523

FISSION OF METALLIC CLUSTERS

CARLOQOS FIOLHAIS
and

ARMANDO VIEIRA

Center for Theoretical Physics, Universily of Covmbra, 9000 Covmbra, Portugal

ABSTRACT

The fission of sodium clusters is discussed using Nuclear Physics methods After
presenting the Liquid Drop Model for spherical jellium clusters, we introduce shell
corrections and compare the obtained energies with seif-consistent quantal resuits.
Fission is studied evaluating Q-values and fission barriers, with the shell correction
method and the Two Center Shell Model. The threshold of stability with respect
1o fission is predicted within the Liquid Drop Model.

1. Introduction

Metallic clusters are many-body systems which show striking similarities with
atomic nuclei: the valence electrons move in a mean-field as nucleons move in the
puclear mean-field. An important difference is that a part of the mean-field is-exter-
nally imposed (by the ions) while the whole nuclear mean-field is self-organized by
the participants.

Metallic clusters were produced by the middle of the eighties. The static mean
field was experimentally identified by a group led by Knight '. At the same time but
independently, Ekardt 2 predicted the existence of independent particle motion for
the valence electrons.

The success in analyzing clusters in the laboratory is due mainly to progresses
achieved in the technology of molecular beams. A typical setup consists of a chamber
where a metallic sample is vaporized with the aid of a laser. The atoms which are
set free may coalesce in clusters, which are transported by a high speed helium beam
through an exit channel. The molecular beam is directed to a mass spectrometer. A
second laser ionizes the clusters so that they are deviated by a magnetic field and
sorted according to its size.

A clear sign for the mean field is the appearance of the magic numbers 8, 20,
40, 58, etc. as peaks in the relative abondances in the mass spectrometer. Another
indication comes from the ionization potential, which also shows peaks for clusters
with 8, 20, 40, 58, etc. valence electrons. The first two of these magic numers are the
same as in atomic nuclei, but the others differ. In fact, the nuclear magic numbers
can be well described by a strong spin-orbit splitting, a relativistic effect which is
negligicible for clusters. Therefore, a simple Woods-Saxon shape of the mean field,
or even a simpler harmonic oscillator for the lightest systems, can explain the correct
shell closures in clusters. We can talk about the ubiquity of the shell model, which
dominates the structure of atoms, metallic clusters, and nuclei, notwithstanding the
fact that there are six orders of magnitude in energy difference between the atomic
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and the nuclesr domains.

We emphasize that the magic effects in metallic particles anise from the confine
ment of the electrons and not from the geometrical arrangements of the 1ons. The
physical properties for sp-metals (the only ones which we consider here) are due to
the wezkly bonded valence electrons and not to the inert cores, which only provide
the space where the valence electrons are delocalized. 1t is difficult to ascertaln ex-
perimentally (and even theoretically, due to the large number of isomers which differ
little in energy) the geometrical disposition of the ions. But it evolves gradually {from
planar shapes, typical of clusters with up to 4 atoms, to close packed structures. The
minimal number of atoms which are necessary to form a piece of material with a
given bulk property seems to depend on the particular material and on the particular
properly.

Clusters are intermediate structures between the atoms and bulk matter in the
same way as nuclei are intermediate structures between one nucleon and nuclear mat-
ter, which exists in neutron stars. One of the main motivations for studying clusters is
precisely the possibility of filling a bridge between the properties of individual atoms
and molecules and normal macroscopic matter. In Nuclear Physics, the increase of
Coulomb repulsion with the atomic number determines a maximal size for the nu-
clides. The heavier nuclei decay by spontaneous fission or alpha emission. In spite of
that repulsion, one has speculated about the existence of big magic numbers which
would give rise to one or more islands of "superheavy nuclei”. Cluster physics offers
the opportunity to look for similar magic numbers,
Coulomb instability is not present.

The theoretical analysis of clusters requires techniques from Solid State Physics as
well as from Quantum Chemistry, being Cluster Physics a field where cross fertiliza-
tion of different methodologies is taking place. Given the analogies between clusters
and nuclei, it is natural that concepts and tools from Nuclear Physics disseminate in
the new research area. We intend to present here some examples.

