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Abstract

Numerical studies play a major role in the understanding and prediction of plasticity induced crack closure (PICC).
However, the available numerical models can be considered simplifications of reality as they consider discrete crack prop-
agations, relatively high fatigue crack growth rates (FCGR), sharp cracks, and propagation occurring at well-defined
loads. Besides, there are a great number of numerical and physical parameters affecting the predictions of PICC. The
aim of this paper is to discuss the numerical study of PICC. The numerical parameters affecting the accuracy of the
numerical simulations, and the dependent parameters used to characterise the plastic wake and the closure level, are iden-
tified. The influence of the radial size of crack front elements and crack propagation is analysed. An extrapolation model
is proposed, with excellent results. An intrinsic uncertainty is associated with the number of load cycles between crack
increments and the definition of crack closure level. Finally, the effect of the stress ratio (R) on crack closure level is
analysed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Crack closure is a phenomenon that consists of the contact between fracture surfaces during a portion of
the load cycle. This contact affects the local stress and plastic deformation fields near the crack tip, and thus
the micro mechanisms responsible for fatigue propagation (cyclic plastic deformation, oxidation, creep, etc.).
Crack closure is able to explain the influence of mean stress in both regimes I and II of crack propagation [1,2],
and transient crack growth behaviour following overloads [3], among other aspects, must therefore be consid-
ered in the design of components.
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The idea that fracture surface interaction leads to a decrease in stress intensity at the crack tip and to an
increase in fatigue life was proposed in 1963 [4]. Elber [1,5] discussed the concept in terms of fracture mechanics
parameters, promoting a strong research effort into the mechanisms and phenomena associated with
fatigue crack closure [6]. Ritchie et al. [7] and Suresh [8,9] identified the main closure mechanisms, which are
plasticity induced crack closure (PICC), oxide induced crack closure and roughness induced crack closure.
Additional mechanisms, such as viscous-fluid induced crack closure [10], transformation-induced crack closure
[11] and graphite induced crack closure [12], have been observed to operate in susceptible materials and
environments.

While some researchers argue that PICC does not exist (particularly for plain strain conditions) [13–15],
a huge amount of experimental, numerical and analytical work has been performed, supporting the exis-
tence of crack closure and its influence on fatigue crack propagation. Various methods have been
employed to measure crack opening and crack closure levels experimentally [16], however these only give
average values, therefore numerical approaches become fundamental tools for studying crack closure, spe-
cially along 3D crack fronts. Furthermore, once a numerical procedure has been optimised, it is relatively
simple to adapt it to new load conditions, materials, crack lengths, etc. Nevertheless, the finite element
models must be correctly defined and their limitations understood. The numerical simulation of PICC
is still complicated due to the difficulties in modelling complex material behaviour, contact between crack
faces during crack closure and crack propagation. These complexities, and the large number of numerical
and physical independent parameters affecting PICC, to some degree explain contradictory literature
results. Despite their limitations, existing numerical models are useful for improving the understanding
of the influence of different physical parameters like thickness, stress ratio or overload ratio on closure
behaviour. Further study is required to fully understand the effect of the finite element mesh and of the
number of load cycles between crack increments, and to establish parameters which can quantify the influ-
ence of closure on fatigue crack growth. Considering the vast parametric space in question, general con-
clusions are always subject to uncertainty, therefore each practical situation must be carefully analysed to
ensure feasible results.

The main objective of this paper is to discuss the numerical study of PICC, namely, the numerical param-
eters affecting the results of the numerical simulations, and the dependent parameters used to characterise
plastic wake and closure level. Afterwards, the intrinsic uncertainty of the numerical predictions is studied
by analysing the influence of the closure definition and the number of load cycles between increments on crack
closure level. Finally, the influence of stress ratio (rmin/rmax) on crack closure is studied.

2. Overview on physical and numerical parameters affecting PICC

2.1. Physical aspects

There are several models that try to relate the occurrence of cyclic plastic deformation at the crack tip to
crack propagation and the formation of striations usually observed on the fracture surface of ductile materi-
als. All the models are based on the fact that the fatigue crack propagation process is repetitive, so each of
them tries to explain the mechanism of crack propagation by explaining the process that happens during a
single load cycle [17].

Laird’s model of striation formation by crack tip plastic blunting [18,19] is largely accepted as a general
description of the propagation mechanism of fatigue cracks in regime II of da/dN–DK curves. According
to this model, plastic deformation at the crack tip is highly concentrated at 45�, producing blunting and cre-
ation of new fracture surfaces. When the stress reverses during load cycles, crack tip compression stresses
reverse slipping, the fracture surfaces approach, but the new surface cannot be removed by reconnection of
the atomic bonds, which is in accordance with the entropy law of thermodynamics. Other mechanisms exist
that explain propagation at relatively low stress amplitudes (cleavage) and at relatively high stress amplitudes
(coalescence of microvoids, etc.). At elevated temperatures, diffusion based mechanisms, like oxidation and
creep, may become dominant.

