skewness/semivariance portfolios were even able to consistently outperform the equally

weighted portfolio in terms of Sharpe ratio. Thereby, the skewness/semivariance model

offers a way to directly analyze the tradeoff between skewness and semivariance, with

the ability to generate portfolios exhibiting a competitive OOS performance. The

model is very flexible, allowing the investor to choose the benchmark return according

to her own beliefs. Given this flexibility and the promising results, as future work, this

model can be deeply explored.

In Chapter 4 we extended the study of the cardinality impact, on portfolio per-

formance, from a MV framework to MVS and MVSK frameworks. The models corre-

sponding to the frameworks with higher moments (the MVS and MVSK frameworks)

constitute an innovative contribution to the existing literature, and their potential

should be explored in future studies. Furthermore, all the proposed models, for each

framework, lead to NP-hard problems, and other algorithms (in addition to the used

DMS algorithm) must be tested on these problems and must be compared in terms of

algorithmic efficiency. Regarding the analysis that we have conducted, the empirical

results showed that cardinality plays an important role in every one of the considered

frameworks. For each cardinality level, the portfolios formed in each framework pre-

sented a similar performance (in terms of certainty equivalent and Sharpe ratio) IS

while, OOS, we found evidence of gains in using higher moments, for certain cardinal-

ity levels. We have thus drawn attention to the fact that cardinality can be seen as a

non-negligible source of risk.

Finally, in Chapter 5 we began by studying the potential gains of using high fre-

quency data (intraday data), through the joint use of the realized variance, realized

skewness and realized kurtosis. In direct comparison with the use of low frequency
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data (daily data), the analysis showed, for different risk aversion levels and for several

performance evaluation measures, the superiority (in terms of OOS performance) of

the portfolios formed according the methodology based on high frequency data. It

is important to highlight that the analysis was only conducted on a particular set of

stocks, and hence it is not possible to draw very general conclusions about the benefits

of using high frequency data. Nevertheless, the strong pattern found in favor of the

use of high frequency data, in this specific case, contributes to the existing literature

that suggests the existence of significant gains in using high frequency data. Looking

to liquidity as another important source of risk, in the second part of Chapter 5 we

have introduced, in the investor’s problem with higher realized moments, a liquidity

constraint. According to the suggested methodology, the investor can make her choices

directly in the expected utility/liquidity bidimensional space. The empirical results are

promising, showing that the portfolios formed according the proposed model are robust

(in terms of liquidity) and competitive (in comparison with the equally weighted and

the minimum variance portfolios).

All the suggested methodologies present limitations and should be improved in

future works. In addition to those previously discussed, one of the main limitations

that is transversal to all of the suggested methodologies is the presence of estimation

error. To deal with this problem, there are several research lines that can be followed.

The use of Bayesian estimation, shrinkage estimators, robust optimization techniques

or factor models are just some of the ways to improve the models proposed in this

thesis. Related with the latter, there are few portfolio optimization models based on

firms’ characteristics. Based on Brandt et al. (2009) we are starting to think in a new

way of explore the information about the cross-sectional characteristics of securities.

The various methodologies proposed in this thesis seek to better fit reality. None

should therefore be regarded as the “best” investment strategy. Rather, they should

be used holistically in the design of the “best” investment strategy. This thesis leaves

many open questions but, as the great Richard Feynman said: “We absolutely must

leave room for doubt or there is no progress and no learning. There is no learning

without having to pose a question. And a question requires doubt. People search for

certainty. But there is no certainty”.
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A The Financial Modelers’ Manifesto (by Emanuel

Derman and Paul Willmott)

 
The Financial Modelers' Manifesto 

 
by Emanuel Derman and Paul Wilmott 

 
Preface 

 
A spectre is haunting Markets – the spectre of illiquidity, frozen credit, and the failure of financial models.  
 
Beginning with the 2007 collapse in subprime mortgages, financial markets have shifted to new regimes 
characterized by violent movements, epidemics of contagion from market to market, and almost unimaginable 
anomalies (who would have ever thought that swap spreads to Treasuries could go negative?). Familiar valuation 
models have become increasingly unreliable. Where is the risk manager that has not ascribed his losses to a once-
in-a-century tsunami?  
 
To this end, we have assembled in New York City and written the following manifesto.  
 

Manifesto 
 
In finance we study how to manage funds – from simple securities like dollars and yen, stocks and bonds to 
complex ones like futures and options, subprime CDOs and credit default swaps. We build financial models to 
estimate the fair value of securities, to estimate their risks and to show how those risks can be controlled. How can 
a model tell you the value of a security? And how did these models fail so badly in the case of the subprime CDO 
market?  
 
