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Rua Lúıs Reis Santos, Pólo II, 3030-788 Coimbra, Portugal

bCentre of Complexity and Design, Faculty of Mathematics, Computing and Technology
The Open University, Milton Keynes, MK7 6AA, United Kingdom

cCIES, Department of Architecture, Lisbon University Institute
Av. Forças Armadas, 1649-026 Lisboa, Portugal

dADAI, LAETA, Department of Mechanical Engineering, University of Coimbra
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Abstract

Generative design methods are able to produce a large number of potential solutions of architec-

tural floor plans, which may be overwhelming for the decision-maker to cope with. Therefore,

it is important to develop tools which organise the generated data in a meaningful manner. In

this study, a comparative analysis of four architectural shape representations for the task of

unsupervised clustering is presented. Three of the four shape representations are the Point Dis-

tance, the Turning Function, and the Grid-Based model approaches, which are based on known

descriptors. The fourth proposed representation, Tangent Distance, calculates the distances of

the contour’s tangents to the shape’s geometric centre. A hierarchical agglomerative clustering

algorithm is used to cluster a synthetic dataset of 72 floor plans. When compared to a refer-

ence clustering, despite good perceptual results with the use of the Point Distance and Turning

Function representations, the Tangent Distance descriptor (Rand index of 0.873) provides the best

results. The Grid-Based descriptor presents the worst results.

Keywords: unsupervised clustering, floor plan designs, hierarchical clustering, shape

representation, descriptors

1. Introduction1

Generative design methods are commonly used in architectural design. These methods have2

several applications in the design of structural elements, facade layout, space planning, optimisa-3
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tion of building form, replication of architectural styles, and urban design. The main goal is to1

assist building design practitioners in exploring a larger set of solutions, which a traditional trial-2

and-error process could never achieve. However, one of the drawbacks is that they may produce3

an excessive number of solutions for a human to cope with; moreover, it is just not feasible to rate4

solutions according to a performance criterion and then select the top-ranked ones, especially for5

unclear and subjective problems. An alternative approach is to organise the generated data into6

groups determined by common features. This allows the decision-maker to compare group types7

before analysing specific solutions. Therefore, to facilitate the decision-maker’s task of compar-8

ison and selection, this paper presents an unsupervised clustering technique using four different9

shape representations. The method and the performance of these shape descriptors is analysed10

in a computer generated architectural floor plan showcase.11

This is a typical task for machine learning techniques. In the field of machine learning there12

are two main subfields dealing with organisation of data: classification and clustering. While the13

former is used to label data according to pre-defined classes, the latter deals with unlabelled data14

and the task is usually to create partitions in the data while making coherent groups according to15

some defined metric. This is a process of identifying structures in unlabelled datasets regardless of16

the data type. Han and Kamber [1] classified clustering techniques into five categories: partition-17

ing methods, hierarchical methods, density-based methods, grid-based methods, and model-based18

methods.19

Clustering techniques have been applied in diverse areas. Some of the most relevant applic-20

ations include the classification of textual documents [2], document navigation for search engine21

optimisation [3–5], resource project scheduling [6], point cloud simplification [7, 8], time series ana-22

lysis and clustering [9], image clustering [10], face expression [11], database retrieval of mechanical23

objects [12, 13], and sketch recognition [14].24

The clustering of objects, according to their shape, has also been previously applied in diverse25

fields. The correct representation of the shape has a significant impact on the matching correctness26

of the algorithms [15]. For instance, Chang et al. [16] proposed a shape recognition scheme where27

the representation corresponds to the distance of feature points in the shape’s boundary to the28

centroid. This shape representation presents the property of being invariant to translation as the29

boundary is fixed in relation to the centroid independently of its global position. As the distances30

of the feature points are ordered and divided by a minimum distance, this also results in invariance31

to scaling, rotation, and reflection. Instead of only considering the shape feature points, Yankov32
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and Keogh [17] used the entire contour for the shape representation and a nonlinear reduction1

technique to cluster pathological cells.2

Arkin et al. [18] represented a polygonal shape by its turning function. The shape descriptor3

consists in measuring the angle of the counter-clockwise tangent to the x−axis in each of the4

feature points in the polygon. Therefore, the values vary between −π and π. As the polygon is5

scaled to have a length of 1, in addition to being translation invariant, the representation is also6

invariant to scaling. However, results depend on the starting point and the polygon’s rotation7

and reflection.8

Sajjanhar and Lu [19] suggested a grid-based representation where a shape is placed, rotated,9

and scaled to fit a square grid. For each cell in the grid a binary value is determined: 0 for10

empty and 1 for filled. Although this representation guarantees translation and scale invariance,11

if the grid is adaptive, the scaling is only invariant to one of the axes—the rotation invariance12

is dependent on the rotation of the grid to match the same shape orientation. Also, as may be13

expected, the results vary according to the grid size, as this changes the capability to capture the14

shape’s details.15

Siddiqi et al. [20] used a shock graph to capture the effects on the bounding contours of the16

singularities in the shape structure. The graph is determined according to a set of rules in a shock17

graph grammar which reduces it to a rooted shock tree. A recursive algorithm is then used to18

match two shock trees, starting from the root and proceeding through the subtrees in a depth-first19

approach.20

Belongie et al. [21] presented an approach to measure similarity of shapes by considering21

the distribution of the remaining points in each reference point. As corresponding points in22

two similar figures have similar contexts, a transformation is used to align two shapes. The23

dissimilarity between them is calculated by summation over the errors between the corresponding24

points in the transformation.25

Aiming to retrieve shapes from a database, which are similar to a query shape, Tan et al. [22]26

proposed a new representation based on a centroid-radii approach. According to the authors, this27

approach allows the modelling of convex, concave, and hollow shapes. The representation consists28

of a set of vectors, each one measured at regular intervals from the centroid of a concentric ring.29

In Klassen et al. [23], the shapes are considered to be planar closed curves represented either30

as direction functions or as curvature functions. In this manner, shapes may be modelled as31

stretchable, compressible, and bendable strings along their extensions that are constructed from32
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spaces of parametric curves [24, 25]. Geodesics are used to determine the dissimilitude between1

shapes.2

Ling and Jacobs [26] classified shapes by using an inner-distance to build the shape repres-3

entation of the structure or articulation parts. The inner-distance is the length of the shortest4

path between two reference points on the shape boundary and allows the creation of articulation5

invariant representations.6

Shen et al. [27] proposed a method to group planar figures by their skeleton graph. The7

clustering is carried out by determining the common internal shape structure that belongs to the8

same cluster. The data is grouped by using an agglomerative clustering algorithm.9