As the crack propagates due to cyclic loading, a residual plastic wake is formed. The deformed material acts
as a wedge behind the crack tip and the contact between fracture surfaces is induced by the elastically
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deformed remote material. This mechanism affects the fatigue crack propagation rate and is known as plas-
ticity induced crack closure, as previously noted. Under plane stress conditions, i.e., near the surface, this phe-
nomenon happens due to the transportation of material to the interior of the sub-surface region.
2.2. Numerical aspects

The numerical analysis of PICC based on finite element method (FEM) consists of discretising and mod-
elling the cracked body having elastic–plastic behaviour, applying a cyclic load, extending the crack and mea-
suring the crack closure level. The finite element mesh must be highly refined near the crack front, with radial
sizes (L1) at the micron scale, in order to model the forward and reversed crack tip plastic zones. The forward
plastic zone is made up of the material near the crack tip undergoing plastic deformation at the maximum
load, therefore it is intimately related to Kmax. The reversed plastic zone encompasses the material near the
crack tip undergoing compressive yielding at the minimum load and is related to DK.

Commercial FE software packages offer tools to deal with elastic–plastic deformation, crack propagation
and contact between crack flanks, and are therefore adequate to model PICC. However, the numerical models
have significant simplifications with respect to real fatigue crack propagation, namely:

– discrete crack propagations, of the same size as near crack tip elements, which give fatigue crack growth
rates significantly higher than real values;

– crack propagation is modelled at a constant load when in reality it occurs continuously during the whole
load cycle;

– relatively low FCGR, which affects the number of load cycles applied to each near crack tip point. This
error can be reduced by decreasing L1 and increasing the number of load cycles between propagations;

– crack tip shape. Sharp cracks are usually modelled, however, real cracks have a non-zero radius at the tip,
within micron range, which affects the local plastic deformation fields. Despite all efforts to improve the
accuracy of the numerical predictions, the crack tip results will always be affected by significant numerical
errors due to the local singularity;

– elastic–plastic behaviour is seldom well modelled. The cyclic plastic deformation of material near the crack
tip involving strain ratcheting, stress relaxation and cyclic hardening or softening is difficult to model, and
the material models and material constants available are in general quite limited.

Additionally, numerical models are usually aseptic, since they only simulate PICC, neglecting all other phe-
nomena that may exist, like roughness induced or oxide induced crack closure. Therefore, comparison of
numerical and experimental results, which may include these additional mechanisms, must be done carefully.
Besides, it is not clear how global closure measurements obtained experimentally should be compared to punc-
tual values given by the first node contact, stress inversion or other closure definitions.

Considering all the previous aspects, despite the great number of studies on PICC there is still a lack of
confidence in the numerical predictions. Further study is still required to optimise the numerical parameters
for a wide range of physical variables and to establish closure parameters adequate to quantify its influence on
fatigue crack growth. The numerical parameters that have to be optimized, which can be arbitrarily selected by
the researcher, are associated with:

1. finite element discretisation,
2. the crack propagation scheme,
3. the closure definition, and
4. the material model.

The literature references, in both Tables 1 and 2, indicate studies focused on the different parameters. As
can be seen, there is a huge parametric space. In order to reduce the parametric space, several options are usu-
ally chosen at the beginning of model definition, considering previous results from the literature and the pre-
vious experience of the authors. As indicated in Table 2, significant work has been developed to optimize the



Table 1
Independent physical parameters

Material Homogeneity and isotropy
Elastic and plastic behaviour
Fatigue behaviour

Sample geometry Thickness [21,23]
Crack length (a or a/W) [24–28]
Crack shape [29]

Loading parameters Loading mode (modes I, II or III, mixed mode, multiaxial loading)
Dr/rys

rmax/rys

Mean stress (normally quantified by the cyclic stress ratio, R = rmin/rmax)
Load history (constant amplitude, overloads, blocks, random load) [20,29–31]

Table 2
Independent numerical parameters

Material model Yield criterium
Flow rule
Hardening laws (kinematic and/or isotropic) [20,21,23,30,32–36]

Numerical simulation program Time integration strategy
Parameters of the numerical algorithm

Mesh Type of element and integration
Radial size of crack front elements (L1 or L1/rp) [21,23,24,28,35–38]
Mesh refinement along crack front
Mesh remote from crack front

Crack propagation scheme Propagation at maximum, minimum or intermediate load [24,28,38–42]
Extent of individual crack increments (Da = constant � L1) [43]
Number of load cycles between crack increments (P2) [35]
Number of crack increments necessary for stabilisation (Da = RDai P rp,m) [21,28,35,37]

Closure definition Last contact or inversion of stresses at crack tip [22,44]
Crack opening or crack closure [36,45]
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numerical parameters and relevant conclusions have been found. Revision papers have been published by
McClung and Sehitoglu [42], Solanki et al. [46] and Jiang et al. [35], among others.
2.2.1. Finite element discretization

The crack tip is a zone with severe gradients of stress and strain therefore the type and radial size of finite
elements are its main parameters. There is a general agreement on the use of a regular mesh with linear or
quadratic square elements. On the other hand, the influence of the radial size of crack front elements (L1)
on crack closure is still unclear. Classical mesh refinement studies have been developed, however the literature
disagrees about the existence of the typical convergence of results with mesh refinement. Gonzalez and Zapa-
tero [36] considered up to 140 linear elements within the monotonous plastic zone and found near stable clo-
sure values. Parks et al. [38] considered a pure kinematic hardening model and obtained a minimum stable
value of U for L1/rp,c � 0.77–0.91, the size of the cyclic plastic zone being rp,c.

