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Abstract

This paper seeks to present a new approach to reverse analysis in depth-sensing indentation which makes use of numerical simulation.
This methodology allows the results of experimental hardness tests acquired with single indenter geometry to be used to determine the
plastic properties of materials. Forward and reverse analyses of high deformation three-dimensional numerical simulations of Vickers
indentation tests are used to determine different mechanical properties of materials: Young’s modulus, yield stress and strain-hardening
exponent. The Vickers indenter used in the numerical simulations is formulated as a rigid body and takes into account the presence of the
most common imperfection of the tip, so-called offset. The contact friction between the Vickers indenter and the deformable body is also
considered. The forward analysis uses materials with Young’s modulus values from 50 to 600 GPa, yield stress values from 0.3 to 10 GPa
and strain-hardening exponents from 0 to 0.6; the Poisson ratio did not vary from 0.3. The representative plastic strain er and the cor-
respondent stress rr, as previously defined by other authors [Dao M, Chollacoop N, Vliet KJ, Venkatesh TA, Suresh S. Acta Mater
2001;49:3899], were identified by an independent numerical method. The values of the representative plastic strain er obtained for the
Vickers indenter confirm those of the above-mentioned authors, despite showing a slight influence from the Young’s modulus values.
The forward study enables the production of a unique plot of the hardness HIT vs. representative stress rr, where both are normalized
by the Young’s modulus E. The proposed reverse analysis provides a unique solution to the representative stress rr and the strain-hard-
ening exponent, n, given that the Young’s modulus is predetermined from the experimental hardness test. Depending on the material
properties, the value of n can be more or less sensitive to the scatter of the experimental results obtained using the depth-sensing equip-
ment, particularly the stiffness of the unloading curve. The validity of the proposed reverse analysis method is checked using three real
materials: stamping quality steel (DC 06), stainless AISI 304 steel and BK7 glass.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Indentation tests are commonly used in the evaluation
of the mechanical properties of bulk and coated materials.
Depth-sensing indentation can be used not only for the
evaluation of hardness, but also in the determination of
other mechanical properties such as Young’s modulus,
stress–strain curves and residual stress (e.g. [1–9]).
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To successfully use indentation methods for the mechan-
ical characterization of materials, a precise understanding
of the correlations between stress–strain and indentation
load–unloading curves is required. From experimental data
of copper and mild steel with different strain hardening,
Tabor [10] proposes one such fundamental correlation.
The correlation states that in a large domain hardness is
proportional to uniaxial stress, at a representative plastic
strain of 0.08, that is:

H IT ¼ Drr ð1Þ
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where HIT is the hardness of the material, D is a propor-
tionality constant and rr is the stress corresponding to
the representative plastic strain, er, whose value is 0.08 in
the case of the Vickers indenter, Tabor found the constant
D equal to 3.3 [10]. Later, Johnson [7] concluded that the
ratio between the hardness and the representative stress
of elastic–plastic materials is governed by the single param-
eter (E/rr)tana, where a is the angle of inclination of the
face of the indenter to the surface of the sample, E is the
elastic modulus of the material and rr is the stress associ-
ated with the representative plastic strain, er, which de-
pends on the a angle: er = 0.2tana.

Subsequently, a large number of numerical and experi-
mental studies have been conducted towards the aim of
fully understanding representative plastic strain and the
strain field around indentations, as well as of correlating
stress–strain with indentation load–unloading curves (e.g.
[11–19]). Different values of the representative plastic
strain, er, were proposed as a function of the geometry of
the indenter (e.g. [12,13,15–17]). Recent studies have pro-
posed a representative plastic strain definition, for specific
indenter geometries, which is independent of the strain-
hardening exponent [18,19]. These studies have shown that
materials with the same Young’s modulus and representa-
tive stress values present similar indentation–loading
curves, whatever the value of the strain-hardening expo-
nent. All these studies show that the definition of represen-
tative plastic strain is still a fundamental question that
requires careful investigation.

In recent years, efforts have been made to establish a
reverse analysis algorithm for the evaluation of the plastic
mechanical properties of materials. One of the principal
developments in this investigation area is related to the
application of the finite element method. many studies of
numerical simulations of hardness tests, e.g. [12,16,18,20]
were conducted using conical indenters equivalent to Vick-
ers and Berkovich pyramids (apical angle of cone: 70.3�).
Methods in which the strain-hardening exponent and yield
stress are determined using the indentation curve are still
not perfect. Some of their problems stem from experimen-
tal inaccuracies. Others are related to the non-uniqueness
of reverse analysis in some particular cases, such as when
materials with different mechanical properties generate
similar indentation load–unloading curves (e.g. [19,20]).
In these cases, the non-uniqueness can be solved by using
load–unloading curves obtained in experimental tests with
two or more indenters with different apical angles [20].
However, this procedure suffers from a natural complicat-
ing factor: two or more indenter geometries are needed.