Physics, because of its astonishing success at predicting the future behavior of material objects from their present 
state, has inspired most financial modeling. Physicists study the world by repeating the same experiments over and 
over again to discover forces and their almost magical mathematical laws. Galileo dropped balls off the leaning 
tower, giant teams in Geneva collide protons on protons, over and over again. If a law is proposed and its 
predictions contradict experiments, it's back to the drawing board. The method works. The laws of atomic physics 
are accurate to more than ten decimal places.  
 
It's a different story with finance and economics, which are concerned with the mental world of monetary value. 
Financial theory has tried hard to emulate the style and elegance of physics in order to discover its own laws. But 
markets are made of people, who are influenced by events, by their ephemeral feelings about events and by their 
expectations of other people's feelings. The truth is that there are no fundamental laws in finance. And even if 
there were, there is no way to run repeatable experiments to verify them.  
 
You can hardly find a better example of confusedly elegant modeling than models of CDOs. The CDO research 
papers apply abstract probability theory to the price co-movements of thousands of mortgages. The relationships 
between so many mortgages can be vastly complex. The modelers, having built up their fantastical theory, need to 
make it useable; they resort to sweeping under the model's rug all unknown dynamics; with the dirt ignored, all 
that's left is a single number, called the default correlation. From the sublime to the elegantly ridiculous: all 
uncertainty is reduced to a single parameter that, when entered into the model by a trader, produces a CDO value. 
This over-reliance on probability and statistics is a severe limitation. Statistics is shallow description, quite unlike 
the deeper cause and effect of physics, and can’t easily capture the complex dynamics of default.  
 
Models are at bottom tools for approximate thinking; they serve to transform your intuition about the future into a 
price for a security today. It’s easier to think intuitively about future housing prices, default rates and default 
correlations than it is about CDO prices. CDO models turn your guess about future housing prices, mortgage 
default rates and a simplistic default correlation into the model’s output: a current CDO price.  
 
Our experience in the financial arena has taught us to be very humble in applying mathematics to markets, and to 
be extremely wary of ambitious theories, which are in the end trying to model human behavior. We like simplicity, 
but we like to remember that it is our models that are simple, not the world.  
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Unfortunately, the teachers of finance haven’t learned these lessons. You have only to glance at business school 
textbooks on finance to discover stilts of mathematical axioms supporting a house of numbered theorems, lemmas 
and results. Who would think that the textbook is at bottom dealing with people and money? It should be obvious 
to anyone with common sense that every financial axiom is wrong, and that finance can never in its wildest 
dreams be Euclid. Different endeavors, as Aristotle wrote, require different degrees of precision. Finance is not 
one of the natural sciences, and its invisible worm is its dark secret love of mathematical elegance and too much 
exactitude.  
 
We do need models and mathematics – you cannot think about finance and economics without them – but one 
must never forget that models are not the world. Whenever we make a model of something involving human 
beings, we are trying to force the ugly stepsister’s foot into Cinderella’s pretty glass slipper. It doesn't fit without 
cutting off some essential parts. And in cutting off parts for the sake of beauty and precision, models inevitably 
mask the true risk rather than exposing it. The most important question about any financial model is how wrong it 
is likely to be, and how useful it is despite its assumptions. You must start with models and then overlay them with 
common sense and experience.  
 
Many academics imagine that one beautiful day we will find the ‘right’ model. But there is no right model, 
because the world changes in response to the ones we use. Progress in financial modeling is fleeting and 
temporary. Markets change and newer models become necessary. Simple clear models with explicit assumptions 
about small numbers of variables are therefore the best way to leverage your intuition without deluding yourself.  
 
All models sweep dirt under the rug. A good model makes the absence of the dirt visible. In this regard, we 
believe that the Black-Scholes model of options valuation, now often unjustly maligned, is a model for models; it 
is clear and robust. Clear, because it is based on true engineering; it tells you how to manufacture an option out of 
stocks and bonds and what that will cost you, under ideal dirt-free circumstances that it defines. Its method of 
valuation is analogous to figuring out the price of a can of fruit salad from the cost of fruit, sugar, labor and 
transportation. The world of markets doesn’t exactly match the ideal circumstances Black-Scholes requires, but 
the model is robust because it allows an intelligent trader to qualitatively adjust for those mismatches. You know 
what you are assuming when you use the model, and you know exactly what has been swept out of view.  
 
Building financial models is challenging and worthwhile: you need to combine the qualitative and the quantitative, 
imagination and observation, art and science, all in the service of finding approximate patterns in the behavior of 
markets and securities. The greatest danger is the age-old sin of idolatry. Financial markets are alive but a model, 
however beautiful, is an artifice. No matter how hard you try, you will not be able to breathe life into it. To 
confuse the model with the world is to embrace a future disaster driven by the belief that humans obey 
mathematical rules.  
 

