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The Generator Coordinate Method is applied to construct a boson representation of the energy
of a S =1 ferromagnet near its ground-state. Considering one generator coordinate per lattice site
the resulting representation coincides with the one obtained starting from the Dirac~Heisenberg
Hamiltonian and using the Holstein-Primakoff transformation, expanded to all orders, inside the
physical subspace. On the other hand, introducing generator coordinates to describe only the
long-wavelength modes, we obtain a representation which can be consistently expanded until any
desired order of approximation.

1. Introduction

The Holstein-Primakoff (HP) transformation') is a well-known device for
constructing boson representations of the many-fermion Hamiltonians that
can be expressed in terms of spin operators. It is particularly useful in the
formulation of the spin-wave theory which allows a theoretical analysis of the
low temperature properties of magnetically ordered crystals*®). However, it
has the serious drawback that one of its main ingredients is an operator
which, being defined as a square root, has to be approximated in all practical
calculations. Usually one expands it as a power series considering only the
constant term. One obtains in this way a Hamiltonian which is diagonal in
the spin-wave states. Now, if one wishes to improve on this harmonic
approximation, other terms of the expansion have to be considered and the
process of picking them out is not at all clear, in particular for small values of
S %), Indeed, in the absence of a natural parameter for defining the orders of
magnitude, it is not easy to estimate beforehand the relative contributions of
the successive terms of the expansion. Furthermore, since one treats as
bosons all the possible modes, both the really collective and the less collective
ones, the convergence of the whole process is doubtful. In fact only the truly
collective modes should be well described already in the harmonic ap-
proximation, a condition which, if not sufficient, seems to be at least neces-
sary for a fast convergence.

The Generator Coordinate Method (GCM)*®) is a variational method of
approximation for the stationary states of many-body systems, which also
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yields boson representations, in a physical appealing way®®). It has the
advantage, moreover, of allowing from the start the separate treatment of the
modes which are really collective'?).

In the present paper we apply the GCM in order to obtain a boson
representation of the low-energy modes of a S =1 ferromagnetic model, in
two different approaches. In the first we take as generator coordinates
complex parameters which define the spin state at each lattice point, starting
from full alignment. We have therefore as many generator coordinates as sites
in the Bravais lattice. This is done in section 3, where a representation is
obtained which, as it is shown, is entirely equivalent to the one obtained
applying the HP transformation to the so-called Dirac-Heisenberg Hamil-
tonian''). In the second we consider a far smaller number of generator
coordinates, limiting the application of the GCM to the description of truly
collective modes only. This is done in section 5, where we obtain a represen-
tation which can be consistently expanded to the desired order of ap-
proximation. In section 2 we explain in some detail how to obtain a boson
representation from the GCM. With this we aim at both fixing the notation for
the following sections and helping readers less familiar with the GCM. In the
remaining of the present section we apply the HP transformation to the
Dirac-Heisenberg Hamiltonian in order to get the representation to which the
one obtained in section 3 will be compared.

The HP transformation can be cast in the form:

St =(289)"f(S)a;,

S =(28)"a f(S), (1.1)
Si=S-afa,
where
fi(S)=(1—ajal2S)". (1.2)
In egs. (1.1) S; stands for the spin vector operator of the atom at the lattice
site i=1,..., N, and a; and a; are annihilation and creation boson operators:

la, aj1=8;, l[a,a]l=[af,af]=0.

The number operator N; = a;a; has a simple meaning: its eigenvalues are the
number of spin deviations from the maximum value S of Si.
The Dirac-Heisenberg Hamiltonian can be written in the form
N

H=K- Y Ji(+25-8), (1.3)

i<j=1

where the constant K represents the contribution of both the one-body part
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and the direct terms of the two-body interaction of the correct Hamiltonian,
and the remaining part of the right-hand side represents the contribution of
the exchange terms of the two-body interaction. It has the same matrix
elements as the correct Hamiltonian between Slater determinants built up
from a set of N orthogonal orbitals, assigning to them S =3 spin states in all
possible ways.