In the next section, we sketch the theoretical framework for our approach to
clusters, neutral as well as charged. The case is presented for the ” import” of the
Liquid Drop Model (LDM) and the shell correction method from Nuclear Physics and
the possible "export” Lo Nuclear Physics of some information on the curvature energy
of metallic clusters and voids. In section 3, we address the problem of the fission of

metallic clusters, considering Q-values and barrier heights obtained with the aid of
Kohn-Sham theory, LDM, and the shell cor
are drawn at the end.

in large atomic systems, where

rection method. Some general conclusions

2 Theoretical tools: self-consistent equations versus the shell-correction
ihod

§
L

ional methods are very powerful tools in Atomic, Molecular and
er Physics. For big enough systems they are the only accurate meth-
ible.

n an existence theorem due to Hohenberg and Kohn 34 ‘according
to tate energy of a many-electron system is a functional of the local
Efa(r)]. Minimization of this functional with respect to the

¥ exact density and the exact energy if the functional were
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known: 61"[ ]
[cin
T 0. {1)

The energy is separated in kinetic, clectrostatic (Hartree term), exchange and
correlation, and the contribution from a local external potential:

E|n] = Ty|n] + Ecs(n} + Exln} + /ucn nd’r. (2)

The unknown part is the exchange and correlation piece, Exc|n}. for which approxi-
mations like the Local Density Approximation {LDA) are mandatory.

A starting point for modelling the ions, which are the source of the external
potential felt by the valence electrons, is the so-called jellium approximation “6 The
jons are replaced by an uniform distribution of positive charge This approximation
has proved to be useful in the study of bulk and surface properties of simple metals.
In the jellium approximation, the electrons interact with the positive background and
with themselves.

The radius R of the jellium sphere corresponding to a neutral cluster with N
valence electrons goes with the cubic root of N simply due to the neutrality of the
cluster:

R =r,N3, 3)

where 7, is the so-called density parameter, which goes from 1.87 bohr for beryllium
to 5.63 bohr for caesium. This is the radius of the sphere occupied by one valence
electron. It corresponds in Nuclear Physics to the parameter rg = 1.2 fm. The density
of positive charge is given by a step function:

ny(r)=mo8(R-r), (4)
with 7i = (3/4nr3)~! the average density. The jellium functional has an electrostatic

piece which depends on both n and n, (including electron-jellium, electron-electron
and jellium-jellium interactions):

chll = Ts[n] + Ees[n\ n+l + E:nc[n]x (5)
Balinr] = 3 [ ér [ P2y o)

In the jellium model, the energy of a spherical cluster, as a function of N and
rs, can be evaluated solving Eq. (1), called Kohn-Sham equation, within the LDA
approximation. That equation reads as (in atomic units):

(= 592+ verg(D)]pale) = cavalr) (©)

where « denotes a set of quantum numbers. The effective potential is

vess(r) = vi(r) + /dsr' l:(_rr),l + pre(r) (7
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with the external (jellium) potential

N r 2 -
3513 - (5 } <R
v (r) = ml (R> ( ) (8)
- r>R) ,
and pz.(r) the exchange-correlation potential,
() = S [n(F)ese(r)] ©
Kae(r -6n(r)nreur ) )
with éu = —3kp/4m + €.. The quantity e = e(r,) is the correlation energy per

electron of the uniform electron gas and kg = (531)1/3/1', (we use the Perdew-Wang
correlation energy 7).
The total electronic density is

=3 [alr)?. (10)

Once the self-consistent density has been obtained, the total energy is given by
the functional:

E[n] = Zeo - [U [n] + /d3r #xc(r)n(r)] + Ugn4] + /dgr €z(r)n(r), (11)

where

Uln] = /da /d3 '”(f)n(r) (12)

T
is the electronic Coulomb repulsion energy and
3N?
Ugn.| = 5 R (13)

is the background Coulomb repulsion.

Fig. 1 shows the results for the selfconsistent density for N = 42. We also show
the net charge distribution for the double positively ionized system. We see that the
excess charge lies mainly in the surface region. The electronic density profile is similar
to the corresponding nuclear quantity: the density is constant inside (apart from shell
t mém}s) and decreases to zero at the edge. Within our model of metallic clusters,
r electronic density is determined by the jellium density: it is the same for
ers of the same metal, but varies from metal to metal. In contrast, the
is constant for all nuclides, neglecting self-compression effects.

k that, given the parentage between nuclei and clusters, a liquid drop
formul nergy of electronic systems is accurate to describe average trends.
2 set of neutral clusters of the same element with different number of
4 be described by a sum of volume, surface and curvature terms. In
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the case of charged systems, there is in addition an explicit contribution from the
charge.

nfedau i

Figure 1: Jellium and valence electronic density n(r) for Nagg obtained with the LDA Kohn-
Sham method, in the jellium model. The dashed curve represents, in a different scale, the charge
difference between the neutral and the double positively ionized system.