The main objective of this study is to present a numeri-
cal method for predicting the stress–plastic strain curves of
elastic–plastic materials using the experimental indentation
load–unloading curve obtained with a single geometry
indenter. For this purpose, forward analysis was applied
to the results of the three-dimensional numerical simula-
tions of Vickers hardness tests of several materials with dif-
ferent mechanical properties. Reverse analysis investigates
the uniqueness of the method, particularly in cases for
which the former analytical methods can lead to non-
uniqueness in the determination of the strain-hardening
exponent (ry/E P 0.03 and n P 0.3 [18]). The accuracy
and sensitivity of the proposed reverse analysis method
were also examined, taking into account experimental scat-
ter, in the particular cases of three materials, two steels
(DC 06 and AISI 304) and a glass (BK7).

2. Finite element simulation

Numerical simulations were performed using the
HAFILM home code. This code was specifically developed
to simulate hardness tests with any type of indenter shape
taking into account contact with friction between the
indenter and the sample [21]. The mechanical model that
is the basis of the HAFILM code considers the hardness
test as a quasi-static process that occurs in the domain of
large deformation problems. The core of the code was
developed in the early 1990s and it has since been applied
with success to the simulation of sheet metal forming pro-
cesses [21]. HAFILM began development in 1999 [22,23]
and since then the code has been continuously upgraded.
Today it is a freeware virtual laboratory in the field of
depth-sensing indentation tests.

The plastic behaviour of the material is described by the
general yield condition:

f ð�r; rÞ ¼ �r� r ¼ 0 ð2Þ
In this equation r is the flow stress in tension, which is a
function of isotropic work-hardening, described in this
study by the Swift equation:

�r ¼ K e0 þ �ep

� �n ð3Þ

where K, e0 and n are constants for a particular material,
determined by classical mechanical tests, and �ep is the
equivalent plastic strain. In Eq. (2), �r is the equivalent
stress defined by the plastic yield criterion. In this study,
the material is assumed to be isotropic and its plastic
behaviour is simply described by the Von Mises yield
criterion.

One of the most common difficulties with the numerical
simulation of the indentation process is related to the time
dependence of the boundary conditions due to the contact
with friction between the indenter, assumed as rigid, and
the deformable body. In HAFILM, the contact with fric-
tion problem is modelled using a classical Coulomb law.
To associate the static equilibrium problem with the con-
tact with friction, an augmented Lagrangean method is
applied to the mechanical formulation. This leads to a sys-
tem of non-linear equations, where the kinematic (material
displacements) and static variables (contact forces) are the
final unknowns of the problem [24]. In order to solve it, the
code makes use of a fully implicit Newton–Raphson type
algorithm. All non-linearities, induced by the elastoplastic
behaviour of the material and by the contact with friction,
are treated in a single iterative loop [21]. The friction



Fig. 1. Finite element mesh used in the numerical simulations.

Fig. 2. Schematic description of stress–plastic strain curves, showing the
representative strain (er) and the representative stress (rr) for the strain-
hardening exponents (n) studied.
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between the indenter and the deformable body was
assumed to have a friction coefficient equal to 0.16. This
is a commonly used value and leads to a better description
of the indentation process than if frictionless contact were
assumed [25].

In the simulations, it was assumed that the Vickers
indenter had an indenter tip imperfection: a rectangular
planed area (with one side twice the length of the other)
with an area of 0.0288 lm2 was used instead of the ideal
tip [25]. This indenter tip imperfection is similar to that
of the experimental Vickers indenter tip used in this study,
which was measured using atomic force microscopy [26].
Bézier surfaces were used to describe the indenter geometry
considered in the numerical simulations. These surfaces
allow fine description of the indenter tip.

The sample was discretized into isoparametric solid
finite elements associated with a selective reduced integra-
tion method that enables the elements performance to
improve when large deformations are assumed. Due to
geometrical symmetry in the x = 0 and z = 0 planes, only
a quarter of the sample was used in the numerical simula-
tions (Fig. 1). The finite element mesh was composed of
5832 three-linear eight-node isoparametric hexahedrons.
Previous studies of the sensitivity of the mesh have
improved its performance significantly, guaranteeing reli-
able estimation of the indentation contact area [25].