Inserting eqs. (1.1), with S =14, into eq. (1.3) one obtains an expression
which we write for convenience in the following form

N
HB:K'*"Z H,-,', (l~4)

where
Hy = —JilfiQaa; f;0) + ai fOfiVa; - ata;,— aia+2aaaja;+ 1. (1.5)

The operator Hy is the boson representative of H in the HP theory. It acts
on the boson space spanned by the set of orthogonal states

N
Inl’ n27 LERIR Y nN> = H !ni>a
i=1

where |n;), with n; =0,1,2,..., %, stands for the eigenstates of the operator
N; = a/a;. One says that the state |n,, ny, ..., ny) has n, bosons of kind 1, n,
bosons of kind 2, etc. and ny bosons of kind N.

Now the HP transformation of egs. (1.1), with S =1, does set up a boson
representation for the spin operators of their left-hand sides only in so far as
the operators of their right-hand sides act within the restricted boson space
whose states contain no more than one boson of a kind. One calls it the
physical boson subspace. By that reason Hy does represent H only when it
acts on the states of the physical boson subspace and outside that subspace
Hp has no physical meaning. However, this is not, by itself, a serious
objection to the theory because Hg does not connect the physical with the
unphysical states and, therefore, the whole spectrum of H can be found by
looking for the eigenvalues of Hjy associated with eigenvectors belonging to
the physical subspace. In mathematical terms one has:

(ni,...,nN|Hgln,...,ny)=0,

if any nj>landall n;<1,j=1,2,...,N.
This equation results from egs. (1.4) and (1.5) and from the following
properties of the operator f;(3), as defined on eq. (1.2):

0, ifn,'=l
[n;,...,ni,...,nN), 1fn,-=0'

fi(%)lnla---,niv---ynN>={ (1.6)
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We conclude therefore that the eigenvalues of Hy, say E, are
E=K+E', (1.7

where E' designates the eigenvalues of the operator SN, H; associated with
the eigenvectors, say |v), belonging to the physical subspace:

N
(2 H,,~—E'>lv)=0. (1.8)
i<f=1

Using now egs. (1.6) we obtain, finally, from eq. (1.5), the following
important relation which serves to determine the matrix elements of Hy inside
the physical boson subspace:

Hi,-|n1,...,n,-,...,n,~,...,n~)=—J;;Inl,...,n,-,...,n,-,...,nN), (19)

ifallm=1,1=12,...,N.

2. Boson representations from the GCM

One considers a family of preliminary wave functions ®(x, &) chosen ac-
cording to the physical characteristics of the states one wishes to describe.
Here x stands for all particle coordinates and a designates one or more
parameters, real or complex, called generator coordinates, which label analy-
tically the functions of the family.

Basically, in the GCM one looks for the wave functions of the form

Yi(x)= f f(@)P(x, a) da, 2.1

which make stationary the expectation value of the total energy of the
system. If the parameters are complex, da should be understood as
dRe ) - dIm a).

The weight functions f(«) are determined by the variational principle. They
must therefore satisfy the well-known Griffin-Hill-Wheeler equation (GHW
equation):

f [H(a*, a')— ES(a*, a")f(a’) da’ =0,
where

H(a*, a') = f d*(x, o) HO(x, ') dx (2.2a)



FERROMAGNETISM BY THE GENERATOR COORDINATE METHOD 255

and
S(a*, a') = ] d*(x, a)P(x, a’) dx (2.2b)

are the energy- and norm-overlap kernels, respectively. Since @(x, a) is
analytic on «, they are both analytic on o* and on a' separately.

To apply the GCM to a definite situation one should proceed as follows.
First, we choose an appropriate family of preliminary wave functions. Then,
we evaluate the energy- and norm-overlap kernels. Finally, we solve the
GHW equation.

The first step determines, to a great extent, the outcome of the whole
method. The trial wave functions have to be general enough to convey all the
physical information we are looking for. But, on the other hand, too great a
generality may impair the evaluation of the overlap kernels and the solution
of the GHW equation. Thus, a balance must be obtained between these two
conflicting purposes, the physical intuition playing an important role at this
stage. The evaluation of the overlap kernels can be more or less difficult, but
it raises no question of principle. As regards the last step, the GHW equation
is an eigenvalue integral equation with two kernels. This circumstance,
associated with the fact that the overlap kernels may have complicated
expressions, makes its solution, in general, quite difficult. Sometimes there is
no alternative but to resort to purely numerical methods from the very
beginning. There are cases, however, depending on the mathematical struc-
ture of the kernels, where analytical treatments are possible which may lead
us a long way towards the solution. One of those arises when we are
interested on studying the normal modes of a system and consists in con-
structing boson representations.