Contrary to some widespread belief, the liquid drop formula is not a phenomeno-
logical expression but can be derived from first principles with the aid of density
functional methods. The energy of a spherical neutral cluster in the so-called lepto-
dermeous expansion & (valid for systems with thin skin) can be written:

bad 4
Eln]| = ELpm = ZC';;RS_" =a §7rR3 +04rR? + vy 2R + .. (14)
k=0

The first term is the volume energy, the second is the surface energy, and the third is
the curvature energy. The surface tension ¢ and the curvature energy v are functionals
of the electronic density of the semi-infinite problem °.

The LDM coefficients obtained within the jellium model for the density of sodium,
rs = 3.93 bohr, are: @ = —8.26 x 1073 eV/bohrs, o = 2.96 x 107% eV /bohr?, and
v = 9.97 x 1072 eV/bohr. The values of ¢ and 7 were evaluated solving the semi-
infinite problem (Lang-Kohn calculation 19),

Let us now consider a spherical jellium cluster with N atoms and net charge Q.

The liquid drop energy of this cluster, up to the order N"%, is the sum of (14) with
two charge contributions 112

c 1 Q2
Eipm = aV +0S +4C W+ =)+ = 15
LDM YO + QW + =) 4 VTR (15)
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where V is the cluster volume, § the surface and C the curvature. The quantity
— (W + lﬁ{) is the chemical potential, with W the work function and ¢ a coefficient
which describes a size effect (for sodium, W = 2.85eV, and ¢ = —2.24 ¢V %), Thelast
term in 2q. (15) is the classical electrostatic energy, obtained under the assumption
that the metal cluster is a perfect conductor and, therefore, the charge lies on the
surface. A small spill-out effect due to the accumulation of excess charge on a radial
centroid outside the jellium edge is included. The distance R 4 d; is the radius of the
charge centroid (for sodium, d, = 1.1 bohr).

From Fig. 2 we see that the LDM gives a good average of the Kohn-Sham energies
of small spherical jellium clusters, neutral as well as charged. In order to ascertain the
relative importance of the curvature energy, the insert shows the liquid drop result
with and without the curvature term. We conclude that the curvature contribution
plays a role only for very small clusters.

Na
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Figure 20 LDM and Strutinsky energies per atom of spherical jellium clusters of sodium, with
= : £ {the number of excess electrons is, respectively, z = 0, —1 and —2), in
CHOTHDET « Hohn-Sham results. In the insert, the LDM energy per atom, with and
. . R -1
without erm, is shown as a {unction of N 73 for the same systems.

he liguid drop formula with self-consistent calculations
wr. The agreement is excellent up to radii smaller than
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a monoatomic void. The picture also shows a Padé approximant which has the right
asymptotic behaviour for vanishing voids and coincides with the liquid drop formula

for large voids 15, A systematic comparison of LDM predictions with experimental
void formation energies shows the role of curvature 'S.
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Figure 3: Void formation energies in the jellium model using the LDA Kohn-Sham method
(crosses), the LDM (dotted line) and the Padé approximant of Ref. 15 (full line).

The von Weizaecker formula for the nuclear binding energy is well-known. With-
out the asymmetry term, it reads as

ELDM(A,Z) =auA+asA% +aCA§ +ac0u1;1—, (16)
3
with the coefficients a, = —15.85 MeV, a, = 18.34 MeV, and aceu = 0.71 MeV,

A being the mass number and Z the atomic number. There are various theoretical
indications that the curvature coefficient is a. ~ 10 MeV. However, the experimental
information on the nuclear binding energies is compatible with zero curvature energy.
This is the so-called "curvature energy puzzle” in Nuclear Physics 7. The success in
Metal Physics of the leptodermous expansion is a strong suggestion that the value
10 MeV is right. However, if the leptodermous expansion does not converge quickly
enough, higher order terms (which could be accounted for by a Padé formula) may
be important and effectively cancel the curvature contribution.

In the Strutinsky shell correction method '¥:9, the energy is given by the sum of
z LDM term and a shell correction term,

E = Erpym + Esc, (17)
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where the last term may be evaluated as indicated in Ref. 29.