The finite element mesh must be sufficiently refined in order to enable the simulation of the plastic defor-
mation phenomena occurring at the crack tip, namely, the formation of the forward and reversed plastic
zones. Since the reversed zone is smaller than the forward zone, its size is critical for the definition of
L1. According to Solancki et al. [28], there must be 3–4 linear elements within the reversed plastic zone,
while Roychowdhury and Dodds [21] suggested 2–3 linear elements. Solanki et al. [28] indicated that a crack
growing under cyclic loading with R = 0 had a reversed plastic zone about 1/10 the size of the forward plas-
tic zone (while for a stationary crack this is about 1/4 the size). Therefore, if L1 is too large, the occurrence
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of reversed plasticity will not be modelled. The increase in DK, produced by the increase in crack length or
Dr, and the use of higher order elements may be accomplished by an increase in L1. The increase in stress
ratio (R) reduces the size of the reversed plastic zone, and therefore, the use of a finer mesh must be
considered.

Additionally, as already stated, the reduction of L1 brings numerical models closer to real fatigue crack
propagation rates, as it reduces the individual crack increment size and increases the number of load cycles
applied to each near crack tip point. However, decreasing L1 substantially increases the numerical effort,
by decreasing the size of individual crack increment, Dai, and the total number of finite elements within the
model. These determine the computation time (quite high in elastic–plastic analysis) and disk space require-
ments. According Jiang et al. [35], a lower boundary for L1 is 0.001 mm. The mesh refinement also affects
the position of the first node behind crack tip, which significantly influences the opening level as discussed
in point 4.5.

It is also important to note that the most refined mesh area has to include the entire crack tip plastic zone,
i.e., the plastic region cannot extend to the transition mesh [46]. Transition region size ratios less than 3 are
needed for the mesh [28]. The remote mesh must be quite large to reduce the numerical effort to acceptable
levels.
2.2.2. Crack propagation scheme

During numerical simulations the crack can be incremented at maximum load [47], at minimum load [30,39]
or at other positions of the load cycle. Ogura et al. [40] advanced the crack when the crack tip reaction force
reached zero during the load cycle. However, none of these approaches truly represents the fatigue process,
where, according to slip models of striation formation, crack extension is a progressive process occurring dur-
ing the entire load cycle. The proposal to increment at minimum load was designed to overcome convergence
difficulties caused by propagating the crack at maximum load. This is an unrealistic option since the crack is
not expected to propagate in a compressive stress field. However, several authors [28,28,42] have already
found that the load at which the crack increment occurs does not significantly influence crack closure numer-
ical results.

Under constant amplitude loading, crack tip opening load will typically increase monotonically, with
increasing crack growth, until a stabilized value is reached. So, it is important to define the minimum crack
extension needed to stabilize the opening level. It is usually sufficient to increase the crack ahead of the mono-
tonic plastic zone resulting from the first load cycle [38,43,48].
2.2.3. Closure definition

A major aspect in the numerical study of PICC is the concept of crack closure. Different concepts have been
considered, namely [49]:

– the first contact of crack flank, which corresponds to the contact of the first node behind the current crack
tip. This is the conventional definition proposed by Elber [3] and has been widely used [35, etc.]. However,
results are mesh-dependent, since the proximity of the first node to the crack tip increases the opening load;

– the first contact of other nodes behind the crack tip. Pommier [30] and Roychowdhury and Dodds [21] con-
sidered the second node behind the crack tip;

– the occurrence of compressive stresses at the crack tip [50]. Important differences in crack closure levels are
apparent when comparing the classical definition with stress inversion [22,50,51];

– parameters based on remote measurements of displacements or strains, replicating experimental measure-
ments [3];

– a load corresponding to a zero stress intensity factor. Shterenlikht et al. [52] applied optical techniques to
determine the stress intensity factor and considered that crack closure occurs when K = 0;

– the stress intensity factor required to open the crack, computed using the contact stresses along the
closed or partially closed crack under minimum load [44]. The contact stress method overcomes the lim-
itation of focusing attention on a single node, considering instead the global behaviour of the entire
crack surface.



Table 3
Dependent parameters for closure characterisation

Parameter Description Comment

rc,y, rc,x, rc,max Extension of reversed plastic zone Plastic deformation parameters
rp,y, rp,x, rp,max Extension of monotonic plastic zone (Fig. 2)
�ep ¼ �epðxÞ Plastic deformation field
d�ep

B=dx Gradient of plastic deformation
Cumulative plastic strain energy density

rresidualðxÞ=rys Residual stress field near crack tip Stress fields
r ¼ ~f ð�eÞ Stress–strain curve

Contact forces at minimum load Local forces

dy(x) Crack opening profile Crack profile parameters
dy,A � dy,B Difference between vertical displacements of points A and B (Fig. 2)
U Crack closure level Closure parameters
rop/rmax Normalised opening stress
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Additionally, different parameters have been used to quantify crack closure, as indicated in Table 3. A
widely used parameter is U, which defines the fraction of the load cycle for which the crack remains open,
and is given by
U ¼ P max � P op

P max � P min

; ð1Þ
where Pmax and Pmin are the maximum and minimum loads in the load cycles and Pop is the opening load. This
parameter ranges from 0 (crack always closed) to 1 (no closure). An alternative parameter also widely used is
(rop/rmax), ranging from R = rmin/rmax (no closure) to 1. Distinct values are usually obtained for crack open-
ing and crack closure.