To see how a boson representation can result from the GCM let us give
another form to the GHW equation:

f (A (a*, &) — ES(a*, a’)] exp(i a*;a',.) f(a') da’ = 0, 2.3)
i=1

where /

— N

H(a*, a')y= H(a*, a") exp(— Z a";a;) (2.4a)
and

— N :

S(a*, a') = S(a*, a') exp<—2 a",faz-). (2.4b)

i=1

We have supposed that there are N complex generator coordinates {a;; i =
,2,...,N}L



256 C. FIOLHAIS et al.

Now we introduce a set of N independent harmonic oscillators, one
associated with each generator coordinate. There is one creation operator a;
and one annihilation operator a; for the oscillator i. Together they satisfy the
commutation rules characteristic of bosons:

la,af]l= 8y, la,al=la/,ajl=0. (2.5a)

The number operator N; = a/a; admits an orthonormal set of eigenstates |n;),
n=0,1,...,00:

Nin) = niln, (n|n =8, (2.5b)
Furthermore one has
aflny=(n+ D"+ 1), aln)=(n)"n; - 1). (2.5¢)

The coherent states of each oscillator are the eigenstates of the corresponding
annihilation operator

ailai> = ai‘ai>-

Choosing the normalization in order to satisfy (n; = 0|a;) = 1, one can easily
show that

o) = 3 ()",

for all points «; of the complex plane. It is now clear the relationship between
the harmonic oscillators and the generator coordinates: these are the eigen-
values of the annihilation operators. The following properties are easily
deduced:

(a)™|aiy = ()|}, {ail(@ad)™ =(aif(@®)™, m=0,1,...,
(a; | @}y = explatal,
! f le;) exp(—]ay[*Kay] de; = 1.

The second property traduces the fact that the set of coherent states is not
orthogonal, and the third one that, notwithstanding, it is complete.
For the set of all oscillators we have the coherent states

N
la) =T la),
i=1
with the properties

(@)"|a) = (a)"|a), (al(@))"=(al(a®)", m=0,1,..., (2.6a)
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N

(a|a’y= exp(E ai‘a;), (2.6b)
i=1

N f o) exp(—IZNl Ia;lz) {a|da = 1. (2.6¢)

From eq. (2.6a) we obtain the relation which is on the basis of the whole
approach:

Gla*, a') =

{a|: G(a", a):|a")

(a|a’y

2.7

where G(a*, a') is any analytical function of the 2N variables {a%, ai}. In this
relation a* stands for all creation operators, a for all annihilation operators
and: G(a*, a): designates the operator obtained in the following way:

(1) we expand G(a*, a’) as a power series of the 2N variables {a}, a}};

(2) in each term of the expansion we place all the starred variables to the
left of the primed ones;

(3) finally we make the substitutions a*¥—=a}; ai— a;

Now we use egs. (2.6b) and (7) to transform eq. (2.3). We obtain

j (a|¥#(a*, a)— EF(a*, a)la¥f(a')da' =0,
where we have adopted the following notation: ¥#(a*, a)=: H(a*,a): and

P(a*,a)=:S(a*, a):. Supposing that the integration commutes with the
operators ¥(a*, a) and ¥(a*, a) we get finally

[9%(a*, a)— ES(a*, a)llf) = 0, 2.8)
where
5= [ f(@)la) de. (2.9)

To write eq. (2.8) we have also used the fact that the set of coherent states is
a complete one.

If we now solve eq. (2.8) in the space spanned by the N-oscillator states we
obtain the desired energies and, after inversion of eq. (2.9), the weight
functions f(a) to be inserted into eq. (2.1). The inversion of eq. (2.9) is
straightforward if one uses the closure relation eq. (2.6¢c). One has:

N
f(@) = n N exp(= 2 lai) (e | ) | 210

The eq. (2.8) can still be put in the usual form of an eigenvalue problem:

[Hy(a*, a)- Ellf)=0, @1
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where
Hg(a*, a)= ¥ "(a*, a)¥#(a*, a)¥ " (a*, a) 2.12)
and

Iy = F"a*, a)lf).