In architecture, Cha and Gero [28] investigated shape patterns to determine if any similarities,10

relationships, and physical properties could be recognised. de las Heras et al. [29] used run length11

histograms as a perceptual representation of floor plans made by architects. This approach allows12

the retrieval of designs with similar properties from a database. Dutta et al. [30] used a graph-13

based method to identify symbols in floor plans such as furniture and openings.14

However, despite all of the mentioned approaches/methods, the use of clustering techniques15

has yet to be used to group designs in the case of automatic generation of floor plans. In a16

previous study, Sousa-Rodrigues et al. [31, 32] conducted an online survey directed at design and17

construction experts—mostly architects, engineers and architecture undergraduates—in which18

the majority of respondents considered the overall shape of floor plans as the most important19

similitude feature. This highlights the importance of having perceptually accurate algorithms for20

the automation of this task.21

In this paper, four shape representations are studied as floor plan design descriptors under22

the same settings. All descriptors are vectors of similar length, and all are used to partition the23

same dataset with the same clustering algorithm. Three of the four shape representations are24

known descriptors: these are the distance to centroid [16], the turning function [18], and the25

grid-based model [19]. The fourth and last shape descriptor is a novel representation specifically26

created to capture orthogonal floor plan shapes. It consists in calculating the distance of the27

tangent lines to the geometric centre of the shape. The clustering procedure is an agglomerative28

hierarchical algorithm with Ward linkage [33] and Euclidean distance as a dissimilarity measure.29

The advantages and disadvantages of each shape representation are analysed in a showcase with 7230

floor plan designs. These designs were generated using a specific algorithm, named Evolutionary31

Program for the Space Allocation Problem (EPSAP) [34–36]. The EPSAP algorithm generates32
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alternative floor plans according to the user’s specifications.1

After this introductory section, section 2 describes the methods applied to the clustering of the2

floor plans designs. In section 3 the results for a showcase of a single-family house are presented3

and compared to a reference clustering partition. The discussion of the relevant results follows in4

section 4, as well as the analysis of the applicability of the descriptors. Finally, conclusions are5

drawn and future work is outlined in section 5.6

2. Methodology7

To determine the most suitable shape representation to be used in the cluster of orthogonal8

floor plans, three shape descriptors inspired by previous works and one new descriptor were9

implemented. These descriptors have the same vector length and shape matching algorithm10

using the Euclidean distance to calculate the dissimilitude between the shapes. Therefore, the11

computational burden is equal for the four approaches. A specific algorithm generated a dataset12

of floor plan designs. This synthetic dataset does not require a pre-processing mechanism for13

denoising the shapes, nor the application of a dimensionality reduction technique. Therefore, the14

focus is on the perceptual quality of the results of each shape descriptor.15

2.1. Shape representation16

The representation of continuous features plays an important role in machine learning tech-17

niques, either because the machine learning technique itself requires a nominal feature space—18

nominal features describe qualitative aspects that do not share a natural ordering relationship—or19

because discretisation allows for better results in the machine learning technique. The research20

on dataset discretisation for machine learning is vast and beyond the scope of this paper, but21

it is important to mention that such algorithms usually aim to maximise the interdependency22

between discrete attribute values and class labels, as this minimises the information loss due to23

the discretisation process. The process has to balance the trade-offs between these two goals and24

many studies have shown that several machine-learning techniques benefit from it [37–40].25

In this study, the four descriptors are designed to have similar features. These are invariant26

to translation and scaling but sensitive to rotation and reflection. A descriptor variant that27

considers independent scaling of x-and y-coordinates was also analysed. The reason for these28

features is that, despite floor plans being generated on a blank canvas, human experts continue29

to have a notion of north-south and east-west framework, thus a rotated or a reflected floor plan30

is considered as an alternative design. Buildings have a strong relation with their environment31
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and their form depends on the surrounding buildings, landscape, solar orientation, and so on.1

However, because there are no visual references around each floor plan, translation does not affect2

the human perception of that shape. As a result, rotation and reflection were considered as3

features that influence the clustering result. Nevertheless, invariance to rotation and reflection4

could be easily achieved by ordering the descriptor vector or considering the distribution of these5

values.6

2.1.1. Point Distance (PD) descriptor7

Based on Chang et al.’s [16] shape representation, the Point Distance (PD) descriptor has8

points marked on the shape silhouette at equal segment lengths. The starting point is the nearest9

shape perimeter point in relation to the top-left corner of the shape bounding box and the points10

are distributed in a counter-clockwise direction. Our implementation differs from Chang et al.’s11

representation as the reference point is not the shape’s centroid, which is defined as the average12

of the x− and y−coordinates of all perimeter points, but instead considers the geometric centre13

of the bounding box as the reference point. The shape descriptor is then a vector of normalised14

values—corresponding to the distance from the reference point to the ordered perimeter points15

divided by the longest point distance.16

Figure 1a illustrates an example of the marked perimeter point (A,5) and its normalised dis-17

tance to the centre (0.90). The example represents the descriptor variant where the x−coordinate18

and y−coordinate scales are preserved. Figure 1b depicts the representation vector of normalised19

values ranging from 0 (white) to 1 (black) in a gradient matrix form1, where the first vector point20

is (A,1) and concludes in point (J,10). In the floor plan image, the wall corners are marked with21

the corresponding matrix point to depict the counter-clockwise order of the marked points.22

2.1.2. Turning Function (TF) descriptor23

The second shape descriptor is based on Arkin et al.’s [18] turning function. This consists in24

determining the counter-clockwise angle to the x−axis of a tangent in each feature point along25

the shape contour. The feature points are marked at equal distances.26

Figure 2a depicts an example where the turning function angle is measured at point (B,3),27

with the value of 3π/2, in the descriptor variant of preserved aspect ratio. The feature points28

start with the initial point (A,1), which is the nearest perimeter point to the top-left corner29

1The gradient matrix of the four representations is used only for visual comparison of different floor plans. The

agglomerative hierarchical algorithm uses each data point as a 1−dimensional vector.
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(a) (b)

Figure 1: Point Distance (PD) descriptor. (a) Example of the normalised distance for the point (A,5) with value

of 0.90, which corresponds to its real distance divided by the longest distance of all silhouette points. The wall

corners are marked with the matrix index to depict the counter-clockwise order of the feature points. (b) Vector

in the form of a gradient matrix (white is 0 and black is 1) of the normalised distances.

