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The stabilized jellium model is used to explore the physics of self-
compression for spherical clusters of simple-metal atoms. Within the
continuum or liquid drop model, strong compression of the interior
ionic density of a small cluster (with respect to the bulk density) results
from cooperation between surface tension and surface suppression of
the elastic stiffness. The latter effect is due to the large negative value
of o”, the second derivative of surface tension with respect to uniform
strain. Self-compression also renormalizes the effective curvature-
energy coefficient, and contributes to the asymptotic (large-radius) size
effect on the ionization energy. A quantum-mechanical calculation of
interior density as a function of electron number displays small shell-
structure oscillations around the average behavior predicted by the
liquid drop model. Numerical results are presented for clusters of Al,
Na, and Cs. For compact 6-atom clusters of these metals, predicted
bond lengths are smaller than their bulk values by 10%, 6%, and 4%,

respectively.

1. INTRODUCTION

SURFACE TENSION can compress a finite system
such as a classical liquid drop, a metallic cluster [1],
or an atomic nucleus [2]. If the interior density is
initially at its bulk value, the radius will contract and
the interior density will grow until any further
decrease of the surface contribution to the energy is
balanced by an increase of the volume contribution.
The percentage change in the interior density,
although negligible for a macroscopic cluster,
can be significant for one composed of just a few
atoms.

In this work, we explore the physics of self-
compression for spherical clusters of simple metals.
To get a lucid picture, we use the continuum or liquid
drop model [2, 3] (Section 2). We find that it is not
just the volume, surface, and curvature energy
coefficients which are needed, but also their deriva-
tives with respect to uniform strain. More interest-
ingly, we find that the strong self-compression of
small clusters results from cooperation between
surface tension and surface suppression of the elastic
stiffness. With the help of quantal calculations
(Section 3), we also study how shell-structure effects

(neglected in the liquid drop model) influence self-
compression.

Unlike the atoms in a classical liquid or the
nucleons in a nucleus, the valence electrons in a
metallic cluster are not self-bound; they are held
together by the external potential of the positive ions.
In the simple jellium model, the ions are replaced by a
uniform positive background of density

= 3/41rr3,

(1)
truncated sharply at a radius

R=r,N'"3, ()

where N is the number of valence electrons present in
the neutral cluster. Due to the long-range electro-
static force between the positive background and the
electrons, the electron density in the interior of the
cluster tends to agree with the background density.
At the surface, the electron density spills out and
gradually decays to zero.

But bulk (N — o0) jellium is stable only at
r, = 4.19bohr. (We use atomic units in which
e’ =t =m = 1.) For the study of self-compression,
the jellium model is inadequate even for Na
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(rf =3.99), where it underestimates the bulk
modulus by a factor of 3. It is useless for
metals of much higher (e.g., Al, rf=207) or
lower (e.g., Cs, r? = 5.63) bulk valence electron
density, where it fails by predicting negative
surface energies or negative bulk moduli, respect-
ively. For our study, we invoke the recently-
proposed “‘stabilized jellium” model [4]: Start
with the energy functional of jellium, then
subtract the spurious electrostatic self-interaction
of the positive background in each “ion” of
radius z'/3r, (where z = valence), and add a con-
stant potential which acts on the valence
electrons only inside the radius R. This
constant potential (which equals zero at rZ =
4.19) represents the average difference between
the external potential of an array of local
electron-ion pseudopotentials and that of the jellium
background, and can be expressed in terms of a
“pseudopotential core radius” r. adjusted to achieve
bulk stability at the observed valence electron
density:

. 8 (E(N,rsz,r.)
lim — ( N >

Jim o =0,

ry=rp

(3)

Here E is the total energy of the stabilized
jellium cluster. The derivative is taken at fixed
z, r,, and N. This “stablized jellium” model yields
realistic estimates of the surface energy for all
simple metals, and of the bulk modulus or
inverse compressibility for the alkali metals,
while overestimating the bulk modulus of Al
by a factor of two. (The “ideal metal” [5], which
has the same surface properties as stabilized
jellium, predicts negative bulk moduli) Our
mode! is completely specified by the bulk
density parameter r® and the valence z, which
characterize each simple metal and fix r..