3. Application of the GCM to a model ferromagnet

Our model of a ferromagnet crystal consists of N electrons tightly bound to
the same number of singly charged ions which are fixed to the sites of a
simple Bravais lattice. We suppose that the ground-state of the many-electron
system is well described by the following Slater determinant:

®(x) = (N )™ det{wi(r)xials))}, (3.1

where wi(r)) = w(r;, — R;) is a Wannier function for the electron j centered on
the lattice site i and xi(s;) is the spin eigenstate of the same electron
corresponding to the component m =4 along some direction fixed in space.
One knows, of course, that a single Slater determinant with orthogonal
orbitals, either of the energy-band type or of the localized Wannier type as in
eq. (3.1), does not reproduce well the internal energy at absolute zero'?). In
particular it overestimates the tendency towards spin alignment. One knows
also that in order to correct this effect one has to introduce electron cor-
relation'’). One may consider, for instance, configurations with ionic states, in
which a Wannier function is occupied by two electrons. The main role of the
correlation is to reduce the self-energy of the atomic orbitals involved in the
single-particle wave functions. We admit that the same objective can be
achieved through an appropriate correction to the real electron-electron
interaction. Our Hamiltonian reads therefore as

N N
H = 2 U@+ ,-;_, v, i), (3.2)
where U(i) stands for the kinetic energy of the electron i plus its potential
energy in the field of the crystal ions and V(i ) represents some effective
potential energy of the interaction between electrons i and j. For our purpose
it is not necessary to specify the form of the latter, being enough to assume
that it does not act upon the spin variables.
In this context, we take as preliminary wave functions of the GCM the
following Slater determinants:

d(x, a) = (N2 det{w(r)x(s;, @)}, (3.3)
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where the spin function x(sj, &) is given by
x(sj, @) = xuds;) + a;x-1Asj)- (3.4)

The spin state at the lattice point i is thus defined by the complex parameter
a; which is a generator coordinate in our theory. We would expect to have,
for the lowest energy states, '

|a,~| < 1.

The fact that the spin function of eq. (3.4) is not normalized to unity does not
matter as far as the GHW equation is concerned.
Inserting eqs. (3.2-4) into egs. (2.2a and b) one obtains:

N
S(e*, a) =[]+ a¥a! (3.5)
i=1

and
N *' * '
H(a*,oz’)'——[K— S (1+ata)(1+aja;

AT+ atad)(1+ afaj

] S(a*, a"). (3.6)

We have used the orthogonality of the Wannier functions referring to
different centers. Moreover we have used the following notation:

N
Kzz U,'+ z D,-,',

N
= 5Ly

U = [ Wi UMwir) &,

Dy = [ [ witrowie Vet 20witromtrd &ri P
= [ [ wieowHe vVt 2w rom(r) & &ra

From eqgs. (2.4a) and (2.4b) and egs. (3.5) and (3.6) one obtains

= N N
S(a*,a')=exp(~z a",fa’;) rI(l +a*al) 3.7
=1 -
and =

N E W, %
- , (d+aia)(l+a -a})] =
* = — " s ] i
H(a 9a) [K i;_:l]u (1+a",~°a';)(1+a’:-‘a" S(a*,a) . (38)

]
or still

- _ N
H(a*, a’) = KS(a*, a') -—exp(— > a";a:->
i=1

N N
X ‘_;:l [J,-,(1+a",~‘a',-)(l+a",-‘a',~) }——11 (1 +a",‘a',)]. (3.8)
(#if) ’
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We can now construct the boson operators ¥(a*, a) and ¥(a", a) of eq.
(2.8), according to the procedure explained in the last section. Starting with
the former we have, from eq. (3.7):

N N
9’(a*,a)=:exp(~z afa,-) (1+aja):
: i=]

i=]

N N
= Py+ > a;Pea;+ Y, aia;Pyaa;j+- - -
i=1 i<p=1

+aja

+
2

...(I;;IP()GMIZ...CIN, (39)

where

N
P0==Iexp<——z a,»*a,-):. (3.10)
i=1

It is easy to see what is the result when the operator P, acts on the basic
states

N
|nl?n23-~~ynN>=H'ni> (3.11)
i=]

of the system of independent oscillators introduced in the last section. One
has, from egs. (2.5), (3.10) and (3.11):

Poln,, ey nN)= 6,,!0. - 8,,Noln1, e ey nN).