Additional parameters have also been proposed to characterise the plastic wake and the near crack tip
stress and strain fields, and have been used for a deeper understanding of crack tip phenomena and PICC.
Antunes et al. [53] found that the crack profile, dy = dy(x), is a main parameter influencing crack closure level.
Rodrigues and Antunes [54] found that plastic deformation along the crack front stabilizes after a period that
coincides with opening load stabilization, independently of the hardening model in use to describe the plastic
behaviour of the material. Therefore the variation of equivalent plastic deformation along crack front
ðd�ep

B=dxÞ can be used to identify the stabilization of the crack closure level.
2.2.4. Material model

Numerical simulation of the plastic behaviour of metals requires mechanical models that correctly describe
the hardening behaviour of these materials [55]. In the specific situation of the numerical simulation of crack
growth under cyclic loading, which involves cyclic plasticity phenomena inside the crack tip area, isotropic and
kinematic hardening must be considered when modelling the plastic behaviour of the materials. This can be
achieved by using mixed hardening constitutive models that enable the effects both of isotropic and kinematic
hardening on plasticity to be captured. Unfortunately, although it is assumed that PICC is induced by crack
tip cyclic plastic behaviour, most of the published studies on the numerical simulation of crack closure neglect
actual metal hardening behaviour and model the stress–strain response of these materials as elastic-perfectly
plastic [28,56] or bi-linear [21,32,42]. Several numerical studies employed material constitutive relationships
that even ignore kinematic hardening [23,24,57] or simply consider pure isotropic or pure kinematic hardening
material models [20,58]. Numerical simulation studies considering mixed hardening behaviour are still rare.
Recently, Jiang et al. [35] published a comparative study considering three different mixed hardening models:
the purely kinematic Prager–Ziegler hardening rule with an elastic–perfectly plastic (EPP) stress–strain rela-
tionship, the purely kinematic Prager–Ziegler hardening rule with a bilinear (BL) stress–strain relationship
and a kinematic hardening model developed by the authors. In this study, they found a strong dependence
of stabilized crack closure values on the mechanical model in use. These authors also discussed the inability
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of the purely kinematic Prager–Ziegler hardening models, with an EPP stress–strain relationship, or a BL
stress–strain relationship, to deal with strain ratcheting and stress relaxation under any loading conditions.

3. Numerical simulation of crack closure using a MT specimen

3.1. The numerical program

The numerical simulations were performed using a three-dimensional elasto-plastic finite element program
(DD3IMP) that follows a fully implicit time integration scheme [59–61]. The use of an implicit algorithm
makes the numerical code very robust.

The mechanical model and the numerical methods used in this finite element code, specially developed for
the numerical simulation of metal forming processes, take into account the large elastic–plastic strains and
rotations that are associated with large deformation processes. The quality of the solutions, provided by this
numerical program, strongly relies on the models used to describe the strong non-linear material behaviour,
which include several isotropic and anisotropic constitutive models (seven isotropic/kinematic hardening laws
and eight yield criteria) [62,63]. In order to realistically define the geometry of the deformable body the numer-
ical code makes use of three-dimensional solid isoparametric finite elements. Since the isoparametric elements
have a deficient behaviour when used to solve elasto-plastic problems a selective reduced integration method
[62,64] is adopted in this numerical simulation program in order to avoid the locking effect.

3.2. Finite element discretization of the cracked body

In this study a center cracked specimen (MT) subjected to plane stress mode I loading (Fig. 1a) was inves-
tigated (other authors have studied this geometry [21,25,28,35,45,46,65]). The geometry and size of the MT
specimen, with initial crack size ao = 5.78 mm, were chosen with reference to previous experimental work
[3]. A relatively thin 0.2 mm section was considered in the numerical analysis, in order to simulate plane stress
conditions. Due to symmetry conditions, only 1/8 of the sample was simulated, corresponding to the shadow
portion in Fig. 1a. The 3D finite element mesh was obtained by generating one layer of eight-node isopara-
metric brick elements from a 2D mesh (Fig. 2). The size considered for the crack tip elements was L1 = 16 lm.

All the simulations were performed assuming constant amplitude cyclic loading. The boundary conditions
used in this investigation enforce frictionless contact conditions over a symmetry plane placed behind the
growing crack front. Crack propagation was simulated by applying the commonly used one-node-per-two
cycles debonding at minimum load. The increment at minimum load was adopted to overcome convergence
difficulties. Each crack increment (Da) corresponded to one finite element, i.e., Da = 16 lm (see Fig. 3). In each
cycle, the crack propagates uniformly over the thickness, by releasing both current crack front nodes. The
opening load, Pop, necessary for the determination of the closure level is calculated by evaluating the contact
status with the symmetry plane of the first node behind the current crack tip (reference node in Fig. 3). How-
ever, in Section 4.5 different concepts of crack closure have been considered and compared.
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Fig. 1. (a) Middle-tension specimen M(T); (b) physical model.



Fig. 2. Finite element mesh.