3. Representative plastic strain and stress

In a recent study, Dao et al. [18] proposed a group of six
dimensionless functions, P, that relate the characteristic
parameters of indentation load–unloading curves to the
mechanical properties obtained from the stress–strain
curves [18]. One of these functions relates the ratio between
the constant of Kick’s law, generally used to describe the
indentation–loading curve, and the representative stress
(k/rr) as a function of the ratio between the reduced
Young’s modulus and the representative stress (Er/rr).
The dimensionless function, P1, is written thus [18]:

k
rr

¼ P1

Er

rr

; n
� �

ð4Þ
where n is the strain-hardening exponent of the stress–
strain curve and the reduced Young’s modulus Er is given
by: 1=Er ¼ ð1� m2

s Þ=E þ ð1� m2
i Þ=Ei, where E and Ei are the

Young’s modulus and ms and mi are the Poisson ratios of the
material and the indenter, respectively. k is the curvature of
the loading curve:

F ¼ kh2 ð5Þ
where F is the load and h is the correspondent indentation
depth.

Eq. (4) depends on the strain-hardening exponent. How-
ever, in the case of a conical indenter with an apical angle
of 70.3� (which produces, at a given depth, the same pro-
jected area as the Berkovich and Vickers indenters), it
was observed that when the representative stress rr corre-
sponds to a representative plastic strain value, er, of
0.033, the dimensionless function, P1, becomes indepen-
dent of the strain-hardening exponent [18]. In this context,
it appears that materials with the same reduced Young’s
modulus and representative stress values (corresponding
to a representative plastic strain equal to 0.033) present
similar indentation–loading curves.

In this study, the value of the representative plastic
strain was determined by the comparison of the indenta-
tion–loading curves obtained in the numerical simulation
of the hardness test of materials with different values of
strain-hardening exponents, n, for several values of repre-
sentative plastic strain (Fig. 2). The true stress–true strain
plastic behaviour of the materials used in the numerical
simulations was modelled using a Swift-type power law
(Eq. (3)). The constant e0 was fixed at 0.005. The Young’s
modulus values, E, were in the range 50–600 GPa and the
Poisson ratio, ms, was equal to 0.3. Stress corresponding
to representative plastic strain was considered equal to
0.3, 1, 2, 2.5, 2.75, 3 and 10 GPa. Fig. 2 illustrates the true
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Fig. 3. Load–penetration depth curves obtained by numerical simulations of four materials with different strain-hardening exponents (n = 0, 0.2, 0.4 and
0.6), the same values of the reduced Young’s modulus (=450 GPa) and representative stress (=10 GPa). (a) Representative plastic strain (=0.033).
(b) Representative plastic strain (=0.042).
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Fig. 4. Representative plastic strain (er) vs. the reduced Young’s modulus
(Er) for different values of the representative stress: rr = 0.3, 1, 2, 2.5, 2.75,
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stress–true plastic strain curves of the modulated materials,
for four values of the strain-hardening exponent: n = 0, 0.2,
0.4 and 0.6. Numerical simulations of the Vickers hardness
tests were performed up to a maximum indentation depth
equal to 0.3 lm.

In order to begin the forward analysis, the indentation–
loading curves of the materials described in Fig. 2 (with
four different strain-hardening exponents: n = 0, 0.2, 0.4
and 0.6, respectively) were simulated assuming the repre-
sentative plastic strain to be 0.033, a value proposed by
Dao et al. [18]. However, the loading curves relative to
materials having a representative plastic strain value of
0.033 are not always similar, as shown in Fig. 3a for the
case of a material whose Young’s modulus was 410 GPa
and whose representative stress was 10 GPa. This fact is
probably related to the conditions under which numerical
simulation of the hardness tests was performed. Dao
et al. [18] established the 0.033 value after a series of
numerical simulations with a conical indenter, but did
not consider contact friction. Moreover, these authors
use a slightly different method to determine the representa-
tive strain value: er = 0.033 corresponds to the representa-
tive plastic strain value for which the best fit is found for
the function P1, independently of the strain-hardening
exponent n.

