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Abstract 

  We describe and discuss XRD, AFM and optical absorption behaviour of 

nanostructured Ag films 2, 5 and 10 nm thick obtained by thermal evaporation. While all 

films are quasi amorphous, 2nm thick films exhibit nanotriangles in the nature of Mie 

particles which exhibit surface plasmon resonance (SPR). Increase of thickness produces 

a shape change from nanotriangle to spherical triangle and a red shifted SPR. Most 

interestingly systematic iodization throws up a quasi-particle transition namely plasmon-

exciton transition even as Ag metal film is converted into an insulating/semiconducting 

AgI film. 

Keywords:  Nanotriangles, Iodized Ultrathin Ag films, Surface Plsamon 

Resonance(SPR),Plasmon-exciton transition 

 

1. Introduction 

Nanostructured noble metal films (ex: Ag) with thicknesses  ≤10 nm support 

plasmon oscillations. Such films are discontinuous and consist of isolated islands each of 

diameter less than 100 nm and typically 30 nm involving large surface to volume ratio of 

crystallites constituting the film. These structures could therefore be modeled as 2D 

nanoisland lattices or as 2D photonic lattices of voids separating the islands. Electrons in 

metals form a dense fermion gas with strong electron-electron interaction. Virtually all 

electrons are simultaneously involved in the Coulomb interaction. Both individual and 

collective behaviour is exhibited by these electrons. For electromagnetic wavelengths 

larger than Debye length all electrons collectively behave as a uniform elastic medium 

showing organized longitudinal oscillations. Behaving as bosons, these so-called 

‘plasmon’ oscillations can be created on the surface of metal films by external 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 2 

electromagnetic/electric fields propagate along the surface. Behaviour of electrons is as 

individual particles for wavelengths less than Debye length in which case screened 

Coulomb interaction prevails. The interaction light with metal surfaces is strongly 

enhanced when the surface is patterned on a wavelength scale.  

 Nanostructures supporting localized plasmons are the subject of intense research 

for their applications in plasmonics including nanophotonic devices [1], chemical sensors 

[2], optical filters [3], left handed materials [4]. These surface plasmon resonances in thin 

films [5] largely depend on the size, shape, metallic material and the surrounding 

dielectric matrix. Ag being easily iodizable offers a wonderful opportunity to examine the 

possibility of quasiparticle formation and ‘transitions’ 

Brief iodization of these ultra thin metal films causes a controlled depletion of 

electron density leading to a gradual disappearance of plasmons and a progressive build-

up of excitons and valence band structure of AgI. The decay of plasmons in Ag is 

apparently closely connected with the buildup of electron-hole pairs in AgI as found in 

our recent iodization experiments [6, 7].  In this paper we discuss experimental results on 

plasmon formation in ultrathin Ag films and plasmon-exciton transition when subjected 

electromagnetic radiation in progressively iodized Ag films.  An area of fundamental 

scientific interest, and possible future applications, would be the study of the optical 

properties of discontinuous metal films in the presence of electric fields and currents 

applied to the films.  A large surface to volume ratio is the property which might be 

exploited in devices intended to monitor variables that can be detected by surface defects, 

such as conductivity modulation due to gaseous component adsorption [8]. 
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2. Experimental   

Ultra-thin Ag films were deposited on borosilicate glass dielectric substrates by 

thermal evaporation using a molybdenum boat. The starting material was portions of 

highly pure Ag wire (Aldrich, 99.999) placed in the boat which was thermally evaporated 

on to the cleaned borosilicate glass substrates kept at an ambient temperature. The glass 

substrates were kept at a distance of 20 cm from the source for deposition [5]. Films with 

thicknesses of 2, 5 and 10nm with (0.1nm/sec) rate of depositions, were coated on the 

cleaned glass substrates at room temperature. The thickness was measured using 

profilometer. 

Iodization of Ag films was done an hour-glass type chamber with dimensions of 

10cm height × 6cm diameter. Iodine kept at the bottom of the lower half of the chamber 

sublimates at room temperature and slowly deposits on the Ag films kept at the top of the 

chamber. Thus iodization was carried for selected durations in the range 5 minutes to 30 

minutes. These films were characterized by XRD using a PHILLIPS low angle X-ray 

powder diffractometer with Cu Kα (λ= 1.54056 A
0
) radiation. To analyze the surface 

morphology, films were examined by SPA 400 Atomic Force Microscope (AFM) using 

non contact Dynamic Force Mode. SHIMADZU UV- 3101 spectrophotometer has been 

used for absorption studies at 300K in the UV/visible range from 300 to 600 nm with 

scanning rate 2 nm per second.  

 

 The substrates were cleaned as follows: substrates were first immersed boiling 

10% soap solution with 90% water, rubbed with cotton in cold water to remove 

weathering, kept in chromic acid up to boiling point for removing organic contaminates, 

washed in cold water to remove surface contaminants followed by ultra-sonification  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 4 

in iso-propyl alcohol for 3-5min duration, and, finally these substrates were dried in air 

before loading in to the system for deposition.  