of the shape bounding box, and contours the shape silhouette in a counter-clockwise manner.1

Therefore, the values vary between 0 and 2π that are then normalised to have values ranging from2

0 to 1. Figure 2b illustrates the vector of the Turning Function (TF) descriptor as a gradient3

matrix. As the floor plans are orthogonal, the shape edges only take on four possible values4

{π/2, π, 3π/2, 2π} = {0.25, 0.50, 0.75, 1.00}.5

2.1.3. Grid-Based (GB) descriptor6

The Grid-Based descriptor is inspired on Sajjanhar and Lu’s [19] work and consists in placing7

the shape under a square grid parallel to the exterior walls of the floor plans. For each cell in the8

grid, the centre may (1) or may not (0) be occupied by the shape area. The representation is a9

vector of binary values with the length equal to the number of cells. The values correspond to10

reading the grid from left-to-right and top-to-bottom.11

Figure 3a illustrates an example of a floor plan overlaid by a grid. In the example, point (B,8)12

has a value of 0 while (F,9) has a value of 1 depending on whether the floor plan area is under13

that cell centre or not. Figure 3b represents the corresponding binary vector as a matrix. Each14

matrix entry has the corresponding value in the overlaid grid in the floor plan.15
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(a) (b)

Figure 2: Turning Function (TF) descriptor. (a) Example of the measuring angle in point (B,3) that has the value

of 0.75, which corresponds to 3π/2. The wall corners are marked with the matrix index to depict the counter-

clockwise order of the feature points. (b) Vector in the form of a gradient matrix, where 0 is white and 1 is black,

for angles ranging from 0 to 2π.

(a) (b)

Figure 3: Grid-Based (GB) descriptor. (a) Example of two point measurements. Point (B,8) is outside the floor

plan area thus having the value of 0. Meanwhile, point (F,9) falls within the floor plan area and has a value of 1.

(b) Vector in the form of a matrix (white is 0 and black is 1) depicting the corresponding cell value in the overlaid

grid in the floor plan. Only the cell centre is used to measure the presence of the floor plan.

2.1.4. Tangent Distance (TD) descriptor1

The Tangent Distance (TD) descriptor consists in determining the distance of a straight-line2

tangent to the shape contour to the bounding box centre. As floor plans are orthogonal shapes,3
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ultimately the tangent line coincides with the exterior wall. The shape has its perimeter marked1

with points at regular length intervals starting on the nearest point on the shape perimeter to2

the top-left bounding rectangle. In every point, a straight line is drawn tangent to the shape and3

the distance is measured to the centre point. The vector has its values normalised—measured4

distance divided by the longest distance.5

Figure 4a depicts an example of the descriptor variant for preserved aspect ratio. The feature6

point (G,10) has a normalised distance value of 0.11 of its tangent to the centre. Figure 4b7

illustrates the resulting vector in the form of a gradient matrix.

(a) (b)

Figure 4: Tangent Distance (TD) descriptor. (a) Example of the tangent distance for the feature point (G,10),

which has the normalised distance value of 0.11. The horizontal walls corners are marked following the counter-

clockwise order. (b) Vector in the form of a gradient matrix, where 0 is white and 1 is black.

8

2.2. Clustering algorithm9

The dataset was clustered using an agglomerative hierarchical algorithm with Ward linkage [33]10

and the Euclidean distance as the dissimilarity measure between different floor plan designs (fea-11

ture vectors). Hierarchical clustering is based on the assumption that there is maximal quantifiable12

information when a set of elements is ungrouped, and that this information is captured by an13

objective function. In the case of agglomerative hierarchical clustering, the algorithm starts by14

considering as many clusters as the available data points and placing each data point in a cluster.15

It proceeds by merging two existing clusters that optimise an objective function. In this case the16

function is a variance criterion minimising the total within-cluster variance. At each step of the17

agglomerative process, the two clusters to be merged are dependent on the least increase in the18

9



total within-cluster variance. The process then proceeds iteratively until all clusters are grouped1

into a single global cluster.2

Although the linkage criterion used in hierarchical clustering can be of different types, Ward’s3

complete linkage aims to find compact clusters and was therefore preferred in this work. A similar4

linkage is the complete linkage clustering [41], where the distance between two different clusters5

is calculated by considering all pair-wise interactions between the elements in the two clusters. It6

then uses the distance of the pair of points that is farthest away from each other as the distance7

between the two clusters. It also aims to create compact clusters and to compute faster. For large8

populations it is an alternative to the Ward’s criterion as it is faster. In this work, all results9

employed the Ward’s criterion.10

There are several measures available to determine the dissimilitude of two descriptor vec-11

tors [42]. In this work the dissimilitude between two feature vectors was calculated by the Euc-12

lidean distance for N−dimensions, with N being the length of the feature vector describing the13

floor plan design.14

2.3. Synthetic dataset15

The dataset of floor plan designs was created using a generative design algorithm, named16

the Evolutionary Program for the Space Allocation Program (EPSAP) [34–36]. This algorithm17

combines an Evolution Strategy (ES) technique and a Stochastic Hill Climbing (SHC) method18

in a two-stage approach. The EPSAP is capable of generating multi-story floor plans where19

parametric, non-rigid, and non-fixed vertical circulation elements evolve during the search process20

in interaction with the remaining spaces.21

From a set of requirements defined by the user and given as input (see subsection 3.1 for an22

example of the required input information), the generative design process initialises by creating, at23

the first ES generation, randomly distributed and dimensioned rectangles (each corresponding to a24

room) in the 2-dimensional plan—each storey has its own 2-dimensional plan. Each design solution25

is evaluated with a weighted sum of several objectives. These objectives are connectivity (interior26

doors), adjacency (proximity between rooms), room dimensions and area (according to minimum27

size of the smallest rectangle side and minimum floor area, respectively), compactness of the floor28

plan, room overflow in relation to a building boundary (when specified by the user), opening29

dimensions (to satisfy minimum width and window-to-floor ratio), and opening orientation (when30

specified by the user).31

At every ES generation, the SHC method is called to randomly transform the different ar-32
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chitectural elements in the floor plan (rooms, stairs, elevators, cluster of spaces, openings, walls,1

and the floor plans as a whole). The SHC method applies geometric actions such as translation,2

reflection, rotation, stretching, alignment of elements, permutation of element type, and changes3

to the element’s orientation. The transformation action randomly selects the element, direction,4

and magnitude of change from the admissible geometric values. Then, the candidate solutions are5

evaluated. If the action produces an equal or better solution, the change is preserved, otherwise it6

is discarded. The SHC stage continues iteratively until reaching the SHC termination criterion—7

the difference between the moving average and the last iteration of the best individuals’ average8

performance is greater than a defined threshold. Then, solutions having better performance than9

the average of the population are preserved for the next ES generation, while the remaining ones10

are discarded and substituted with new randomly generated ones, thus initiating a new ES cycle.11