In this study, a Vickers indenter was used in three-
dimensional numerical simulations that considered friction
between the indenter and the sample. Using a trial-and-
error process, different values of representative strain were
used until coincident loading curves were obtained inde-
pendently of the strain-hardening exponent, such as exem-
plified in Fig. 3b. This figure shows the load–unloading
curves for a representative plastic strain equal to 0.042
and the strain-hardening exponents of 0, 0.2, 0.4 and 0.6
for materials with a reduced Young’s modulus of
450 GPa and a representative stress of 10 GPa. The study
carried out on materials with different values of the reduced
Young’s modulus, from 55 to 660 GPa, and of representa-
tive stress, in the range 0.3–10 GPa, shows that the value of
the representative plastic strain depends slightly on the val-
ues of the reduced Young’s modulus and the representative
strain, as shown in Fig. 4. For each case of representative
stress, the evolution of representative plastic strain as a
function of the Young’s modulus can be plotted quite accu-
rately using two straight lines. For values of the reduced
Young’s modulus in the range 55–450 GPa, the representa-
tive strain slightly increases from a minimum of 0.034 up to
a maximum value of 0.042 depending on the representative
stress, which is equal to or greater than 3 GPa. In each
instance of representative stress, rr, the representative plas-
tic strain, er, is independent of the reduced Young’s modu-
lus, when this is equal to or greater than 450 GPa: er

increases, from 0.034 to 0.042, as the representative stress
increases towards 3 GPa and remains steady at 0.042 for
representative stress values P3 GPa. A recent investigation



Table 1
Mechanical properties of the various fictitious materials used in the simulations

Materials Studied cases n ry (GPa) E (GPa) e0 m

Minimum Maximum

Without strain hardening 10 �0 0.25 25 100
6 �0 0.50 60 410

With strain hardening 6 0.2 0.15 10 100 0.005 0.29
6 0.4 0.05 6 100

10 0.6 0.05 6 100
6 0.6 0.15 6 410
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by Casals and Alcalá [27], using the same methodology as
Dao et al. [18] but modelling a Vickers indenter, found a
representative strain value of 0.037. This value is close to
the middle of the range obtained for representative strain
in this study (Fig. 4).

Based on the above analysis, it is possible to establish a
relationship between hardness and representative stress.
The results obtained from the numerical simulation of
Vickers hardness test of several materials with different
mechanical properties were used for this purpose. The
materials had four values of strain hardening (0, 0.2, 0.4
and 0.6) and two values of reduced Young’s modulus:
110 and 450 GPa (E = 100 and 410 GPa, respectively, with
the Poisson ratio ms = 0.3). The yield stress of the materials,
ry, was in the range 0.05–60 GPa. Table 1 summarizes the
mechanical properties of the materials used for these
numerical simulations. The hardness, HIT, was evaluated
using the traditional experimental procedure that uses the
unloading curve to determine the contact indentation
depth, hc, and consequently the contact area of the inden-
tation. The indentation load–unloading curves had previ-
ously been corrected using the area function of the
indenter, taking into account the existence of the indenter
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Fig. 5. Evolution of hardness, HIT, as function of representative stress, rr.
tip imperfection [25]. In these curves, the indentation
depth, h, corresponds to the depth obtained with an ideal
indenter without tip imperfection: h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=24:5

p
(where A

is the cross-sectional area of the indenter at the surface
level of the sample). The representative stress,rr, was eval-
uated using the Swift law for different values of the repre-
sentative plastic strain, er, as shown in Fig. 4.

Fig. 5 shows that the evolution of hardness as function
of representative stress depends on the Young’s modulus
value. However, for both variables, HIT and rr, normalized
by the reduced Young’s modulus value, the representation
of the ratio HIT/Er vs. rr/Er, becomes independent of the
Young’s modulus (Fig. 6). Consequently, the representa-
tive stress, rr, can be estimated from the hardness and
the reduced Young’s modulus data. Furthermore, the rep-
resentation of the inverse of the above ratios, Er/HIT as a
function of Er/rr, exhibits linear behaviour (Fig. 7). The
linear fitting is expressed by:

Er

H IT

¼ 0:231
Er

rr

� �
þ 4:910 ð6Þ
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This equation allows representative stress, rr, to be eas-
ily determined. However, the value of representative stress
obtained with this equation may not be accurate enough
for some purposes. In such cases, an optimization method
should be implemented in order to refine the value.
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As discussed above, the hardness loading curves of
materials with the same representative stress are indepen-
dent of the strain-hardening exponent. So an optimiza-
tion methodology can be established by comparing the
experimental and numerical loading curves. To begin
the numerical simulation, the material is modulated with
the representative stress estimated by Eq. (6), the reduced
Young’s modulus experimentally determined and an arbi-
trarily given value of the strain-hardening exponent. If
there is a significant difference between the experimental
and numerical maximum loads, then representative stress
should be optimized using an iterative method, for
example:

rrðiþ 1Þ ¼ rrðiÞ
F maxðexpÞ
F maxðnumÞ ð7Þ

where rr(i + 1) and rr(i) are the (i + 1) and (i) order values
to be tested, for the representative stress, rr, and Fmax(exp)
and Fmax(num) are the experimental and numerical maxi-
mum loads, respectively. So, each new value of representa-
tive stress, rr(i + 1), is followed by a numerical simulation
of the loading curve (material modulated with a represen-
tative stress equal to rr(i + 1)), and then the maximum
loads are compared (experimental vs. numerical). The iter-
ative process ends when the ratio between maximum loads,
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experimental and numerical, approximates one. Fig. 8
shows the algorithm that illustrates the iterative procedure
for determination of the representative stress.

Fig. 9 shows a numerical example of reverse analysis
for determination of representative stress. The forward
load–unloading curve (the ‘‘experimental’’ curve in this
analysis) was obtained from a material with the follow-
ing mechanical properties: E = 200 GPa and ms = 0.3;
the material follows a Swift law relating true stress to
the plastic strain logarithm: �r ¼ Kðe0 þ �epÞn, where
K = 0.6 GPa; n = 0.3 and e0 = 0.005. From the forward
load–unloading curve of this material, we can determine
the hardness (0.949 GPa) and the Young’s modulus (the
value of E determined is within 1% of the input value:
E = 201.6 GPa). Eq. (6) was used to estimate the starting
value of representative stress rr(i = 1) = 0.227 (iteration 1
in Fig. 9b). Therefore, the algorithm in Fig. 8 allows rep-
resentative stress to be evaluated satisfactorily. After
three iterations of the algorithm, similar values at maxi-
mum load were obtained (error lower than 0.1%) from
both forward and reverse analysis curves, the final value
of rr being 0.229 GPa. The correspondent characteristic
strain obtained from Fig. 4 is 0.034.
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4. Strain hardening and yield stress

Most of the reverse analysis methodologies for stress–
strain curve prediction based on indentation data make
use of complex functions of the strain-hardening exponent.
In some cases, no uniqueness is achieved for the value of
the strain-hardening exponent. In order to solve this prob-
lem, different authors propose the use of load–unloading
curves obtained using two or more indenters with different
apical angles. This type of procedure has an important
drawback, namely the need to prepare and perform exper-
iments with different indenter geometries. To overcome this
difficulty, the authors of this study propose a new method-
ology for evaluating the strain-hardening exponent, using
the information contained in the load–unloading curve
obtained with single indenter geometry. The basis of the
proposed reverse analysis methodology is a careful analysis
of the unloading curves obtained by three-dimensional
numerical simulations of hardness tests.

The study shows that materials with different values of
strain-hardening exponents, but the same Young’s modulus
and representative stress values, exhibit different behaviours
in their unloading curves. In materials with high values of
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equal to 410 GPa and different strain hardening values. The representative
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yield stress (>2.5 GPa), the elastic recovery during unload-
ing indicates a noticeable increase in the strain-hardening
exponent, and the comparison of the unloading curves
(experimental and numerical) can be adequate enough to
predict the strain-hardening exponent (Figs. 3b and 11a).
On the other hand, for materials with low yield stress val-
ues, the unloading curves become identical, independently
of the strain-hardening exponent. In this case, the overall
comparison of the unloading curves (experimental and
numerical) is not sufficient to obtain a unique value
for the strain-hardening exponent (Fig. 10b). However,
study of these similar unloading curves, obtained by numer-
ical simulation of materials with different values of strain-
(exp), , , rrr S E
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exponent. Following on from Figs. 10 and 11 show the evo-
lution of stiffness as a function of strain hardening. There is
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exponent increases. Therefore, a comparison between
experimental and numerical stiffness values (Sexp and Snum,
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a b

Fig. 13. Reverse analysis procedure, using the algorithm shown in Fig. 12: (a) forward and reverse analysis load–indentation depth curves; (b) stiffness vs.
strain hardening coefficient (open symbols: reverse analysis results; solid symbol: forward analysis).