The equilibrium density parameter r; for a cluster
with a finite number N of valence electrons is the
solution of

0 (E(N,rgz,r) —0
Or N - o

where again the derivative is taken at fixed z,
r., and N. We find, as expected, r; < rsB, i.e., the
ionic density is higher in the cluster than in bulk.
For the simple metals Al, Na, and Cs, which
cover the normal range of valence electron den-
sities, we shall find r; and related properties

as functions of N. Of particular interest is the

(4)
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elastic stiffness or inverse compressibility of the
finite system,

B(N,ry,z,r.)

3

18 (E(Nrzr)
T 127t Or? N

rI :r.:

(5)
which tends to the bulk modulus B® as N — cc.

In a real metallic cluster, self-compression occurs
via a shortening of inter-atomic distances (Section 3).
Thus, the physically meaningful cases are
N =234, ... for the monovalent metals Na and
Cs, and N = 6,9, 12, ... for the trivalent metal AL

2. LIQUID DROP MODEL FOR SELF-
COMPRESSION

The energy E(N, ry, z,r.) for a spherical cluster of
stabilized jellium may be evaluated by a quantal
density functional method (Section 3). But, for
simplicity, we begin with the continuum description
of the energy provided by the liquid drop model,
which has found important applications not only to
nuclei [2] but also to metals [3]:

E(N,rg z,1.) = a(rgz,r)V
+o(rs,z,r)S + (s, 2,1)C
= a,(ry, 2,1 )N + ay(ry. 2,1 )N

+a(r,z,r )N, (6)
where V =4nR*/3 is the volume, S =4rR? is the
surface area, and C = 27 R is half the surface integral
of the curvature. Here a,0, and v are material-
dependent volume, surface, and curvature energy
parameters (e.g., o is the surface tension), while
a, = (47r/3)r§a, a; = 4nrle, and a. = 2mryy. (The
dependence upon rg, z, and r, is henceforth impli-
cit.) For stabilized jellium, a, is the average energy
per electron for a bulk system of uniform density. o
and ~ are evaluated within the local density
approximation for exchange and correlation from
Kohn—-Sham [7] solutions for the semi-infinite (planar
surface) problem [8]. Although equation (6) is an
asymptotic expansion, strictly valid for N — oo, it
provides a useful average of the shell-structure
oscillations of the quantal result, and is accurate
even for N =1 ( a monovalent atom of stabilized
jellium [9, 10].

By equation (4), we must vary r; to minimize
E(N,ry,z,r,) at fixed r,, z, and N. The physical
minimum should be fairly close to r8: we neglect a
possible global minimum of equation (6) at r, =0,
which falls outside the domain of validity of the
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liquid drop model. The numerically-determined
minimum of E(N,r,, z,r.) is reasonably close to that
of its Taylor expansion to third order in (r, — r2):

E(N,rs,z,r) = E(N,rf 2, r )+ (ry— rZYE' (N2 2,1)
(r.t - rsB)zE”(N) r.rB, Z, rc)

(re =1V E" (N1l 2,m0),

+

Pm— I

+ ()

o

with
EI(N* r.?B* z,r) = aE/arslr;:rx”,

etc. The first derivative of the liquid drop model
energy 1s

E'=a,N+a;N* + a N'7, (8)

and similar expressions hold for higher derivatives.
From the condition (3) of bulk stability, the first term
of equation (8) must vanish:

a:] = Bav/ary}”:rx,, = (). (9)

The other needed derivatives of the liquid drop
coefficients have been evaluated numerically by the
method of [8] and are reported in Table 1.

For the cubic problem of equation (7), the
equilibrium condition of equation (4) is

E'+(r; ~rHYE" + 50t —rBYE" = 0, (10)
or
" 2
. 5 _.E + (El/) _2E/El//

[

1
EIII ( )

When r; is very close to rSB, the expansion (7) may be
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truncated at quadratic order, so that equation (11)
simplifies to

_ —a,N** —alN'
CalN+alNY 4 al NP

(12)

In the asymptotic limit N — oo, equation (12)
becomes

Tl - N, (13)
where
I
a
8= 15y (1)
In Figs 1-3, we compare the numerically-

determined equilibrium density parameters ri(N)
with the analytic solutions (11), (12), and (13) of
the cubic, quadratic, and asymptotic problems. For
N > 2, the solution of the cubic problem is usually an
adequate representation of r}, which is overestimated
by the asymptotic solution and underestimated by the
solution of the quadratic problem. For Al, however,
we found no minimum of equation (6) for N < 4; this
is a failure of the liquid drop model, since stabilized
jellium finds a minimum for N <4 in the quantal
calculation of Section 3.