When the ES termination criterion is reached, the algorithm stops and displays the results to the12

user.13

As the EPSAP produces a large number of alternative floor plans, some kind of aggregation14

mechanism is required to help users compare and analyse the generated solutions. This is the15

motivation for the development of this study as described in subsection 2.1.16

3. Results17

3.1. Showcase specifications18

A single-family three-bedroom house was used as an illustrative example. In addition to the19

three bedrooms (R6−8), a hall (R1), a kitchen (R2), a living room (R3), a corridor (R5), and two20

bathrooms (R4 and R9) were specified. Topologically, all spaces have connection to the hall or21

the corridor. The kitchen also has an interior door connecting to the living room. One of the22

bathrooms serves the public area of the house and the other is connected to the corridor of the23

private part of the house, which is connected to all bedrooms. The interior connectivity (Mcon) is24

defined in Matrix (1), where 1 represents an interior door connecting two rooms and 0 indicates25
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the absence of doors connecting them.1

Mcon =



R1 R2 R3 R4 R5 R6 R7 R8 R9

R1 0 1 1 1 1 0 0 0 0

R2 1 0 1 0 0 0 0 0 0

R3 1 1 0 0 0 0 0 0 0

R4 1 0 0 0 0 0 0 0 0

R5 1 0 0 0 0 1 1 1 1

R6 0 0 0 0 1 0 0 0 0

R7 0 0 0 0 1 0 0 0 0

R8 0 0 0 0 1 0 0 0 0

R9 0 0 0 0 1 0 0 0 0



(1)

2

All interior doors must have 0.90m wide except the living room doors, which are 1.40m. With3

the exception of the horizontal circulation spaces and one of the bathrooms, all remaining spaces4

have at least one window (the living room has two). The hall has one exterior door facing north5

(orientation up). No other topological requirement was added, such as opening orientation or6

space location on the floor plan.7

The detailed showcase requirements are presented in Table 1, where the information relating to8

each room is listed. These include space name (Msn), space function type (Mst, where 0 represents9

circulation spaces, 1 rooms, and 2 kitchens and bathrooms), minimum floor side dimension (Mfd),10

minimum floor area (Mfa), exterior opening width (Meow) and height (Meoh), space window-to-11

floor ratio (Mwfr), clear area in the outside of opening (Meoa), exterior opening orientation (Meoo),12

and interior doors minimum width (Midw). The thicknesses of walls are 0.32m for the exterior wall13

(tew) and 0.11m for the interior wall (tiw). The floor plan design (FPD) must have a construction14

area inferior to 200m2 (ac).15

Using these requirements as input, the EPSAP algorithm ran a single time to generate 72 al-16

ternative floor plans from a population of 576 individuals (each individual is a candidate solution).17

The generative design process took 136s in a 2.8GHz Quad-core computer with 8GB of RAM.18

Multi-threading was used. The floor plans improved over a total of 1790 iterations by minimising19

penalties for not satisfying the user specifications. The best individual had a fitness of 98265.1 in20

the first iteration and 2.2 in the last iteration, which resulted from not attaining the aimed floor21

plan area.22

3.2. Clustering results23

As the purpose of this work was to provide the EPSAP algorithm with clustering capabilities24

to help the user deal with a large number of generated solutions, and because the type of shapes25

12



Table 1: Case study specifications for spaces and openings.

Storey Space Ext. opening Int. door

Msn Mst Mfd Mfa Meow Meoh Mwfr Meoa Meoo Midw

L1

R1 Hall 0 1.40m 5.0m2 1.20m 2.00m {1.80m, 3.00m} North 0.90m

R2 Kitchen 2 2.60m 15.0m2 1.00m 0.1 {3.00m, 3.00m} 0.90m

R3 Living room 1 4.00m 20.0m2 {5.00m, 4.00m} {2.40m, 2.40m} {3.00m, 3.00m} 1.40m

R4 Bathroom 2 1.80m 3.0m2 0.90m

R5 Corridor 0 1.40m 3.0m2 0.90m

R6 Bedroom 1 3.50m 18.0m2 1.00m 0.1 {3.00m, 3.00m} 0.90m

R7 Bedroom 1 3.00m 15.0m2 1.00m 0.1 {3.00m, 3.00m} 0.90m

R8 Bedroom 1 2.70m 12.0m2 1.00m 0.1 {3.00m, 3.00m} 0.90m

R9 Priv. Bathroom 2 1.80m 3.0m2 0.60m 0.60m {3.00m, 3.00m} 0.90m

tew = 0.32m, tiw = 0.11m, and ac <= 200m2.

and resulting numbers are not known a priori, an unsupervised clustering approach was used.1

That is, the number of clusters does not depend on the real number of different shapes in the2

generated set but on the number of alternative solutions that the user wants or might analyse.3

As the complexity of the floor plans increases, the number of alternative shapes also grows, easily4

reaching numbers that become intractable for the decision-maker. The clustering mechanism is5

independent from the number of clusters and the number of floor plan designs, thus may be scaled6

up or down only affecting computation time. As the vector in every clustering process had the7

same length (100 values), the type of shape representation did not affect the performance of the8

algorithm. However, the results had significant differences depending on the shape descriptor.9

During the preparatory work, a survey was conducted to determine which clustering features10

human experts use to group floor plans [31, 32]. The survey analysis determined the main features,11

such as shape and indoor room arrangement. However, human experts are generally inconsistent12

during the clustering process—for instance, the same individual may sometimes gather floor plans13

by shape and in other times by indoor space arrangement. This resulted in having groups where a14

floor plan A has similar shape as a floor plan B and the latter has the same internal arrangement15

as a floor plan C. However, C has no similarity whatsoever with A, despite the three being in the16

same cluster. Therefore, the results of the survey were not used as a ground truth due to this17

changing behaviour. As an alternative, a reference clustering was determined by typifying shapes18

from designs found in the dataset. Figure 5 depicts such partition (labelled from A’ to I’) with19

the typified shape on the left of each group letter. There is the O-shape, four rotated L-shapes,20
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Figure 5: Reference clustering and shape type by group.

two rotated T-shapes, and two reflected Z-shapes. Group A’ (O-shape) has 7 designs; B’ (top-left1