MODELERS OF ALL MARKETS, UNITE! You have nothing to lose but your illusions. 
 

The Modelers' Hippocratic Oath 
 

~ I will remember that I didn't make the world, and it doesn't satisfy my equations. 
 

~ Though I will use models boldly to estimate value, I will not be overly impressed by mathematics. 
 

~ I will never sacrifice reality for elegance without explaining why I have done so. 
 

~ Nor will I give the people who use my model false comfort about its accuracy.  
Instead, I will make explicit its assumptions and oversights. 

 
~ I understand that my work may have enormous effects on society and the economy,  

many of them beyond my comprehension 
 

.                   
Emanuel Derman      Paul Wilmott 
January 7 2009      January 7 2009 
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B MOO and DMS

MOO

We often face optimization problems where two or more objective functions have to be

optimized, and many times there are tradeoffs between these objectives. A constrained

nonlinear MOO problem can be formulated as

min
x∈Rn

F (x) = [ f1(x) ... fm(x) ]
⊤

subject to x ∈ Ω,
(B.1)

where:

• fi : Rn ↪→ R, ∀i ∈ {1, . . . ,m},

• m ≥ 2 is the number of objective functions, and

• Ω is the decision feasible set.

Therefore, Rn corresponds to the space of the variables and Rm is the decision space.

In order to find an optimal solution for Problem (B.1), we need to use a criterion for

systematically comparing different points. This can be achieved by using the concept

of Pareto dominance.

Definition B.1 (Pareto minimizer) x ∈ Ω is a Pareto minimizer of F (·) if

∄y∈Ω : fi(y) < fi(x), ∀i∈{1,...,m}.

A Pareto minimizer, x ∈ Ω, is also known as a nondominated point.

Definition B.2 (The set of Pareto minimizers, X) The set of Pareto minimiz-

ers, S, of F (·), is defined as

S =

{
x ∈ Ω : ∄y∈Ω : fi(y) < fi(x), ∀i∈{1,...,m}

}
.

The set of Pareto minimizers, S, defines the set of nondominated points of Prob-

lem (B.1). The Pareto or efficient frontier corresponds to the mapping of F (·) on the

set of nondominated points, S.

For example, let us recall the MV optimization model in Chapter 2 (see Prob-

lem (2.10) and Problem (2.12)). The solution of Problem (2.10) is in fact a Pareto

minimizer (or a nondominated solution) for Problem (2.12).
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Let w∗
t ∈ Pt =

{
wt ∈ RN : 1⊤Nwt = 1 ∧ wt ≥ 0N

}
be a solution of Problem (2.10).

Now, suppose that w∗
t is not a Pareto minimizer of Problem (2.12), then, by definition

(see Definition B.1),

∃zt∈Pt : z⊤t Σtzt < w∗
tΣtw

∗
t ∧ −µ⊤

t zt < −µ⊤
t w

∗
t . (B.2)

From Equation (B.2) follows that

zt ∈ Pt : z⊤t Σtzt < w∗
tΣtw

∗
t ∧ µ⊤

t zt > µ⊤
t w

∗
t > r. (B.3)

But, from Equation (B.3), it follows that w∗
t ∈ Pt is not an optimal solution of

Problem (2.10). This way, we have shown by reductio ad absurdum that w∗
t ∈ Pt is in

fact a Pareto minimizer or a nondominated solution of Problem (2.12). Denoting Y as

the set of the nondominated points (see Definition B.2) of Problem (2.12), the mapping

of v(rp,t+1) = w⊤
t Σtwt and m(rp,t+1) = µ⊤

t wt onto Y corresponds to the efficient frontier

plotted in Figure 2.2.

DMS

Derivative-free optimization (see Conn et al., 2009, for a survey) is a class of nonlinear

optimization techniques used when we face problems where all, or at least some, of

the derivatives are unavailable, unreliable or impractical to obtain. For example, when

the function evaluations are expensive or when they are noisy, one cannot approximate

the derivatives using methods based on finite differences. Given a feasible point, a

derivative-free algorithm only uses the function value as information, which is why

many times these algorithms are referred as of black-box type.