Current Crack Tip

Loading direction

Reference Node

L1
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3.3. Material modelling

The elasto-plastic behaviour of the material was modelled as corresponding to the AA6016-T4 aluminium
alloy. Several monotonic and Bauschinger mechanical tests have been performed in order to study the hard-
ening behaviour of this material. From the experimental data and curve fitting results, for different constitutive
models, it was determined that the mechanical behaviour of this alloy is best represented using a isotropic
hardening model described by a Voce type equation
Y ¼ Y 0 þ Rsatð1� e�nv�epÞ ð2Þ
combined with a kinematic hardening model described by a saturation law [66]
_X ¼ CX
X satðr0 � XÞ

�r
� X

� �
_�ep; with Xð0Þ ¼ 0: ð3Þ
In previous equations Y is the equivalent flow stress, �ep is the equivalent plastic strain, Y0 is the initial yield stress,
Rsat is the saturation stress, nv, Cx and Xsat are material constants, r0 is the deviatoric stress tensor, X is the back
stress tensor,_�ep the equivalent plastic strain rate and �r is the equivalent stress given by �r2 ¼ ðr0 � XÞ :
M : ðr0 � XÞ where M is a fourth-order symmetric tensor which is function of the anisotropic parameters of
the Hill’48 yield criterion: F, G, H, L, N and N. The material constants determined for the material in study
are: Y0 = 124 MPa, Rsat = 291 MPa, nv = 9.5, Cx = 146.5, Xsat = 34.90 MPa, F = 0.5998, G = 0.5862,
H = 0.4138 and L = M = N = 1.2654.
4. Presentation and analysis of results

4.1. Parameters of the numerical algorithm

The finite element program used in this study makes use of a Newton–Raphson method to solve the non-
linear problem associated with the plastic deformation processes. The convergence of this numerical method
depends mainly on parameters like the numerical variables, mechanical behaviour laws, the friction coefficient,
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the discretization of the deformable body and the loading conditions. The optimum values for most of the
numerical parameters of the DD3IMP implicit algorithm have been well established in previous investigations
involving the numerical simulation of sheet metal forming processes [59,61], and are suitable for use in the
study of the plastic deformation process occurring at the crack front. The only numerical parameter optimised
in this work was a user defined constant (Toleq) that controls the global convergence of the Newton–Raphson
algorithm and determines the precision of the numerical results. Fig. 4 presents the influence of Toleq on crack
closure numerical results, expressed by U. The parameter optimization task was performed by determining the
crack closure level (U) for a set of loading conditions characterised by increasing values of R (mean stress) and
constant DK. The results indicate that the increase in R, fixing DK, produces an increase in U, which was
expected. However, the increase in Kmax, associated with the increase in R, increases plastic deformation at
the crack tip. Therefore, more precision is required in order to correctly capture the stress–strain gradients
at the crack tip, which means that lower values of Toleq have to be used, as Fig. 4 shows. These results rein-
force the importance of careful control of the numerical algorithm to ensure the quality of numerical results.
In any case, the results from crack tip elements, and particularly, at the crack tip node, are always affected by
errors resulting from the singular character associated with sharp cracks.

4.2. Radial size of crack front elements, L1

The radial size of the crack tip elements (L1) is a main parameter of the numerical model and must be care-
fully defined. Its maximum value may be established based on the size of the reversed plastic zone and the
measurement of this size is a central issue. Solancki et al. [28] analysed the equivalent Von Mises stress
(rVM) at maximum and minimum load and considered the criterion 0.95 6 rVM/rys 6 1 to define the limits
of the reversed plastic zone. Alternatively, the reversed zone can be defined by comparing the equivalent plas-
tic deformation, along the crack front, at maximum and minimum loads. The increase in plastic deformation
with the decrease in load, down to its minimum value, indicates the occurrence of reversed plasticity. Fig. 5
shows the application of these two concepts, and both indicate that approximately 3–4 elements are within
the reversed plastic zone (shadow region).

The size of the reversed zone can also be determined from the analysis of stress–strain curves of near crack
tip points. Fig. 6a presents a normalized stress–strain curve (ryy � eyy) registered as the crack propagates
(Da = 15 � 16 = 240 lm) for a Gauss point (GP) positioned as illustrated in Fig. 6b. Notice that two load
cycles were applied between crack extensions. At the end of the first cycle (crack tip in position 1) the GP
suffers some plastic deformation, which indicates that it is within the forward plastic zone, but does not
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Fig. 4. Closure level (U) versus stress ratio (R) after 15 propagation cycles (a = 6.004 mm; DK = 5.2 MPa m1/2; L1 = 16 lm).



Fig. 5. Identification of reversed plastic zone (rmax = 40 MPa, rmin = 4 MPa, a0/W = 0.23, L1 = 16 lm, Da = 15 � 16 lm = 240 lm, two
cycles per increment).