L-shape) has 13; C’ (top-right L-shape) has 6; D’ (L-shape) has 5; E’ (reflected L-shape) has2

4; F’ (rotated left T-shape) has 3; G’ (rotated right T-shape) has 4; H’ (Z-shape) has 10; and,3

finally, I’ (reflected Z-shape) has 20 designs.4

Several measures have been proposed to determine the quality of the resulting groups and5

comparing those clusters with a reference group of the data. The measures of comparison have to6

be able to handle minor data perturbations as well as missing data, but remain sensitive enough7

when two clustering methods produce different results from the same data [43]. In Rand [43] an8

index is proposed that is based on a measure of similarity between two different clusterings of the9

same dataset and considers how each pair of data points is assigned in each clustering. If the pair10
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of points i, j is placed together—assigned to the same cluster—in both clusterings, or if they are1

placed in different clusters in both clusterings, this is considered a similarity trait between the2

two clusterings. The dissimilarity is observed when the pair of points is placed together in one3

clustering and separated in the other [43]. Therefore, for any two clusterings Y, Y ′ of N points4

X1, X2, . . . , XN , the similarity between them is calculated by Eq. (2), where γij = 1 if the pair of5

points i, j appears in both clusterings in the same relation and γij = 0 if the pair of points does6

not have the same kind of relations in both clusterings.7

c(Y, Y ′) =
N∑
i<j

γij(
N
2

) (2)

Additionally, each descriptor (and its alternative variant of non-fixed aspect ratio) was eval-8

uated according to the perceptual coherence of each group and between groups. A group is9

considered coherent if it presents a dominant shape (the shape that appears the highest number10

of times in a group) with a lower number of outlier designs. Confusion matrices are used to11

compare descriptor variants. These are presented in a table format where two clusterings from12

the same dataset can be compared by showing the number of elements that belong to the clusters13

of both clusterings, in each table entry. These are usually used to compare a clustering predicted14

by a machine learning algorithm and a clustering that is a reference clustering. The columns and15

rows represent each group for the two descriptors.16

3.2.1. Point Distance (PD) descriptor results17

For PD descriptor, Figure 6 depicts the clustering results (for fixed aspect ratio) and the18

group’s dominant shape at left of the group letter. The group outliers were placed at the end of19

each group row for readability. This descriptor presents six unique dominant shapes from a total20

of nine possible ones, none of the groups was free from outliers, clustering accuracy of 70.83%,21

and Rand index of 0.861. The number of designs per group varies between 4 and 14. The group22

with the highest number of dominant shape designs (Nd) was group D with 9 and the groups23

with the lowest number of outliers were D, G, H, and I with one. Outliers exist in all groups.24

From a perceptual analysis, when compared to the reference clustering partition, the PD25

descriptor is unable to have a fully coherent group. For instance, group A has the L-shape as the26

dominant shape the type and FPD 4, 8, 42, and 64 as outliers. Group B follows the Z-shape type27

and has as outliers FPD 6, 25, 43, 52, 54, and 71, which would fit better in the top-right L-shape28

(dominant shape absent from this partition). Group C only has 2 outliers (FPD 26 and 38) and29

has a reflected Z-shape. The top-left L-shape group D has only 1 outlier (FPD 20). Group E30

15



Figure 6: Clustering results using Point Distance (PD) descriptor.

aggregates the O-shape type and have 2 outliers (FPD 27 and 37) that would fit in group D.1

Group F and H have the same reflected Z-shape type as group C and only have one incorrectly2

assigned design (FPD 50 and 34, respectively). Finally, the last group I has a reflected L-shape3

with one outlier (FPD 61).4

Table 2a presents the confusion matrix of this fixed aspect ratio descriptor variant against the5

reference clustering partition. It is noticeable that designs in partitions B’ and I’ are dispersed6

over four or more groups of the descriptor results, thus showing the difficulty of the PD descriptor7

in correctly determining the top-left L-shape and the reflected Z-shape types. It is also observable8

that the top-right L-shape (partition C’), rotated left T-shape (F’), and rotated right T-shape9

(G’) are outliers in several descriptor groups (B; A and D; and C, F, and H, respectively).10

Comparing the fixed aspect ratio variant of this descriptor with the non-fixed one (see Fig-11

ure A.10 in Appendix A), the performance decreases with an clustering accuracy (Ac) to 66.67%12
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and Rand index (Ri) to 0.852. Despite having one group with no outlier (group C) and finding1

the same number of unique shape groups (see Table 2b), the descriptor with this feature loses2

accuracy in groups B, E, G, H, and I; however, it improves in groups C and D (see Table 2c).3

3.2.2. Turning Function (TF) descriptor results4

Figure 7 presents the results for the TF descriptor and the dominant shape in each group.5

The TF descriptor has 6 unique shape groups (Nu), 2 groups without any outlier (No), clustering6

accuracy of 66.67%, and Rand index of 0.842 (Ri). The number of designs per group varies7

between 4 and 15. The groups with the highest number of dominant shape designs (Nd) were C8

and D with 8. The groups with no outliers were D and H (Ne).9

The perceptual analysis of the group coherence shows that group A has two outliers (FPD 410

and 8) and the dominant shape type is the L-shape. Group B follows the Z-shape and has FPD11

28, 42, and 65 incorrectly assigned. C has a reflected Z-shape type and the largest number of12

outliers (FPD 21, 26, 29, 35, 38, 40, and 48) that mix reflected L-shape and rotated right T-shape13

types. Group D has no outliers and its shape type is the top-left L-shape. Group E dominant14

shape is the top-right L-shape with 4 outliers (FPD 17, 22, 46, and 69) whose shape fits in group15

B with Z-shape type. The O-shape group is F and has 6 outliers (FPD 20, 27, 37, 47, 50, and16

56). Groups G, H, and I have the same dominant shape as C (reflected Z-shape). G only has 117

outlier (FPD 31, a top-left L-shape) and I has 2 outliers (FPD 51 and 34).18

Table 3a compares the fixed aspect ratio descriptor variant with the reference clustering par-19

tition. The designs in partitions B’, F’, H’, and I’ are spread over three or more groups, thus20

indicating the TF descriptor’s difficulty in correctly capturing the shape top-left L-shape, rotated21

Table 2: Point Distance (PD) confusion matrices.