DMS (Custódio et al., 2011) is a derivative-free algorithm to solve problems given

on the form of Problem (B.1). DMS does not aggregate or scalarize any of the objective

functions components. Each iteration of DMS comprises a search step (optional) and

a pool step. DMS is thus a generalization of direct search methods of directional

type (see, e.g., Kolda et al., 2003; Conn et al., 2009) from single to MOO. The main

objective of DMS is to compute an approximate solution for Problem (B.1), i.e., an

approximation of the real Pareto frontier. From the pool step, theoretically, it is only

possible to prove that there is a limit point in a stationary form of the Pareto frontier,

as no aggregation or scalarization method is incorporated (see Custódio et al., 2011,

for further details). Nevertheless, as documented in Custódio et al. (2011), in practice
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DMS exhibits a very good performance, being able to compute the entire Pareto frontier

for a wide variety of problems. In a test set of more than one hundred problems

(some with discontinuous and nonconvex Pareto frontiers), DMS performed in a highly

competitive way in comparison with other well-known derivative-free solvers, namely

AMOSA (Bandyopadhyay et al., 2008), BIMADS (Audet et al., 2008) and NSGA-II

(Deb et al., 2002). In direct comparison with the latter, DMS performed the best.

As common in derivative-free optimization, DMS deals with the constraints through

an extreme barrier function

FΩ(x) =

{
F (x) if x ∈ Ω,

(+∞, . . . ,+∞)⊤ otherwise.
(B.4)

As explained in Custódio et al. (2011), Equation (B.4) states that when a point, x,

is not feasible then each function component assumes the value +∞. This procedure

allows to deal with black-box type constraints. Following Custódio et al. (2011) we

present the DMS algorithm below.

Algorithm B.1 (DMS for MOO)

Initialization

Choose x0 ∈ Ω with fi(x0) < +∞,∀i ∈ {1, . . . ,m}, α0 > 0, 0 < β1 ≤ β2 < 1,

and γ ≥ 1. Let D be a set of positive spanning sets. Initialize the list of

nondominated points and corresponding step size parameters (L0 = {(x0;α0)} in

case of a singleton).

For k = 0, 1, 2, . . .

1. Selection of an iterate point: Order the list Lk in some way and select

the first item (x;α) ∈ Lk as the current iterate and step size parameter

(thus setting (xk;αk) = (x;α)).

2. Search step: Compute a finite set of points {zs}s∈S and evaluate FΩ at

each element. Set Ladd = {(zs;αk), s ∈ S}.
Form Ltrial by eliminating dominated points from Lk ∪ Ladd. If Ltrial ̸= Lk

declare the iteration (and the search step) successful, set Lk+1 = Ltrial, and

skip the poll step.

3. Poll step: Choose a positive spanning set Dk. Evaluate FΩ at the set of

poll points Pk = {xk + αkd : d ∈ Dk}. Set Ladd = {(xk + αkd;αk), d ∈ Dk}.
Form Ltrial by eliminating dominated points from Lk ∪ Ladd. If Ltrial ̸= Lk
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declare the iteration (and the poll step) as successful and set Lk+1 = Ltrial.

Otherwise, declare the iteration (and the poll step) unsuccessful and set

Lk+1 = Lk.

4. Step size parameter update: If the iteration was successful then main-

tain or increase the corresponding step size parameters: αk,new ∈ [αk, γαk]

and replace all the new points (xk + αkd;αk) in Lk+1 by (xk + αkd;αk,new),

when success is coming from the poll step, or (zs;αk) in Lk+1 by (zs;αk,new),

when success is coming from the search; replace also (xk;αk), if in Lk+1, by

(xk;αk,new).

Otherwise decrease the step size parameter: αk,new ∈ [β1αk, β2αk] and re-

place the poll pair (xk;αk) in Lk+1 by (xk;αk,new).

We will now report all the changes made to the default parameters of the dms

solver18, in order to properly solve every problem of this thesis. Along this thesis we

have used the dms solver to compute the solutions of the following problems: Prob-

lem (3.8) (see Chapter 3); Problem (4.4), Problem (4.5) and Problem (4.6) (see Chap-

ter 4); and the solution of Problem (5.22) (see Chapter 5). To solve every one of these

problems, we made the following changes to the dms solver:

• we needed to increase the maximum number of function evaluations (option

max fevals) from 20000 to 350000;

• we needed to require more accuracy by reducing the step size tolerance (option

tol stop) from 10−3 to 10−5;

• instead of using a random sample for the initial list of feasible nondominated

points, as it is assumed by default, for Problem (3.8) and Problem (5.22) we

set the option list equal to 0 (initializing the list with a single point, which

we defined as the equally weighted point) and for the problems in Chapter 4

(Problem (4.4), Problem (4.5) and Problem (4.6)) we set the option list equal

to 3 (initializing the list with points that are considered equally spaced in the

line segment, joining the variable upper and lower bounds).

18This solver is public and available (at the current date, July 2017) by request at http://www.

mat.uc.pt/dms/.
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