In order Lo check the validity of the shell correction method, we compare {17) with
LDA Kohn-Sham calculations of spherical jellium clusters. Fig. 2 displays the very
good agreement of the LDM plus shell corrected energies with the quantal ones. The
shell structure is well reproduced with the simple harmonic oscillator up to N = 42.
A small discrepancy occurs in the region around N = 34 (neutral case), where the
1f sheil is being closed in the Kohn- Sham description, whereas that only happens
for N = 40 in the case of the harmonic oscillator. We show results for the smallest

clusters, keeping the same shell correction parameters, since, remarkably enough, they
still compare rather well with the quantal energies.

3. Two Center Shell Model for the fission of charged jellium clusters

Small multiply charged clusters are not observed experimentally. This is due to
the fact that charged atomic clusters with less than some critical number of atoms
undergo fission, i.e., fragmentation in two or more pieces with smaller charges 2131
The preferred decay channel of charged clusters above the critical size is the evapo-
ration of neutral atoms: the heat of evaporation is lower than the fission barrier. In
order to learn about cluster stability, it is convenient to have estimates as simple as
possible of barrier heights and evaporation energies.

8.1. Quantal and LDM Q-values

An essential limitation on fission arises from the Q-values or heats of reaction,
defined as the difference between final and initial energies. A positive heat of reaction
means that the reaction can take place on pure energetic considerations but does not
assure that the reaction is actually taking place (it is a necessary but not sufficient
condition for fission). We consider both Kohn-Sham and LDM Q-Values assuming
always spherical configurations. Q-values obtained with the shell correction method
agree, in general, with the self-consistent ones.

Figs. 4 (a) and (b) shows the Q-values, obtained with the Kohn-Sham method,
corresponding to all possible decay channels of single and double positively charged
sodium clusters up to N = 30. We only find Kohn-Sham solutions with total negative
energies when N > 2 for single charged clustersand N > 7 for doubly charged clusters.
The role of shell closures is apparent. Magic mother clusters, as for instance Nal;",

re specially stable. On the other hand, final magic daughters, as for instance Nai¥,
e & COomInOn outcome.
The Q-values obtained with the LDM are shown in Figs. 4 (c¢) and (d) . For
charged system, the asymmetric reaction Na,f, — Naj},_,+Na; is always

symz
clusters
indeed ihe L
seen in Fig 4 |
smooth trend. Homey

nel Nait — Na;/2+Na;ﬂ is preferred by doubly charged sodium
28. A symmetric charge distribution of the fragments lowers
swiomb energy for small clusters. This conclusion is not clearly
ce shell effects play a major role for small clusters, hiding any
v, & central valley is visible for N > 20.
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Figure 41 LDA Kohn-Sham Q-values for (a) Naxv and (b) Na;{f for every possible decay
channel. Vertical and horizontal lines mark mothers and daughters with magic numbers of atoms.
In {c} and (d) same as above but within the LDM.
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Fig. 5 displays the Q-values for the most favorable channel obtained by using
both the Kohn- Sham and the LDM approaches. We observe that the most favorable
channel always has one magic fragment. This agrees with the results obtained in
Ref. 22 (see also Ref. 2, which uses the "stabilized jellium model” for aluminium).
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¥Figure 50 L-values for the most favored decay channel for (a) Na;{, and (b) Na,tﬁ. The smooth
fine stands Tz ke LM, while the dots represent quantal results (the numbers above the dots are
1. In {&) the experimental results from Rel. %4 are represented by a thin broken line.

the values of

Fig. 5 {2} sb imental results 2* obtained for single charged sodium clus-
ters against our resull ke agreement of the LDM with experiment is remarkable.
The trends of the exp enial results are also well reproduced by the quantal result,

although fluctuations are exageerated in the latter due the imposed sphericity.
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In Fig. 5 (b) the two lowest local minima occurs when both fragments are magical:
Najf;" —Nad + Naj and Najg" —Naj + Nag. As expected, the LDM curve goes
slightly above the quantal results.

8.2. Deformed LDM and shell corrections

To evaluate the potential energy corresponding Lo the fission of sodium clusters,
using the sheli correction method, we need to generalize the LDM to handle deformed
systems and to consider a shell model which can describe splitted shapes %,

We have calculated potential energies for charged clusters which {ragment in two
pieces, in the framework of the LDM plus shell corrections obtained from the Two

Center Shell Model, a double harmonic well which is popular in Nuclear Physics *%7

Eq. (17) may be extended Lo account for deformed clusters with the same volume
as a spherical cluster:

Eipm = aV +3S +4C + QW + b1 acew@ (18)

¢
cjew’

where the surface S = [dA of the deformed shape and C = %fR“'dA, with R
the local curvature, are evaluated numerically. In the size correction to the chemical
potential C/27 has replaced R, since this gives the right behaviour for one initial and
two final spherical clusters.