Fixed aspect ratio
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A’ 7

B’ 9 2 1 1

C’ 6

D’ 5

E’ 1 3

F’ 2 1

G’ 1 2 1

H’ 2 8

I’ 6 5 5 3 1

(a)

Non-fixed aspect ratio
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A’ 7

B’ 10 1 1 1

C’ 4 2

D’ 5

E’ 1 3

F’ 2 1

G’ 1 2 1

H’ 2 5 3

I’ 7 4 5 2 2

(b)

Non-fixed aspect ratio
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A 9

B 9 5

C 2 2 4

D 10

E 1 8

F 4 4

G 3 3

H 2 2

I 4

(c)
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Figure 7: Clustering results using Turning Function (TF) descriptor.

left T-shape, Z-shape, and reflect Z-shape types, respectively. One may also note that shapes1

from partitions E’, F’, and G’ were unable to dominate any group.2

When considering the non-fixed aspect ratio descriptor variant (results are depicted in Fig-3

ure A.11 in Appendix A), the performance of Ac increases to 69.44% and the Ri to 0.858. One4

of the two groups that had no outliers is also lost. Table 3b shows the increase of clustering5

accuracy for shapes in partitions B’, D’, and F’ and decreases in C’ and E’. When comparing6

both descriptor variants in Table 3c, group I has the largest shift of designs, capturing 8 that7

were previously in group C. The groups that acquire designs from other groups are A, C, D, F,8

and H.9
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3.2.3. Grid-Based (GB) descriptor results1

Figure 8 illustrates the GB descriptor clustering. GB only identifies 5 unique shape groups2

(Nu) and one group was free from outliers (No). The clustering accuracy and Rand index were3

the lowest of all descriptors with only 55.56% (Ac) and 0.824 (Ri), respectively. The number of4

designs per group varies between 4 and 12. The groups with the highest number of dominant5

shape designs (Nd) were C and G with 8. Group F had no outliers (Ne). Group I has two6

dominant shapes.7

GB descriptor has the lowest group coherence of all the descriptors’ results. For example,8

group A and I have more outliers than dominant shapes—A (O-shape type) has FPD 1, 9, 21,9

24, 27, 42, and 66 as outliers, and B has FPD 38, 40, and 48, and one of the two sets FPD 52,10

54, and 71 (top-right L-shape) or FPD 30, 47, 69 (Z-shape). The Z-shape groups B and E have 411

(FPD 4, 14, 28, and 65) and 2 outliers (FPD 6 and 43). Groups C, D, and H have as dominant12

shape the reflected Z-shape type and has dissimilar designs FPD 26 and 29, FPD 5, 10, 11, 34,13

and 35, and FPD 25 and 50, respectively. Group G, with top-left L-shape type, has FPD 13, 15,14

20, and 55 presents differing designs.15

The confusion matrix, depicted in Table 4a for fixed aspect ratio, shows designs dispersed16

over all groups, forming heterogeneous partitions. For instance, reference clustering partitions B’17

and I’ have designs distributed over four or more descriptor groups—A, D, G, and H, and A,18

C, D, G, and H, respectively. Therefore, the fixed aspect ratio variant of this descriptor cannot19

accurately capture the differences between all shapes.20

However, if allowed to change the design aspect ratio, the GB descriptor significantly improves21

Table 3: Turning Function (TF) confusion matrices.

Fixed aspect ratio
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Figure 8: Clustering results using Grid-Based (GB) descriptor.

Table 4: Grid-Based (GB) confusion matrices.

Fixed aspect ratio
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B’ 1 3 8 1

C’ 2 1 3

D’ 2 3

E’ 2 1 1
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(a)
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B’ 8 5

C’ 6

D’ 4 1

E’ 4
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(b)
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B 4 4

C 6 1 3

D 4 5 1

E 2 3

F 4

G 7 5

H 2 1 1

I 2 6 1
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its accuracy, reaching 75.00% for Ac (the highest of all descriptors) and 0.874 for Ri. The group1

designs are depicted in Figure A.12 in Appendix A. It also achieves 7 unique shape groups (Nu)2

and two groups without any outlier (No). Table 4b shows the performance improvement in all3

groups as dominant shape designs increase in all partitions. The comparison of the two descriptor4

variants in Table 4c illustrates how designs that initially were in group A are now assigned to5

groups A to F. Other examples are the new groups B, C, D, and E, which capture designs that6

were assigned to several groups.7

3.2.4. Tangent Distance (TD) descriptor results8

The results from the TD descriptor are displayed in Figure 9. Out of all the descriptors and9

variants in this study, the TD descriptor presents the best results. It was able to determine 610

unique shape groups (Nu; similar to PD and TF descriptors) and only 1 group had no outliers.11

The clustering accuracy and Rand index were the highest of the fixed aspect ratios descriptors12

variant with 73.61% and 0.873 (Ri), respectively. The number of designs per cluster varies between13

5 and 14. The group with the highest number of dominant shapes was D with 10 and the lowest14

number of outliers was group C with none.15

This descriptor has the highest group coherence of all. However, there are still outliers. For16

instance, group A has the L-shape as the dominant shape type but also captures 4 outliers (FPD17

4, 8, 42, and 64), three of those due to small recesses in the bottom wall. It is observable that18

FPD 64 clearly belongs to the Z-shape type group. Group B has 6 outliers (FPD 6, 25, 43, 52,19

54, and 71)—all fitting the top-right L-shape instead of the dominant Z-shape type. Top-left20

L-shape in group D has a single outlier (FPD 20), which fits the rotated left T-shape due to a21

small recess in the top wall. For similar reasons, group E with O-shape type has FPD 27 (top-left22

L-shape) as an outlier. Groups F and G have the same reflected Z-shape type. The outliers of23

these groups are FPD 21 and 31 and outlier FPD 50, respectively. Despite having the same shape24

type, TD descriptor partitioned designs into two groups because the concave turns in the walls25

have different size segments. Group H has 2 outliers (FPD 18 and 34) in the dominant shape type26

reflected L-shape. Once again, the descriptor did not consider these designs with a different shape27

despite the small recess in the bottom wall. Finally, the last group I, with reflected Z-shape, has28

2 outliers (FPD 38 and 40 with rotated right T-shape type).29

Table 5a presents the confusion matrix for this descriptor against the reference clustering.30

Partition A’ designs are fully included in group E. However, partition B’ has three of its designs31

spread over three groups E to G, but the remaining 10 designs are assigned to group D. Partitions32
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Figure 9: Clustering results using Tangent Distance (TD) descriptor.