Hence P, is the projector on the boson vacuum. Using this property in eq.
(3.9) we conclude that in our problem the operator $¥(a*, a) turns out to be
the projector onto the boson subspace of the vectors with at most one boson
of each kind:

0; ifanym>1,j=1,2,...,N 3.12)
y(a+9a)ln1" . "nN>= [m,. ey nN); if all n= 1, (313)
i=12,...,N.

By analogy with the HP theory, we call that subspace the physical boson
subspace.

As regards H(a", a) we have, from eq. (3.8):
N

*(a*,a)= KF(a*, a)+ 2 #Ki(a*, a), (3.14)

<j=1

where

t,(a*,a) =1, exp(-

Mz

N
a;:,am)(l +ata)1+ara) [T A+ara):.
=}

(#£if)
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Using eq. (3.10) we can give this expression the more convenient form

N
Hi(a*,a)=—J;| Po+ a}Poa; + aj Poa; + ai Pya; + aia; Pyaa;
i J] il i = ] i

(#£4])

+ 5: (ataiPyaja; + ajal Peaia)
(i
N
+ Z arai,Poaqa, +---+aja;...ayPoaia,. .. aN],
i
from which one sees immediately how the operator ¥;(a’, a) acts on the
basic vectors of eq. (3.11). One obtains:

Hiat,lny,...,ny)=0, ifanyn,>1L1=12...,N, (3.15)

9’6’,-,~(a+,a)]n[,...,n,-,...,n,-,...,nN)=—Liln,,...,n,-,...,n,-,...,nN>,

ifall ;y<1,l=12,...,N. (3.16)

Now, from egs. (3.12), (3.14) and (3.15) we see that the solution of eq. 2.3)
is limited to the physical boson subspace. Moreover, eq. (3.13) tells us that
inside the physical boson subspace ¥(a*, a) behaves as the identity operator.
We are left therefore with the solution of the equation

N
(2 a0 - E'|I=0, (3.17)
inside the physical subspace, where E' is related with E as in eq. (1.7).

Comparing eqs. (3.17) and (3.16) respectively with egs. (1.8) and (1.9) we
conclude therefore that the GCM, with the trial function of eq. (3.3), leads to
the same energy spectrum as the HP treatment, expanded to all orders, inside
the physical subspace. We have the following expression, valid in the whole
space,

%(a+v a) = HBy(a+’ a)a
where Hj is the operator defined by eq. (1.4).

4. Spin-waves in the framework of the GCM

The overlap kernel expressions as given by egs. (3.5) and (3.6) are exact but
difficult to deal with. In the so-called Gaussian and harmonic approximation
one assumes that the norm-overlap kernel is Gaussian and that the ratio of the
energy- to the norm-overlap kernels is quadratic on the generator coordinates.
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Within this approximation the above mentioned equations read as

N
S(a*,a’)=exp(2 a’*,-‘aﬁ-) “.1)
i=1
and
N
H*a)={K- 3 Jjl1-(at-aiai-a)]} Sa*, ). “2)
i<j=1
Inserting these equations into eqs. (2.4a) and (2.4b) yields
S(a*,a’y=1
and
_ N
H(a*, a)=K - 3 Jill-(af~a)a;~a)]. (4.3)

i<j=1

The corresponding boson operators have the following forms

Fla*t,a)=1, H(a*,a)= %+ H(a*, a), 4.4)

where
N
Ho=K- > J (4.42)
i<j=1
and
N
Ha*,a)= E Ji(ai — ai)a; — a)). (4.4b)

i<j=1

Substituting these operators into eq. (2.12) we obtain finally for the GCM
boson representative of the energy

Hg(a*, a) = ¥#(a”, a),

where #(a*, a) is given by eqs. (4.4).