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0.000 0.005 0.010 0.015 0.020

εyy

12

14

1 5

15

GP

141 165 12

σ y
y/

σ y
s
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experience reversed plasticity. After five crack increments (crack tip in position 5), compressive stresses arise at
the GP position. These compressive stresses increase with the approximation of the crack tip and start pro-
ducing reversed plasticity after 12 load cycles (crack tip in position 12). The reversed plastic zone increases
up to 14 crack increments, therefore three elements are within this zone, which is in accordance with the anal-
ysis in Fig. 5. After 15 crack increments, crack propagation extends ahead of the GP position, the level of
stress applied to the GP becomes relatively low and the increment of plastic deformation quite reduced. In
other words, the plastic wedge develops up to position 14. Points with other vertical positions (y coordinate
in Fig. 1b) were observed to have similar behaviour, however the level of monotonic and reversed plastic
deformation vary significantly.
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The analysis of the stress–strain curve is probably the best procedure for quantifying the size of the reversed
plastic zone and, thus, for defining L1. If L1 is too high, even the GP closest to the crack tip does not suffer
reversed plastic deformation. For L1 = 16 lm, a significant portion of the cyclic plastic deformation occurs
within the three elements ahead of crack tip. However, inside this zone the points are submitted to only six
load cycles, which is far from reality. The decrease in L1 and the increase in the number of load cycles, between
crack increments, increase the total number of load cycles, as discussed in Section 4.4.
4.3. Crack extension for stabilization, Dastb

Under constant amplitude loading the crack tip opening load will typically increase monotonically with
increasing crack growth until a stabilized value is reached. So, it is important to define the minimum crack
extension needed to stabilize the opening level, that is equal to the sum of the partial crack increments, i.e.,
Dastb ¼

P
ðDaÞi, with i varying from 1 to the number of increments necessary for stabilisation. Parks et al.

[38] suggested that to achieve closure stabilised values, the crack must propagate ahead of the monotonic plas-
tic zone resulting from the first load cycle (rp). Wu and Ellyin [48] found that under plane stress conditions the
opening level reaches a stable value when the crack tip propagates over half of the initial plastic zone. Antunes
et al. [43] found that, for a plane stress state, the crack must propagate ahead of Rice’s monotonic plastic zone
of first load cycle. Solancki et al. [28] and Jiang et al. [35] indicated that the steady state was reached after
growing the crack approximately twice and four times the initial forward plastic zone, respectively. Consider-
ing these different results, it is recommended that a convergence study should always be developed.

Fig. 7 shows stabilization results obtained in this study for R = 0.1 and 0.5. The crack tip finite element
mesh is schematized at the bottom of the graph. The opening level results are expressed by (ropen/rmax) being
ropen determined as described in [45]. The load versus opening displacement curve for the node behind crack
tip exhibits linear behaviour, therefore the exact opening load can be obtained by extrapolation of the two
load values following opening.

This procedure eliminates the small error associated with the evaluation of the opening load at the end of
load increments with finite size. It can be seen that the closure level increases, with initial crack propagation,
until a stable value is reached, which is also demonstrated by the d(ropen/rmax)/dx curve. These results indicate
the decreasing influence of the first plastic wedge as the crack propagates. Immediately behind the crack tip,
the plastic wake has a major influence on closure level, which decreases rapidly with crack propagation until it
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Fig. 7. Crack closure stabilization: numerical results and extrapolation models (Toleq = 1e � 4, L1 = 16 lm, two load cycles,
Da = 15 � 16 lm = 240 lm, rmax = 40 MPa, R = 0.1, rp,m = 0.618 mm).
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disappears. This decreasing influence can be explained by a lever effect: the rotation imposed by a remote
plastic wedge produces a small vertical movement near the crack tip. This lever effect explains the lower sta-
bilization period required for plane strain conditions [23,36]. In fact, crack opening is larger at interior posi-
tions of the crack front, therefore the effect of the remote plastic wake is lower. In general, all modifications of
physical parameters that promote an increase in crack opening displacement, like the increase in mean stress
or change of specimen geometry, will reduce the extent of the stabilization process. This effect of mean stress
on stabilization process is obvious from the results presented in Fig. 7 for R = 0.1 and 0.5.

In situations with very small element sizes and where long propagation is required for stabilization, it is
interesting to perform extrapolation of crack closure values in order to perform a limited number of crack
propagations and save numerical simulation time. González-Herrera and Zapatero [36] and Jiang et al.
[35], respectively, proposed the following extrapolation models:
Fig. 8
288 lm
ropen

rmax

¼ k � 1

Da
rp
þ c

� �b
; ð4Þ

ropen

rmax

¼ C0 þ C1 � eC2�Da: ð5Þ
Both models have three fitting constants, k and C0 being the horizontal asymptotes. Fig. 8 presents the fitting
of these models to previous numerical results. The extrapolated values were found to be reasonable, but not
excellent, therefore a new model is proposed here, which is a modified version of Eq. (5):
rmax

ropen

¼ C0 þ C1 � eC2�DaC3 ð6Þ
This equation, which is a Voce type equation similar to that used to model the isotropic hardening behaviour
of the material (Eq. (2)), has four constants. The extrapolation results obtained with this model are com-
pared, in Fig. 8, with those obtained with previous models and show that the best fit is obtained with Eq.
(6). Fig. 8 also presents some extrapolated values calculated with the proposed model, but considering differ-
ent and increasing numbers of crack increments (3, 4, 5,. . .). It is possible to observe that as the crack prop-
agates, the extrapolated values stabilize, achieving this stabilized value after about eight crack extensions
(128 lm).
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4.4. Effect of the number of load cycles, NLC