C’, D’, and E’ are also assigned to a corresponding group—B, A, and H, respectively. Designs in1

partitions G’ and H’ are distributed over three (F, H, and I) and two groups (A and B). Finally,2

the largest reference clustering partition I’ had its designs assigned to five groups (C, and F to3

I).4

When considering the non-fixed aspect ratio descriptor variant, the descriptor underperforms5

slightly in the clustering accuracy, which decreases to 72.22%, but improves in the Rand index to6

0.876. Reference clustering partitions B’ and G’ are better partitioned in this descriptor variant,7

but accuracy is lost for partitions C’, E’, G’, H’, and I’ (Table 5b). Comparing both descriptor8

variants (Table 5c) groups B, C, and E to I have a few designs that have been shifted to other9

groups.10
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Table 5: Tangent Distance (TD) confusion matrices.

Fixed aspect ratio
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C 3 2 2

D 11

E 1 7

F 1 3 1

G 4 1 1

H 4 2

I 1 3 2

(c)

4. Discussion1

Table 6 summarises per descriptor the number of unique shapes (Nu; number of groups with2

unique shape type), number of groups without outliers (No), the percentage of clustering accuracy3

(Ac; number of dominant shape designs per total of floor plan designs), and Rand index (Ri). It4

also lists the number of dominant shapes (Nd) and the number of outliers (Ne) per group. The5

descriptor with better Ri is Tangent Distance (TD) with 0.873 and 0.876 for fixed and non-fixed6

aspect ratio variants, respectively. However, Grid-Based (GB) presents the highest number of7

unique shape groups (Nu) and the highest Ac of 75% for the non-fixed aspect ratio descriptor8

variant.9

The presence of outliers (Ne) in the Point Distance (PD) descriptor may indicate why some10

groups have designs dispersed by other clusters. This can result from the fact that, when there is11

a slight discontinuity of the exterior wall, the measured distance from the points in the perimeter12

dilutes such difference. This is a benefit in shapes requiring denoising; however, in datasets with13

no noise the results are not so good.14

In the case of the Turning Function (TF) descriptor, other problem occurs. Namely, due to15

the absence of information in the descriptor vector resulting from wall recesses smaller than the16

distance between feature points—when the wall turns a small distance and turns back to the17

same direction. In this situation, and because this descriptor only captures the angle of the wall,18

the information before and after the wall change is the same. The only way to include that19

information is to have a feature point of the shape silhouette in it. Additionally, even if the wall20

recess is somehow captured, it only represents a few values in the vector as the main parts of the21
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Table 6: Descriptors performance.

Group

A B C D E F G H I

Descriptor Nu No Nd Ne Nd Ne Nd Ne Nd Ne Nd Ne Nd Ne Nd Ne Nd Ne Nd Ne Ac Ri

Point Distance (PD) 6 0 5 4 8 6 6 2 9 1 7 2 5 3 5 1 3 1 3 1 70.83% 0.861

Turning Function (TF) 6 2 3 2 4 3 8 7 8 0 6 4 7 6 4 1 5 0 3 1 66.67% 0.842

Grid-Based (GB) 5 1 3 7 4 4 8 2 5 5 3 2 4 0 8 4 2 2 3 6 55.56% 0.824

Tangent Distance (TD) 6 1 5 4 8 6 7 0 10 1 7 1 3 2 5 1 4 2 4 2 73.61% 0.873

(a) Fixed aspect ratio

Group

A B C D E F G H I

Descriptor Nu No Nd Ne Nd Ne Nd Ne Nd Ne Nd Ne Nd Ne Nd Ne Nd Ne Nd Ne Ac Ri

Point Distance (PD) 6 1 5 4 5 4 7 0 10 1 7 6 4 2 5 3 3 3 2 1 66.67% 0.852

Turning Function (TF) 6 1 5 3 4 0 5 4 9 1 5 4 7 4 3 1 8 1 4 4 69.44% 0.858

Grid-Based (GB) 7 2 4 2 5 2 12 1 8 7 6 4 7 1 5 0 3 0 4 1 75.00% 0.874

Tangent Distance (TD) 6 1 5 5 7 5 7 0 12 1 7 1 4 1 3 3 3 2 4 2 72.22% 0.876

Nu - Number of groups with unique shape; No - Number of groups without outliers;

Nd - Number of dominant shape designs; Ne - Number of outliers; Ac - Accuracy; Ri - Rand index

(b) Non-fixed aspect ratio

wall continue to have the same angle. This would be avoided only if the descriptor also measured1

the wall distance to a reference point.2

In the results for the GB descriptor the problem is different. In this case, the descriptor vector3

is very sensitive to the measuring points in the grid. Therefore, if there are small variants in the4

shape proportions then a row of points can turn from 0 to 1 and vice-versa. For instance, a wider5

rectangle, when scaled to fit the measuring grid, will result in a smaller height thus having less area6

filled in the grid. Despite the shape being basically the same, this will result in different vectors7

(compare the FPD 23 in group A and group F in Figure 8 as an example of this issue). However,8

when dealing with adjusted aspect ratio, the performance improves for the GB descriptor.9

The TD descriptor presents the best results for both variants of the aspect ratio. This is due10

to the fact that it incorporates the advantages of the PD and the TF descriptors, namely the11

ability to capture the distance of the segment and the angle change of the walls, respectively.12

However, when extending the use to shapes such as the equilateral triangle, square, pentagon,13

or other regular polygons (even a circumference), the TD descriptor will classify all of them in14

the same group, as the polygon tangents all have the same distance to the centre. Another issue15

was found with this descriptor. In some cases, when designs have the same shape type, it may16
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consider distinct due to the sensitivity over the size of the segments in every turn of the exterior1

wall (see groups F and G in Figure 9 as an example).2

In the case of the distance-based descriptors (PD and TD), it is possible to control their3

sensitivity to wall recesses in the shape perimeter by exponentiating the normalised distances.4

If the exponent is lower than 1, the representation reduces the sensitivity to small variations;5

otherwise, when greater than 1, this is increased.6

It is interesting to observe that the descriptors that have the best results are all perimeter-7

based representations. Area-based representations, such as the GB descriptor, are too sensitive to8

small changes in the proportions of the shape. This approach may have better results in shapes9

that require denoising. However, in synthetic datasets such as the one illustrated in the showcase,10

area-based representation is a less reliable approach. Limitations of these descriptors may be11

summarised as follows:12

• PD, TF, and GB descriptors are insensitive to small recesses in the perimeter;13

• TF descriptor may not capture perimeter turns if the shape’s silhouette step is bigger that14

the turn segment dimension;15

• GB descriptor greatly depends on the grid resolution thus making it very sensitive to small16

variations in the shape proportions;17

• TD descriptor may suffer from excessive sensitivity to the segments size in wall turns, thus18

leading to cluster designs in different groups despite having the same shape type;19