Fig. 14. Stress–plastic strain curves, obtained in forward analysis and
after each iteration of the reverse analysis (Fig. 13), during strain
hardening coefficient optimization, by using the algorithm shown in
Fig. 12.
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and the representative plastic strain and stress, as discussed
above (algorithm of Fig. 8). We conclude that the work-
hardening coefficient n can be uniquely determined from
the slope (stiffness) of the experimental unloading curve
(Figs. 11 and 12). Fig. 12 presents the proposed reverse
analysis algorithm. Based on an iterative procedure, this
reverse analysis begins with the selection of an arbitrary
value for the strain-hardening exponent, within an imposed
range, and the correspondent value of the yield stress,
ry ¼ Ken

0. For the chosen value of the strain-hardening
exponent, the correspondent yield-stress value is deter-
mined and then both values are used as input data in the
numerical simulation of the hardness test. Subsequently,
the stiffness of the obtained numerical unload curve, Snum,
is calculated. The comparison of the experimental and
numerical stiffness values, Sexp and Snum, indicates the
accuracy of the approximation. If the difference between
Snum and Sexp is in the range of an imposed maximum
error, the process ends, as the mechanical properties used
in the numerical simulation approach those of the experi-
mental material. On the other hand, if the difference in stiff-
ness values is too great, the process decides on a new value
for the strain-hardening exponent. For this purpose, a clas-
sical bisection method was used to select the new strain-
hardening exponent, which takes into account the position
of the numerical stiffness, Snum, in relation to the experi-
mental stiffness, Sexp.

The numerical example of reverse analysis used for
determination of the representative stress, shown in
Fig. 9, is now used for the reverse analysis determination
of the strain-hardening coefficient and the yield stress.
Fig. 13a shows these load–unloading curves determined
for successive iterations of n values in the range 0–0.6.
For comparison, the forward load–unloading curve (the
‘‘experimental’’ curve in this analysis) is also shown. This
figure gives the impression that the load–unloading curves
are apparently independent of the strain-hardening expo-
nent. However, Fig. 13b shows a significant evolution of
the stiffness (evaluated from the unloading curves of
Fig. 13a) as a function of the strain-hardening exponent.
A straight line can accurately be fitted to the behaviour
shown in Fig. 13b. This fact can be used to accelerate the
reverse analysis process, by reducing the time used in the
numerical simulations. Effectively, two points are enough
to describe the linear relationship between the strain-hard-
ening exponent and the stiffness for a specific material.
Fig. 13b can also be compared with the ‘‘experimental’’
stiffness result obtained by using the reference mechanical
properties of the material and the predictions obtained in
each iteration of the reverse analysis algorithm. Fig. 14 pre-
sents the corollary of the reverse analysis, the estimation of
the experimental stress–strain curve, for the successive iter-
ations. As shown in Fig. 14, the stress–strain curve
obtained after six iterations of the reverse analysis algo-
rithm accurately approaches the experimental one. The
strain-hardening exponent and the yield stress values
obtained after convergence of the reverse analysis algo-
rithm present errors of 6 and 0.73%, respectively.
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5. Reverse analysis of real materials

In order to check further the proposed reverse analysis
methodology, three real materials were used: stamping
a

Fig. 15. Experimental and reverse analysis load–indentation depth curves, obta
steel; and (c) BK7 glass.

Table 2
Mechanical properties of the real materials

Materials ry (GPa) E (GPa) ms n

DC 06 steel 0.124 200–210 0.30 0.268
AISI 304 steel 0.306 190–200 0.30 0.424
BK7 glass 3.500 82 0.20 0.010

Table 3
Evaluated mechanical properties for the real materials

Material DC 06 steel AISI 304 steel BK7 glass

Algorithm of Fig. 8
er 0.034 0.034 0.036
rr (GPa) 0.230 0.455 3.464

n ry (GPa) n ry (GPa) n ry (GPa)

Algorithm of Fig. 12
Lower limit 0.188 0.153 0.289 0.244 0 3.460
Average 0.243 0.136 0.357 0.227 0.022 3.308
Upper limit 0.298 0.121 0.323 0.211 0.087 2.886
quality steel, DC 06, stainless AISI 304 steel and BK7 glass.
The true stress–logarithmic plastic strain curves of both
steels have been determined using Instrom tensile testing
equipment, using a 50 mm extensometer. The tensile tests
were performed at a relatively low strain rate of 10�3 s�1.
Table 2 presents the mechanical properties of these materi-
als (the mechanical properties of the BK7 glass sample
have been determined previously [28]).