The elastic stiffness of the cluster, defined by
equation (5), may also be evaluated numerically. In
the cubic expansion of equation (7), it becomes

1

BNt zre) = ooy
s

(E" + (rs = r2)E").

(15)

Table 1. Parameters of the liquid drop model of equation (6) for stabilized jellium, and their derivatives with

respect to 1 at fixed z and 1. (Atomic units)

Al (rF =207,2=13)

Na(r® =3.99,z=1)

Cs(rf=5632z=1)

a, -0.7019
a 0.0321
a. 0.0239
al 0.1540
A -0.0165
o 0.4181
agn —0.5278
agn —-0.0189
ayr —-1.3509
g 1.7514
agn 0.1515
Je) 0.1779
A —0.1055
a. —0.0045
Ac —0.0296

—-0.2301 —0.1705
0.0219 0.0153
0.0088 0.0047
0.0143 0.0059

—-0.0058 —-0.0029
0.0369 0.0143

-0.0317 —0.0109
0.0030 0.0013

—-0.0621 -0.0172
0.0575 0.0153

-0.0000 —-0.0005
0.0971 0.0734
0.1108 0.1913
0.0060 0.0035
0.0027 0.0019
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Fig. 1. Equilibrium density parameter r for an N-electron neutral cluster of stabilized jellium representing
Al (r8 =207,z = 3), within the liquid drop model. Dashed curve: Asymptotic solution (13). Dash-
dotted curve: Solution (12) of the quadratic problem, which drops the (r; — rB)3 term of equation (7). Solid
curve: Solution (11) of the cubic problem, which retains the (r, — r8)? term of equation (7). Crosses: Exact
(numerical) solution within the liquid drop model of equation (6).
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Fig. 2. Same as Fig. 1, for Na (r2 =3.99,z = 1). Heavy dots: Quantal results (beyond the liquid drop model).
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CESIUM

Fig. 3. Same as Fig. 1, for Cs (/% = 5.63,z = 1).

In the asymptotic limit N — oo, we find

is the bulk modulus, and

* Y ~ RBI -1/3 —1 / ni B
B(N,rt,z,r.) ~ BE[1 = AN "', (16) A:T[a;,Jrgg_(l _au:x)} (18)
aU rS av
where R
Figure 4 shows B(N,r;,z,r.)/B” for Na, in different
BB = 4" /(1271 B) (17) approximations. Note that surface effects make
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Fig. 4. Ratio of the elastic stiffness to its bulk value, for an N-electron neutral cluster of stabilized jellium

representing Na. See captions of Figs 1 and 2.
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B(N,r',z,r.) less than B%, ic., they suppress the
elastic stiffness and so cooperate with the surface
tension to produce a strong self-compression.

Equation (15) displays two competing effects on
the eclastic stiffness B(N,r{,z,r.). Self-compression
(rr < rf) tends to increase B, but this effect is
overwhelmed by the surface contribution (a; < 0)
to E”, which decreases B. We find ai < 0 because
¢” < 0, as Brack, Guet, and Hakansson [2] found for
nuclei. If we had ignored the r; dependence of o and v
(ie., a =8no= 2a5/(rsB)2, etc.), we would have
found B(N,r;, 1) > B2, and correspondingly weaker
self compressions.

Self-bound systems like nuclei or classical liquid
drops have [11] ¢’ = 0, where the derivative is taken
with respect to the interior particle density parameter
r,. But stabilized jellium has o # 0, since this
derivative is taken with respect to the interior
background density parameter, and the positive
background profile at the surface is not allowed to
relax. (The stabilized jellium model is valid [4] only
for a background density that is constant inside a
sharp surface, and zero outside.)

Also of interest is the liquid drop expansion for
the energy of the relaxed (i.e., self-compressed)
cluster. After inserting equation (13) into equation
(7) and expanding to order N'2, we find

E(N,r},z,r) = a,N + a,N** + a.N'", (19)
where

. 1 a/ 2

ac = d; - E(as//) (20)

is a renormalized curvature coefficient. A similar
renormalization of a, occurs in nuclei {2]. Table 1
compares a, and 4.. We note that these quantities
have opposite signs for Al. Of course, the relaxation
energy (d, — aC)Nl/3 is negative.