3. Results and Discussions 

 

3.1 X-ray Diffraction  

 

     Representative XRD patterns of as-deposited Ag thin films are displayed in Fig.1. It is 

apparent that thin films in the thickness 2-10 nm are by and large amorphous-possessing 

only short range order which is in keeping with the islanded nanostructured quasi-

continuous films XRD patterns show quasi-amorphous structure due to the 

nanocrystalline nature of silver particles. As thickness increases there is a subtle 

broadening of the peak that hints at a possible increase in quantities such as particle size 

which could be conveniently probed by AFM to be described later.   

Ag films of thickness 2, 5 and 10 nm as evaporated on glass substrate and 

progressively iodized were characterized by XRD as shown in figure 2. When subjected 

to a controlled flux of iodine vapours realized in a figure of eight or hourglass jig with a  

1 mm opening at the centre for brief durations 30 minutes. Figure 2 shows the growth of 

γ and β-AgI nanoparticles upon iodization over duration of 30 min, Fig 2(a)) silver 

nanoparticles are gradually converted into room temperature metastable phase                

γ-AgI(classified as γ(111), is formed 30min iodization in thermally evaporated Ag film 

upon Ag film thickness increased  the (111) peak develop progressively. Perhaps due to 

local iodine excess (b) and (c) show an additional peaks at 2θ= 25.35A
O 

which 

corresponds to β-AgI (101) plane [(Ag/I)<1] of silver iodide nanoparticles. This is 

something unusual and rare in ultra thin films because in our previous study [7] it has 

been observed that the Zincblende structure of silver iodide is stable in rf sputtered films. 
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From these observations one would understand that the formation of β-AgI nanoparticles 

is possible on ultra thin films, suggesting both zincblende and wurtzite crystal structure 

are certainly possible as these films are grown on discontinuous silver films involving 

very large surface to volume ratio.  Discontinuous films are inherently unstability and and 

tend to exhibit poor reproducibility. Furthermore the enhancement in the intensity of 

XRD peaks with increasing film thickness could be due to a decrease in the surface area 

of Ag nanoparticles.  

We wish to focus in this paper on the quasiparticles that characterize uniodized 

and iodized Ag films and a transition from one to the other as seen through optical 

absorption measurements of the so called Mie particle conduction electron resonance or 

surface plasmon resonance to be described later. 
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Figure 1 X-ray diffractograms of (a) 2 nm (b)5 nm and (c) 10 nm Ag deposited on glass 

substrates. The broad peak around 2θ=61
o
 is due to formation of Hexagonal structure in 

Ag. The broad peak at 2θ=28
o
 (also observed in uncoated substrate) is due to amorphous 

background. 
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Fig 2. XRD of 30 minutes iodized silver films of thickness 2, 5 and 10 nm. 

 

 

 

 
 

Fig.3. AFM of 2 nm Ag films showing  several layers of Ag nanotriangles arranged in 

sparsely packed layers  thus including considerable void space which probably facilitates 

iodization and formation of spherical AgI nanoparticles by providing sufficient “reaction 

volume” 
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3.2 AFM studies 

 

 To obtain a direct visual evidence of the size, shape and the distribution of 

nanoparticles or surface morphology, AFM images were recorded. Fig 3 shows the 

morphology of the 2nm Ag film which records the presence of triangle-shaped nano 

features that is unusually interesting. The layered stacks of such particles of near-uniform 

size and average edge length of 100-120nm, ultra-thin film suggests a growth process in 

which there is effectively arrested growth of ‘embryos’ especially when seen in the light 

of the XRD just described. We have in this case the equivalent of Ag nanoparticles 

stabilized in colloidal solutions [9]. we focus on the effect of thickness increase on the 

shape of these particles. Figures 4 (a) and (b) provide direct evidence for a change in the 

shape from flat triangular to ‘spherical triangular when the thickness is increased from 2 

nm to 5 nm and 10 nm. In the case of a 10nm Ag film iodized for 30 minutes there is a 

increases in the size of ‘spherical triangular’ AgI nanoparticles and creation of void 

space. It is to be noted that the 2nm Ag film is already porous and this porosity helps 

maintain an I2-rich environment suitable for the formation of wurtzite β-AgI as was the 

case with our study of Ag foils [10].  It would be naturally interesting and curious to seek 

by an optical probe such as optical absorption how the Ag nanostructures and their 

iodized counterparts respond to an electromagnetic field in the UV-visible region. 
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Fig 4 (a) AFM of 5nm Ag film note Shape changes of the Ag nano particles w.r.t 2nm  

      thin film (b)  10nm Ag film Iodized for 30min Note the smaller size of Ag 

      particles w.r.t those of 5 nm film and the Void space created. 