• TD descriptor clusters regular polygons (triangle, square, circle, etc.) as the same shape;20

and,21

• TD descriptor is very sensitive to shapes with noise in the perimeter.22

The matching and clustering of floor plan designs has some possible applications. One of23

those is to use it as a clustering mechanism for results obtained from generative design methods—24

for example, the EPSAP algorithm already includes these mechanisms to organise data to be25

presented to the decision-maker. Another example is to use it within the evolving process of26

population-based methods. This may have two purposes. First, to select the best individuals of27

each group to be kept in the next generation, thus preserving the population diversity and avoiding28

the dominance of one shape type. Secondly, to conduct the generative process on solutions that29

are of interest to the user according to their defined shape type criterion. Nowadays floor plan30
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generative methods deal with building boundaries as defined polygons. However, if the user is1

able to choose the aimed shape or shapes, the method may focus only on that range of candidate2

designs, thus reducing the computation burden by avoiding the production and evaluation of3

irrelevant solutions. Finally, a possible application is to use it as a retrieval process of designs in4

architectural design databases.5

5. Conclusion6

Four shape descriptors were used to capture the form of a synthetic dataset of floor plan7

designs and a comparison of their performance was carried out. Every descriptor had the same8

vector length and the same clustering algorithm was used to aggregate the floor plans.9

The perceptual analysis carried out on the four descriptors shows that Tangent Distance (TD)10

captures better floor plan shapes and presents fewer outliers. This was due to the fact that11

this descriptor not only measures the distance to the geometric centre but also captures the12

discontinuities in the walls. The outliers resulted from excessive sensitivity to small wall recesses13

in the perimeter thus shifting the design to other group with a similar overall configuration.14

In the case of the other descriptors, the opposite happens. The Grid-Based (GB) descriptor15

presents the least reliable approach and is very sensitive to different proportions in the same shape16

thus designs are distributed over several groups with different dominant shapes.17

For the fixed aspect ratio variant, the performance of the two best descriptors was a Rand18

index of 0.861 and 0.873 for the Point Distance (PD) and TD, respectively. In the non-fixed19

aspect ratio descriptor variant, the descriptors with the best performance were the GB and TD,20

with a Rand index of 0.874 and 0.876, respectively.21

Despite these good results, some issues still need to be tackled. Future work includes extending22

these approaches to non-orthogonal and multi-storey designs, to study other descriptors that23

capture the inner space relations in the floor plan, and to test the performance of descriptors in24

other types of clustering algorithms.25
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for collective clustering of computer generated architectural floor plans, in: 15th International Conference on6

Technology Policy and Innovation, 17-19 June, Milton Keynes, UK, 2015.7

[32] D. Sousa-Rodrigues, M. Teixeira de Sampayo, E. Rodrigues, A. R. Gaspar, Á. Gomes, Crowdsourced Clus-8
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[36] E. Rodrigues, A. Gaspar, Á. Gomes, An approach to the multi-level space allocation problem in architecture20

using a hybrid evolutionary technique, Automation in Construction 35 (2013) 482–498, ISSN 09265805, doi:21

10.1016/j.autcon.2013.06.005.22

[37] J. Dougherty, R. Kohavi, M. Sahami, et al., Supervised and unsupervised discretization of continuous features,23

in: Proceedings of the 12th International Conference on Machine Learning, July 9-12, Tahoe City, California,24

USA, ISBN 978-1-55860-377-6, 194–202, 1995.25

[38] S. Kotsiantis, D. Kanellopoulos, Discretization techniques: A recent survey, GESTS International Transactions26

on Computer Science and Engineering 32 (1) (2006) 47–58.27

[39] J. L. Lustgarten, V. Gopalakrishnan, H. Grover, S. Visweswaran, Improving classification performance with28

discretization on biomedical datasets, in: AMIA Annual Symposium Proceedings, vol. 2008, American Medical29

Informatics Association, ISSN 1942597X, 445—449, 2008.30

[40] M. Rucco, D. Sousa-Rodrigues, E. Merelli, J. Johnson, L. Falsetti, C. Nitti, A. Salvi, Neural hypernetwork31

approach for pulmonary embolism diagnosis, BMC Research Notes 8 (1) (2015) 617, ISSN 1756-0500, doi:32

10.1186/s13104-015-1554-5.33

[41] D. Defays, An efficient algorithm for a complete link method, The Computer Journal 20 (4) (1977) 364–366,34

ISSN 14602067, doi:10.1093/comjnl/20.4.364.35

[42] E. Deza, M. M. Deza, Encyclopedia of Distances, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-36

3-642-00233-5, doi:10.1007/978-3-642-00234-2, 2009.37

[43] W. M. Rand, Objective criteria for the evaluation of clustering methods, Journal of the American Statistical38

association 66 (336) (1971) 846–850, doi:10.1080/01621459.1971.10482356.39

29

http://dx.doi.org/10.1007/978-3-662-44854-0
http://dx.doi.org/10.1007/978-3-319-24132-6_17
http://dx.doi.org/10.1080/01621459.1963.10500845
http://dx.doi.org/10.1016/j.cad.2013.01.001
http://dx.doi.org/10.1016/j.cad.2013.01.003
http://dx.doi.org/10.1016/j.autcon.2013.06.005
http://dx.doi.org/10.1016/j.autcon.2013.06.005
http://dx.doi.org/10.1016/j.autcon.2013.06.005
http://dx.doi.org/10.1186/s13104-015-1554-5
http://dx.doi.org/10.1186/s13104-015-1554-5
http://dx.doi.org/10.1186/s13104-015-1554-5
http://dx.doi.org/10.1093/comjnl/20.4.364
http://dx.doi.org/10.1007/978-3-642-00234-2
http://dx.doi.org/10.1080/01621459.1971.10482356


Appendix A. Descriptors’ results for non-fixed aspect ratio1

Figures A.10, A.11, A.12, and A.13 display the resulting clustering of each of the four shape2

representations with non-fixed aspect ratio.3

Figure A.10: Clustering results using Point Distance (PD) descriptor with non-fixed aspect ratio.

30



Figure A.11: Clustering results using Turning Function (TF) descriptor with non-fixed aspect ratio.
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Figure A.12: Clustering results using Grid-Based (GB) descriptor with non-fixed aspect ratio.
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Figure A.13: Clustering results using Tangent Distance (TD) descriptor with non-fixed aspect ratio.
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