Finally, we consider the effect of self-compression
on the asymptotic chemical potential and ionization
energy of a cluster. The chemical potential at the
equilibrium density is

/J'(Ni";»z:rc) :,U'(ersB’z:rc)

. a
+ (ry - er)_a";;/lv(N, o 2o e) |y mpp +
(1)
In the limit N — oo, [12]
~;L(N,rsB7z,rc)z W"}'C/R, (22)

where the work function W and size-effect coefficient
¢ depend upon rZ, and ¢ = —0.08 (independent of rf)
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for jellium [13]. Thus

—u(N,ri, z,r) = W+ (¢ + Ac)/R, (23)
where self-compression contributes

——a'.r\fq
Ac=—2 W', (24)

v

The first ionization energy of a large cluster is [12]
~u(N,ry,z,r.)+1/2R. Table 1 shows that Ac is
negligible for Na and Cs, but noticeable for Al

3. QUANTAL EFFECTS, AND CONCLUSIONS

Beyond the liquid drop model of Secction 2, we
have performed Kohn-Sham [7] calculations for
spherical clusters of stabilized jellium, within the
local spin density approximation, and have found the
ry which yields the minimum quantal energy at fixed z
and r. for each N. Details of the calculation may be
found in [8]. Figure 2 presents the results of this
calculation for Na clusters. We see that the liquid
drop model provides an excellent average over the
shell-structure oscillations. The closed-shell cluster
N = 8 shows a greater self-compression than clusters
with neighboring values of N.

Figure 4 shows the quantal result for the elastic
stiffness of equation (5). It is larger than the liquid
drop result, and maximizes at the magic numbers
N =2 and 8. ;

The case N = z = | represents a monovalent atom
of stabilized jellium. Besides the local energy
minimum at finite r;, its quantal energy shows a
global minimum when r; — 0. Because the self-
interaction of the positive background has been
eliminated, the background can collapse to a point
nucleus, forming a hydrogen atom. Thus, although
our model for the bulk metal is stable against
homogeneous deformations, it is not stable against
inhomogeneous ones which localize the positive
charge on a point lattice.

A more realistic description of metallic clusters at
the atomistic level can be achieved with electron-ion
pseudopotentials. Martins, Car, and Buttet [1, 14]
have performed pioneering calculations for small Na
clusters, finding the geometry that minimizes the
energy for each N. Their results [14] for the average
distance between nearest-neighbor atoms seem to
display the self-compression we have found in the
stabilized jellium model. For N < 35, their Na clusters
are planar, in contrast to our spherical stabilized
jellium clusters. However, their N = 13 cluster has a
compact shape which invites comparison with our
model: They find an average nearest-neighbor
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distance which is 95% of its bulk value [15], and we
find an rf which is 96% of its bulk valence.

In summary, we have studied the self-compression
of metallic clusters within the stabilized jellium model
[4], the simplest picturc which might describe this
effect over the whole range of bulk densities. Both
liquid drop model [1-3, 16] and quantal calculations
have been reported.

We find substantial self-compressions of small
clusters. Within the liquid drop model, the size of the
effect is enhanced by cooperation between surface
tension, which drives the compression, and surface
suppression of the elastic stiffness. The latter effect is
surprising, since shorter bond lengths imply stiffer
bonds; it is a consequence of the strong r,- or strain-
dependence of the surface and curvature energy
coefficients o and . From another viewpoint, it is a
consequence of the fact that some of the bonds at the
surface are missing. Self-compression reduces the
effective curvature-energy coefficient, and influences
the R™' contribution to the ionization energy for a
cluster of large radius R.
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In Fig. 4, numerical error in the evaluation of the second derivative produced quantal or
Kohn-Sham values for the elastic stiffness of Na clusters that were systematically too
high. The corrected values, which now oscillate around the liquid-drop-model trend line,
are shown in Fig. 4 of M. Brajczewska, C. Fiolhais, A. Vieira, and J.P. Perdew, in Many-
Body Physics, edited by C. Fiolhais, M. Fiolhais, C. Sousa, and J.N. Urbano (World
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