The number of load cycles applied to the near crack tip points depends on the size of the individual crack
increments (Dai = L1) and on the number of load cycles between crack propagations. The influence of NLC is
greatly dependent on the elastic–plastic model assumed for the material, particularly, on the capacity of the
model to simulate mean stress relaxation, strain ratcheting and cyclic hardening. Ideally, the FCGR in the
numerical model should be similar to the experimental one. However, when using a mesh of 16 lm and a
one-node-per-two cycles debonding scheme, an unrealistic fatigue crack growth of 8 � 10�6 m/cycle is simu-
lated, which is significantly higher than real da/dN. Reducing the mesh size or increasing the number of load
cycles between crack propagations, up to a realistic level, is not practical due to the huge numerical effort
involved. The objective now is to understand the effect of increasing the number of load cycles, considering
that realistic FCGR cannot be reached.

Fig. 9 presents the normalized ryy versus eyy curve obtained, for the same Gauss point illustrated in Fig. 6b,
but using different test conditions, i.e., four load cycles between crack extensions. The comparison with Fig. 6a
indicates that the application of more load cycles slightly increases the plastic strain at the GP. Strain ratchet-
ing and mean stress relaxation are evident in Fig. 9 and stabilization would occur with the application of more
load cycles between crack increments. Fig. 10 shows the influence of the number of load cycles between crack
propagations on the crack opening level (ropen/rmax). A significant difference between the results obtained with
1 cycle and 2 cycles can be observed, while the subsequent number of load cycles has a limited effect. This dif-
ference can be explained by the crack opening profile behaviour. The second load cycle slightly deforms the
fracture surface, reducing the closure level. Therefore at least two load cycles between each crack increment
must be applied [20,30,38].

The effect of using more than two load cycles in crack closure behaviour is intimately related to the material
model in use. For mixed hardening models stabilization of the opening level is observed, which can be
explained by the stabilization of cyclic plastic deformation. The small difference between the results of Figs.
6a and 9 obtained for NLC of 2 and 4, respectively, agree with the small difference observed in Fig. 10.

It was also observed that the application of load cycles in a MT specimen, without crack extension, pro-
duces an interesting phenomenon in specific situations. Fig. 11 shows the variation of the near crack tip profile
in a numerical simulation performed considering pure kinematic hardening behaviour. The crack was submit-
ted to 15 propagations with 2 load cycles between each, and after that, 20 load cycles were applied without
propagation. As can be concluded from the figure, the increasing number of load cycles affects the position
of the node immediately behind the crack tip, moving it upward. Therefore, the first two loading cycles
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Fig. 9. Stress–strain curve for one Gauss point (rmax = 40 MPa, rmin = 4 MPa, a0/W = 0.23, L1 = 16 lm, Da = 20 � 16 lm = 320 lm,
four cycles per increment).
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produce plastic deformation, and consequently, crack closure. Subsequent unloading and loading cycles take
material from behind the crack tip, reducing closure. A similar phenomenon was observed for elastic – perfect
plastic behaviour. This geometrical change explains the reduction of closure level with an increasing number
of load cycles/increments for pure kinematic hardening and perfect plastic material behaviour (results not pre-
sented). This effect was studied using different meshes and it was concluded that it is mesh-size dependent,
being more important for a mesh with L1 = 8 lm. Whatever the mesh size is, only the node immediately
behind the crack tip node is moved. No significant effect of an increasing number of load cycles on the crack
profile of non-propagating cracks was observed when using mixed hardening models, which indicates that the
phenomenon depends on material behaviour modelling. The same phenomenon has also been reported by
Antunes et al. [43] and Jiang et al. [35] for pure kinematic hardening models in 2D plane stress analysis.
Toribio and Kharin [67] developed a high-resolution finite-element simulation of a plane strain tensile crack
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with a finite radius. Perfect plastic behaviour was assumed and deformed shapes revealed the mechanism of
material transfer from the crack front onto the lateral faces of the crack.
4.5. Closure definition

Fig. 12 presents values obtained for the opening level, ropen/rmax, based on the last contact of different
nodes behind the crack tip. A major conclusion that can be drawn from this graph is the great variation in
closure results (from 0.3 to 0.49) according to the node selected to evaluate contact status. As expected, remote
nodes open first and a linear variation in closure is observed between the results of the 6th and 9th nodes. This
variation becomes much more significant when choosing nodes closest to the crack tip to evaluate contact sta-
tus, i.e., it is more difficult to open these nodes. This effect is explained by the occurrence of plastic deforma-
tion at the crack tip at the same time that the nodes closest to the crack tip are opening.

The value of ropen/rmax obtained from the stress inversion definition is also presented in Fig. 12. This value
is higher than that obtained from the first node behind the current crack tip. In fact, the contact status of this
node does not indicate that the crack is fully open, i.e., that the crack is open between this node and the cur-
rent crack tip node. Reducing L1 is expected to reduce the difference between both definitions of crack closure.
A strong agreement can be observed between the result from the stress inversion definition and that obtained
from the extrapolation L1 ? 0 of the opening values from the nodes behind crack tip, as could be expected.