Now this is precisely the so-called harmonic approximation of the HP
theory, as it can easily be seen by inserting f;(})=1 into eq. (1.5) and
substituting into eq. (1.4) the resulting expression for Hj, after having dropped
the quartic term. One can conclude therefore that the GCM boson represen-
tative of the energy is diagonal in the spin-wave states when the overlap
kernels are Gaussian and harmonic. One can also see immediately how to go
beyond the independent spin-wave picture within the framework of the GCM,
at least in principle: one simply adds successive corrections to eqs. (4.1) and
(4.2) and proceeds according to the general theory of section 2. However,
before doing that, we develop a little further the results obtained this far.
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As it is well known the spin-wave states are created and annihilated by the
Fourier transforms of the operators a; and a; respectively, namely:

N N
at =N exp(ik - R)a;, ar=N""3 exp(—ik - R)a;. (4.5)
=1 j=1
Inverting these equations one obtains
af=N""Y exp(—ik - R)ai, a;=N""2 explik - R)a,
k k

i=1,2,...,N, (46)

where k lies within the first Brillouin zone, taking all values compatible with
the periodic boundary conditions. Inserting eqs. (4.6) into eq. (4.4b) one gets:

Ha*, a)= ; Jo—J)aia,
where

N
Jy = ; Ju explik - (R; — R)].
=1
)
The eigenvectors of #x(a*, a) have the following general form

ey = [T (e "(a)™|0).
k

To see what kind of wave functions correspond to these eigenvectors, let us
consider, for instance, an eigenstate with only one boson. If k designates its
wave-vector one has, using the first of eqs. (4.5):

N
Ifi,)=atl0y=N"'" 2] exp(ik - R))a;|0).
£

Entering with this ket into eq. (2.10) one obtains, taking into account eq. (2.62)
and the normalization we have chosen for the coherent states,

N N
fi(@)=a" NN~ exp(-— > la,-[z) > exp(ik - R)a%.
i=1 j=1
Inserting now this weight function into eq. (2.1) one obtains
N N
¥, (x) = 7 NN~ exp(ik - R)) f % exp(—- > Ia,-lz) &(x, a) da.
i=1 i=1

Expanding ®(x, «) as a power series of the «; and using the following
identity'%)

fz*"'z" exp(—|z[) dz = wn!8.m,
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one obtains finally

Id(x, a)
aai a=0.

N
¥, (x)= N3 exp(ik - R}
j=1

This is precisely a Bloch’s spin-wave'’) as can be seen from the fact that
(d®(x, @)/ da;)|a -0 is Obtained from the ground-state ®(x,0) inverting the spin
at the site j. In the problem under study, Bloch’s theory is the equivalent of the
Tamm-Dancoff approximation of nuclear physics. The relation between the
GCM in the Gaussian and harmonic approximation and the Tamm-Dancoff
approximation is pointed out in section 6.4 of ref. 7.

We resume now the task of improving on the independent spin-wave
picture. As far as the norm-overlap kernel is concerned one notices that eq.
(3.5) can also be put into the form

N
S(a*, a') = exp[}j log(1 + a’}’a;)].
i=1

After expanding the logarithm as a power series of the a¥«a! it can still be
written as

Stat,a) =143 (ata+ ] exp(g atarl).

The Gaussian approximation, eq. (4.1), results from this expression when one
considers only the leading term of the expansion inside square brackets. A
first correction to it would consist therefore in taking also the next term of the
expansion. This would give:

S(a*,a'y=1 ~%i (a%a))? 4.7
=1

With this expression it is quite easy to write down the corresponding boson
operator:

N

Pla*,a)=1 —%}_‘,l atta. (4.8)
For constructing the boson representative of the energy one needs the inverse
of its square root, ¥""*(a*, a). However, this operator is not well defined.
This can be seen expanding the right-hand side of eq. (4.8) as a power series.
One obtains, using the commutation rules for the boson operators, con-
tributions like £, a}2a? from all the terms but the first, and the series of their

coefficients diverges.
This is a serious difficulty of the method which, from other fields of
application, is known to arise whenever one uses too large a trial space that



FERROMAGNETISM BY THE GENERATOR COORDINATE METHOD 265

allows the description of both collective and less collective modes of excita-
tion of the many-body system'?). In the following we shall limit the trial space
from the very beginning, taking care of including only the possibility of
exciting modes which are really collective.