The electrostatic energy of a spherical shell is now acow@?, with the coefficient
ecout computed numerically. This is done by minimizing the electrostatic energy
under the constraint that the electric potential is constant on the cluster surface %
The spill-out effect is included by considering a surface charge which is displaced by
d, with respect to the shape with volume V.

As a set of shapes going from one sphere to two spheres, we select the so-called
Blocki's shapes %, which consists basically of two spheres joined by a smooth neck.
This family is described by three parameters: an elongation parameter, & neck pa-
rameter and an asymmetry parameter, defined respectively by:

d L+l Ry~ Ry

P =R +Ry "R +R, "R t+Ry

(19)

where d is the center to center distance, R; and Rj are the radii of the two fragments,
and [; and Iy are the thickness of the lens-shaped piece of the sphere that lies within
the matching quadratic surface.

For the path in the (p, A) plane, we assume, based on molecular dynamics re-
sults %, that initially the system does not develop a neck, getting it very quickly in
the later stages of fission. Within the liquid drop picture, the energy along the fission
line (curve which separates connected from disconnected shapes, given by the equa-
tion A = 1 — 1/p) has a minimum at a saddle point. For obtaining fission barriers,
the precise path is unimportant provided it goes through the saddle point.

We are interested not only in evaluating fission barriers but also in comparing
them with evaporation energies. We consider the symmetric fragmentation of Najy"
and Naf', for which the final configurations are magic.
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Fig. 6 show the potential energy curves for the two reactions along the path
described in Ref. #. In the case of Najg", the system shows a well deformed ground
state and a small barrier at d = 20 bohr, being clearly unstable. In the case of Naj,",
the system shows an initial spherical state and a fission isomer at d = 16 bohr.

The following Table informs about Q-values, heats of evaporation and fission
barriers for the symmetric decays of Na/g" and Naj,":

Table: Q-values and heats of evaporation E,.qe, in the Kohn-Sham method (in brackets the
corresponding values using the Strutinsky method). The fission barrier £y given by the Strutinsky
method is also shown. All values are in eV.

Reaction Q-value | Eepa Ey
Najy — 2Nag | -205 | 2.13
(-2.06) | (2.19) | (0.53)
Nag, — 2Naj, | 0.25 1.28
(-0.45) | (1.10) | (1.62)

The agreement between the Kohn-Sham and the Strutinsky results is good. The
discrepancy for the heat of reaction of Naj;" is due to the failure of the harmonic
shell correction for clusters around N = 40. We note that Naf;" can decay symmet-
ricaly on the basis of the Q-value if we calculate it a la Kohn-Sham, but the double
humped barrier represents a serious hindering of fission. For this system, evaporation
is preferred to fission, since E.yo < Ey.

Finally, we present a LDM estimate of the cluster size, N, for which Eey, = Ep in
the case of doubly charged sodium clusters. We do not make any restrictions on the
size of the fission fragments, but for simplicity neglect the curvature term contribution
to the barrier. In Fig. 7 we plot the fission barrier height for the most favored channel

-
2
e T T e
0
~ 2
>
A
w
4
5 — &
~~~~~ ENI
0 20 0 40

N

Figure 7: Lowest barrier height in comparison with the evaporation energy, both within the
LDM.
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together with the evaporation energy (by "most favored” we mean here the channel
with the lowest barrier and not that with the lowest Q-value). The fission barrier
increases with N, while the evaporation energy is practically constant. The two curves
intersect at N. = 29, in good agreement with the experimental number 27 *'. But
shell corrections should have an eflect on N, which remains to be investigated.

4. Conclusions

Nuclear Physics techniques and concepts are being applied to a new and exciting
field of Physics. In contrast with Nuclear Physics, in Cluster Physics the exact force
is known and systems with any size and charge can be considered.

Notwithstanding the differences in the structure and energy scale, the fission of
metallic clusters display similarities with the fission of atomic nuclei. In both cases,
fission is determined by the competition between the surface and Coulomb terms.
However, the Coulomb term in atomic clusters arises from the surface charge, while
in nuclei it is due to the volume charge. Fission occurs for small multiply charged
clusters, whose surface tension is unable to sustain the surface Coulomb repulsion.

Shell effects play a major role in shaping fission barriers, changing drastically the
liquid drop scenario. We have presented a method to evaluate potential energies of
fragmentation processes which is simple but incorporates shell effects with an accuracy
which is good enough for many practical purposes.
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