The opening value obtained from remote displacement values, which is equivalent to that found by exper-
imental measurements procedure, is also presented in Fig. 12. The vertical displacements of a node at x = 0,
y � 2 mm were registered and closure was determined using the maximization of the correlation coefficient
[68]. The resulting opening value agrees with the opening results from node 5. Antunes et al. [43] found agree-
ment with node 1 from crack tip in a 2D analysis.
4.6. Effect of stress ratio, R

Fig. 13a presents predictions of crack opening level U obtained by fixing the stress range and increasing the
minimum and maximum stresses, as is schematised in Fig. 13b. Each type of cycle in Fig. 13b corresponds to
one numerical prediction (�) in Fig. 13a. The ratio rmax/rys varies from 0.14 to 0.78 when the stress ratio varies
from �1 to 0.64. The first node behind the crack tip was used to quantify the crack opening level. From this
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diagram it is possible to conclude that the increase in the mean stress produces a clear increase in U. For
R > 0.64 no closure is observed numerically, i.e., U = 1.

Schijve [69], based on the work of Newman [47], proposed the equation
rop

rmax

¼ 0:45þ 0:22Rþ 0:21R2 þ 0:12R3 ð7Þ
to describe the variation of the opening level (ropen/rmax) with R. In the same year, de Koning [70] proposed
the following model for the 7075-T6 aluminium alloy:
rop

rmax

¼
1� 0:25ð1� RÞ3 rmax

rys

� �
ð0:45þ 0:2R� 0:15R2 þ 0:9R3 � 0:4R4Þ R > 0

1� 0:25ð1� RÞ3 rmax

rys

� �
ð0:45þ 0:2RÞ R 6 0:

8><
>: ð8Þ
Newman [71] calculated the crack opening stress for CCT specimens subjected to uniaxial constant ampli-
tude loading and proposed the following equations
rop

rmax

¼ A0 þ A1 � Rþ A2R2 þ A3R3 R P 0

rop

rmax

¼ A0 þ A1 � R � 1 6 R < 0
ð9Þ
where Ais are empirical factors given by
A0 ¼ ð0:825� 0:34aþ 0:05a2Þ cos
p
2

rmax

r0

� �� �1=a

A1 ¼ ð0:415� 0:071aÞ rmax

r0

A2 ¼ 1� A0 � A1 � A3

A3 ¼ 2A0 þ A1 � 1:

ð10Þ
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The equation is a function of stress ratio R, stress level, rmax and three-dimensional constraint factor a. Flow
stress r0 is taken to be the average between the uniaxial yield stress and uniaxial ultimate tensile strength of the
material. Generally plane stress or plane strain conditions are simulated with a = 1 or 3, respectively. A value
a = 1 was assumed considering that a plane stress state is being studied.

The predictions of rmax/ropen obtained according these three models were used to obtain U (Eq. (1)) and the
results are plotted in Fig. 13a. Despite the discrepancies in loading conditions, materials and closure definition,
a strong agreement exists between the empirical models and the numerical predictions. A good agreement can
be found between the predictions based on Eqs. (7) and (8) and the numerical simulation results up to R = 0.

5. Conclusions

This paper is a numerical study of the main parameters affecting plasticity induced crack closure. The main
aspects and conclusions of this study are:

– a numerical model of PICC was developed and implemented using the proprietary DD3IMP code. The
model maintains the main limitations of the literature models, namely discrete crack propagations, a rela-
tively high fatigue crack growth, sharp cracks and crack propagation at a well defined load. However, con-
trary to most literature studies, a mixed hardening model was assumed, consisting of a Voce type law
combined with kinematic hardening described by a saturation law;

– the physical parameters and the numerical parameters were systematically identified. The dependent param-
eters used in the literature to quantify crack closure level and crack tip phenomena were also discussed;

– the numerical parameters were divided into two main groups: those affecting the results of predictions
(parameters of numerical algorithm, radial size of crack tip elements and minimum crack propagation
for stabilization) and those responsible for the intrinsic uncertainty of the numerical modelling of PICC;

– a study was developed to optimize the numerical predictions. The parameter named Toleq, that controls the
global convergence of the Newton–Raphson algorithm, was optimized. The minimum radial size of crack
tip elements, L1, necessary to model adequately reversed plasticity, was studied. The analysis of the stress–
strain curve for a Gauss point close to the crack tip was found to be sufficient to ensure that reversed plastic
deformation is being adequately modelled and to define an upper limit for L1. The convergence of closure
values with crack propagation was studied, and extrapolation models compared. Excellent results were
obtained with the Voce model, usually used to model material behaviour. The study of these three param-
eters is fundamental to ensure feasible results, and must be done for each set of physical parameters;

– despite all efforts to obtain accurate results, closure predictions will always be affected by an intrinsic uncer-
tainty. Main parameters affecting this intrinsic uncertainty are the number of load cycles applied to near
crack tip points (NLC) and the definition of closure. The NLC depends on L1 and on the number of load
cycles between crack propagations. A convergence of the opening values was found with the increase in
NLC, explained by the stabilization of cyclic curves. The definition of closure is probably the main source
of uncertainty;

– the numerical models are ideal for studying the influence of physical parameters. For that, the parameters
affecting the accuracy must be optimized, and the parameters of uncertainty fixed;

– the effect of stress ratio (fixing DK) was studied. A reasonable agreement was found with empirical models
found in literature.
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