5. GCM for only the low-energy modes

The previous results could also be obtained if we have used as generator
coordinates the parameters «, related to the «; of eq. (3.4) by the following
transformation:

@ = N"‘“; exp(ik - R)ew, j=1,2,...,N.

The use of the «; or the ¢, is merely a question of convenience, either of them
being suitable for the set up of a boson representation. With the first set one
associated the localized boson operators {a;, aj} and with the second the
spin-wave boson operators {a,, a;}.

Now, if we wish to associate boson operators only with the low-energy
modes we should take as generator coordinates the elements of {a;} cor-
responding to values of |k| smaller than some k,. The spin-deviation
parameters which appear in eq. (3.4) should then be given as

aj =N~ kgb exp(ik - R)ew, j=1,2,...,N, ;.1
where D consists of all points of the first Brillouin zone, compatible with the
periodic boundary conditions, which are inside a sphere of radius k,. This
value should be much smaller than the inverse of the lattice constant.

Notice that the spin deviation parameters defined by eq. (5.1) are not
independent of each other. Therefore they cannot be treated as generator
coordinates and it is not possible now to speak of localized boson operators.
However the complex variables «,, with [k| < ko, are arbitrary and with them
we shall associate the boson operators corresponding to the long-wavelength
spin-waves. In order to achieve this purpose we insert eq. (5.1) into the
expressions we had before for the overlap kernels. It is important to note that

N
2 atal= 2 ataj.
i=1 keD
Instead of eq. (4.7) we write now

Ste*,a)=1-2N)" > 8(1+2-3-datatajal, (5.2)

1,2,34€D
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where 1, 2, 3 and 4 denote k,, ki, ks and k,, respectively, and the 8(n)=§,, is
the usual Kronecker symbol. From eq. (5.2) one has
Pa*,a)=1-2N)"' X 8(1+2-3-4alasaa

1,23.4€D

and
P gt a)=1+@N)"' 3 8(1+2-3—-4ajasasas+---. (5.3)
1.2.34€D

Since the summation over each k covers a number of points must smaller
than N, one is sure that the successive terms of the above expansion are
rapidly decreasing in magnitude. In this way the problem which has arisen in
the last section is avoided.

As regards the energy-overlap kernel, let us go back to eq. (3.8). Consider-
ing the first correction to the harmonic approximation one has:

—- - N
A(a*, @) = Aula*, o) [1-13) (ata’y]
=1
N
+ > Ji(a} - aPlatai+afa)lai-a),

i<j=1

where Hp.m(a*, a') is give by eq. (4.3). Inserting here the eq. (5.1) one can
construct from the resulting expression the boson operator ¥(a*, a).

From eq. (2.12) and taking into account eq. (5.3) one obtains finally, after
some straightforward calculations,

HB(a+v a) = %0+ %2(a+a a) + %4(a+7 a)9

where

¥(a*,a)= D, (Jo—J)aiax

keD

and

Fia*,a)=C2N)Y"" D (1+-2J,-)8(1+2-3—4)atasaas.
1,234€D

This is precisely the result one obtains inserting the HP transformation with
fi) =1-1N; | (5.4)

into the Dirac-Heisenberg operator. The eq. (5.4) corresponds to keeping the
first two terms in the expansion of f;(}3) as a power series of N;=a/a; a
procedure which, although usual, is not self-justified. Indeed one should as
well have considered a normal-ordered expansion whose first two terms are

fid=1-N;
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Our result can therefore be understood as a justification of the HP theory
with f;(3) given by eq. (5.4), for the lowest energy modes.

6. Conclusions

This work shows once more that the GCM is a powerful tool for describing
collective phenomena, allowing a deeper understanding of the relevant
aspects. In the present context it provides a clear link between the original
Bloch theory on the spin-waves in the configuration space with the formalism
in an ideal boson space. Moreover, due to the fact that it allows the separate
treatment of the low-lying spectrum, it yields a convergent expansion for the
boson representative of the energy.
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