The full examination of the reverse analysis method was
performed using the load–unloading curves obtained in
experimental ultramicrohardness tests of the three materi-
als. Experimental hardness tests were performed using the
Fischerscope ultramicrohardness equipment and a Vickers
indenter. The maximum loads applied were 500 and
100 mN, for the steels (DC 06 and AISI 304) and the
BK7 glass, respectively. The correspondent hardness tests
were performed at a loading and unloading rate of approx-
imately 1 and 0.2 N/min, respectively. For each material,
25 experimental tests were performed. The experimental
curves used in the reverse analysis take into account the
thermal drift and the first load point corrections; moreover,
the load–unloading curves were also corrected with the
area function, taking into account the indenter tip imper-
fection [26].
b

c

ined by using the algorithm shown in Fig. 11: (a) DC 06 steel; (b) AISI 304
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The average values, obtained in the experimental hard-
ness tests of each material, for the characteristic parameters
of the load–unloading curves, such as the maximum inden-
tation depth, hmax, the maximum load, Fmax, and the stiff-
ness, S, were used as input data in the algorithm of Fig. 8.
Table 3 presents the values of the representative stress and
strain obtained with this algorithm. In the case of stiffness
(S = 1/Ct), three different values were considered in the
reverse analysis algorithm (Fig. 12), a consequence of the
scatter presented by the experimental data. One of them,
Saverage, corresponds to the average of the stiffness values
of the 25 unloading curves. The two others are related to
the limits of stiffness error. These limits were determined
by Saverage � 1:96ðStdev=

ffiffiffiffi
N
p
Þ (where Stdev is the standard

deviation of S, and N is the number of measurements), cor-
responding to a risk of 5%. The error of the stiffness
ð1:96ðStdev=

ffiffiffiffi
N
p
ÞÞ in relation to the average value (Saverage)

obtained for the DC 06 steel, AISI 304 steel and BK7 glass
was ±0.9%, ±0.5% and ±0.29%, respectively.

Fig. 15 shows the comparison between the experimen-
tal load–unloading curves and the ones obtained by
numerical simulations, using the mechanical properties
predicted in each iteration of the reverse analysis algo-
rithm given in Fig. 12, for each of the three materials.
The experimental load–unloading curves of Fig. 15 corre-
spond to the average of the total curves produced in the
a

c

Fig. 16. Stiffness vs. the strain hardening coefficient (open symbols: reverse ana
steel; and (c) BK7 glass.
hardness tests of each material. For each material, the
loading parts of the curves obtained by numerical simu-
lation are similar, and independent of the strain-harden-
ing exponent. All of them show good correlation with
the experimental ones. The numerical unloading curves
are quite similar to the different strain-hardening expo-
nent values in the case of the steels (Fig. 15a and b
for the DC 06 and AISI 304, respectively). For the
BK7 glass, the elastic recovery of the numerical unload-
ing curves can easily be seen to increase with increasing
values of the strain-hardening exponent (Fig. 15c). How-
ever, when stiffness is represented vs. the work-hardening
coefficient, a distinction between the unloading curves
can be achieved, as shown in Fig. 16.

Fig. 15 shows differences between the unloading curves,
experimental and numerical, due to different elastic recov-
eries. The slightly higher elastic recovery observed in the
experimental unloading curves, relative to the numerical
results, is related to the compliance of the experimental
equipment. The indentation Young’s modulus, E, can be
obtained from the well-known equations:

Er ¼
1

b

ffiffiffi
p
p

2

1ffiffiffiffiffiffi
AP

p 1

ðCt � CfÞ
1

Er

¼ 1� m2
s

E
þ 1� m2

i

Ei

ð8Þ
b

lysis results; solid symbol: forward analysis): (a) DC 06 steel; (b) AISI 304
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where Er is the reduced Young’s modulus, b is the correc-
tion factor of the indenter geometry (b = 1.05, for the
Vickers indenter [25]), Ct and Cf are the total compliance
of the system and the frame compliance, respectively, and
AP is the contact area; ms and E are the Poisson ratio and
the Young’s modulus of the tested material, and mi and Ei

are the Poisson ratio and the Young’s modulus of the in-
denter material. Eq. (8) allows us to write the following
equation:

Cexp ¼
1

b

ffiffiffi
p
p

2

1ffiffiffiffiffiffiffiffi
Aexp

p 1� m2
s

E
þ 1� m2

i

Ei

� �
þ Cf ð9Þ

This equation is applicable to the experimental hardness
tests: Cexp and Aexp correspond to the compliance and
the contact area experimentally determined. However, for
the case of numerical simulation performed with a rigid in-
denter, as in this study, the two last terms of the second
member of the equation should be zero (Ei!1 and
Cf = 0) and Eq. (9) becomes (Cnum and Anum are the com-
pliance and the contact area numerically determined):

Cnum ¼
1� m2

s

E
1

b

ffiffiffi
p
p

2

1ffiffiffiffiffiffiffiffiffiffi
Anum

p ð10Þ

So, in order to obtain the same values for the material elas-
tic parameters E and ms (and so for the ratio ð1� m2

s Þ=E),
the comparison between numerical (Cnum) and experimen-
a

c

Fig. 17. Comparison between the experimental and predicted reverse analysis
tal (Cexp) values of the compliance (or the corresponding
stiffness values: Snum = 1/Cnum and Sexp = 1/Cexp) needs
to take Eqs. (9) and (10) into account:

Cnum ¼ Cexp � Cf �
1

b

ffiffiffi
p
p

2

1ffiffiffiffiffiffiffiffi
Aexp

p 1� m2
i

Ei

 ! ffiffiffiffiffiffiffiffiffiffi
Aexp

Anum

r
ð11Þ

Fig. 16 shows the evolution of the numerical stiffness
values (open symbols) vs. the strain-hardening exponent
for the three materials. As noted above (Fig. 13b), the stiff-
ness values show an evolution in correlation with the
strain-hardening exponent, which can be accurately plotted
by a straight line. The average stiffness value obtained in
the experimental tests, after adjustment using Eq. (11), is
also shown (solid symbol) in Fig. 16.

Fig. 17 shows the comparison between the experimen-
tal and the corresponding predicted stress–plastic strain
curves, obtained with the reverse analysis approach pro-
posed. Errors in the calculation of experimental stiffness
result in the upper and lower limits of the stress–strain
curve, are both also shown. Table 3 sums up the mechan-
ical properties evaluated with the reverse analysis algo-
rithm for the three materials. A close agreement
between the experimental and the average (obtained with
the average experimental stiffness) stress–strain curves is
obtained. It is clear from the results that the variation
ranges of the strain hardening and yield stress values
b

stress–strain curves: (a) DC 06 steel; (b) AISI 304 steel; and (c) BK7 glass.
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can be minimized by decreasing the experimental stiffness
error. In order to achieve such an objective, the recom-
mendations of ISO 14577 [29] must be taken into
account.

6. Conclusions

This paper presents a finite element study using the
three-dimensional numerical simulation of hardness tests
of elastic–plastic materials. The indenter was modulated
to account for indenter tip imperfection, as in real cases.
In addition, the contact between the Vickers indenter and
the deformable body takes friction into account. Forward
and reverse analyses were performed in order to extract
the plastic properties of materials from the results obtained
in depth-sensing indentation tests, using single indenter
geometry.

Forward analysis showed that the representative strain
depends slightly on the Young’s modulus and on the level
of the stress–strain curve. We have outlined an empirical
relationship that allows the representative stress value to
be calculated from the hardness and Young’s modulus val-
ues. This suggested method for evaluating representative
stress can easily be adapted to any indenter geometry.

The numerical reverse analysis allows us, as a first step,
to optimize the representative stress value, and thenceforth
to predict the values of the strain-hardening exponent and
the yield stress. The proposed methodology uses the exper-
imental loading part of the hardness curve, experimentally
determined by depth-sensing indentation, to evaluate the
representative stress value. The strain-hardening exponent
and yield-stress evaluations make use of experimentally
determined material stiffness values. The application of
the proposed reverse analysis approach to three real mate-
rials gives adequate results for the strain hardening and
yield stress.

Sensitivity analyses were carried out using forward and
reverse analyses. The proposed approach indicates that
the strain-hardening coefficient can be very sensitive to
the plastic properties of the material, particularly in the
cases of materials with low yield stress. However, this
methodology ensures uniqueness in all cases, the degree
of accuracy being dependent on the range of experimental
error in the evaluation of stiffness.

Finally, this reverse analysis approach consists of a
straightforward method, which avoids the use of dimen-
sionless functions, determined by fitting polynomial func-
tions to numerical results. We believe that this approach
to reverse analysis opens a new modus operandi for
reverse analysis in the mechanical characterization of thin
films.
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