 

 

 

3.3 Optical Absorption  

 

 Mie particles such as those triangular nanoparticles observed in our 2nm Ag films 

could give plasmon absorption band due to (i) surface conduction electron  collective 

oscillations or surface plasmon resonance(SPR) and (ii)scattering of electrons in  the 

inner particle surface especially when their sizes are small (say 5-60 nm) compared  to 

electron mean free path (typically 100nm)[11]. The peak position and full width at half 

maximum of the absorption band depend on (a) type (b) size and (c) geometry of the 

particle as well as (d) on the difference between dielectric function between metal and 

surroundings. Moreover, when iodization is progressively carried out, the SPR absorption 

is expected to gradually decrease and as soon as the initial batch of AgI nanoparticles are 

formed (whose size could be as small as 13 nm) one expects to see the formation of the 
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exciton absorption band in the UV-Visible spectrum. We now describe and discuss 

results Optical absorption spectra of 2, 5 and 10 nm thick Ag films. Fig 5 shows 2nm 

thick films are made up of triangular nano particles of size 100-120 nm which give rise to 

an asymmetric surface plasmon resonance (SPR) maximum at 440nm. This is due to the 

plasma resonance effect as well as the displacement of the electronic cloud. The line 

shape of the 2nm thick films show the broad spectrum with symmetric line shape 

indicating the inhomogeneous interparticle distances. The asymmetry of the SPR peak 

suggests an unresolved second component which is normally resolved in the case of 

spherical nanoparticles. For silver nanoprisms, the plasmon absorption split into two 

bands corresponding to the oscillation of the free electron, But in our study due to larger 

particle size, and interparticle distances the second longitudinal plasmon absorption got 

merged in to the first SPR[12]. Figure 5(b) and (c) show that the longitudinal plasmon 

mode of the triangular particles is, indeed, more red shifted compared to thinner films. As 

the thickness is increased to 5nm the shape changes from triangular to disc. Edges of the 

triangles bend and tend to form Ag nanodisc particles with a decreased edge length (to 

below ~100nm) with enhanced surface area. Now the Mie resonance shows a red shift 

with the peak occurring at 457nm. This leads to the appearance of a more intense, more 

symmetric Lorenz-resonance due to increased surface to volume ratio resulting from 

reduced size. Finally 10 nm thick films show a further red shift around 44nm (peak at 484 

nm) and their intensity increases linearly with increasing radius of the sphere as the 

thickness induced shape develops phase transition occurs. The thickness-dependence of 

the SPR maximum wavelength (λmax) which is a measure of the plasmon energy is shown 

in Figure 6. λmax increases linearly with thickness which must be understood as an effect 
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of increasing filling factor and increasing particle density and reduced void space-all of 

which influence the dielectric function of the thin-film nanostructure-substrate 

combination including the interface. Thus the two major effects of increase thickness are 

shape transition and increased inhomogeneous scattering contribution indication a 

distribution of inter particles distances further investigation into these and other aspects 

are in progress. 

 

Fig 7 shows the typical response of a 10nm Ag film as it is progressively iodized 

for 0, 5, 15 and 30 minutes. The peak marked SPR1 represents the plasmon Signature in 

the pure Ag film. Just a 5 minute exposure to the I2 vapours creates a AgI film  on a Ag 

background identified by the wurtzite exciton peak at ~420 nm[13] actually signaling the 

formation of the surface electronic structure. It is important to realize that it is very 

difficult to probe this development so easily by any other technique. Thus in the 5 

minutes iodized Ag films   the plasmon –exciton ‘transition’ has just begun. Further 

iodization sees the fuller development of the exciton structure by way of W1,2 and W3 and 

the suppression of plasmon peak, in the manner of a metal-insulator transition. A future 

work would examine the microscopic nature of this transition as well its connection to 

AgI thin film formation [14]. 
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Figure 5.Optical absorbance spectra of as deposited 2,5 and 10 nm thick Ag films. 
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Figure 6. Films thickness vs observed SPR maximum 
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Fig 7. Iodization of a 10 nm thick Ag film brings about a plasmon-exciton ‘transition’ 

even as the metallic Ag becomes an insulating AgI.  

 

Conclusions 

In this work we have described and discussed XRD, AFM and optical absorption 

behaviour of nanostructured Ag films 2, 5 and 10 nm thick obtained by thermal 

evaporation. While all films are quasi amorphous, 2 nm thick films exhibit nanotriangles 

in the nature of Mie particles which exhibit surface plasmon resonance (SPR). Increase of 

thickness produces a shape change from nanotriangle to spherical triangle and a red 

shifted SPR. Most interestingly systematic iodization throws up a quasi-particle transition 

namely plasmon-exciton transition even as Ag metal film is converted into an 

insulating/semiconducting AgI film. 
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