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Data Envelopment Analysis (DEA) is an approach based on linear programming to assess the relative efficiency of peer 

Decision Making Units (DMUs). Typically, each DMU is free to choose the weights of the factors used in its evaluation. 

However, the evaluator’s preferences may not warrant so much freedom. Several approaches have been proposed to allow 

the incorporation of managerial preferences in DEA, but few address the Additive DEA model specifically. This paper 

presents additive DEA models that use Multi-Criteria Decision Analysis concepts to incorporate managerial preferences, and 

presents the corresponding preference elicitation protocols. The models developed allow the incorporation of preferences at 

different levels: on valuing performance improvements, on introducing weight restrictions, and on finding adequate targets. 

These were application-driven developments, resulting from discussing modelling options and preliminary results with the 

top-level management of a retail chain in the context of an assessment of stores’ performance, also described in this paper. 
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Introduction 

Data Envelopment Analysis (DEA) was devised to consider multiple inputs and outputs in the assessment of the 

relative performance of Decision Making Units (DMUs) within a network. The pioneering CCR model of Charnes et al 

(1978) assumed constant returns to scale. Later, the BCC model (Banker et al 1984) considered variable returns to 

scale. Each DMU is allowed to choose the weight of each evaluation factor in order to maximize its relative efficiency 

score. The CCR and BCC models are based on Farrell’s radial measure of efficiency, which may indicate a DMU is 

efficient when in fact it is not truly efficient in Koopman’s sense (Färe and Lovell, 1978), thus requiring an analysis of 

the slacks. The Additive DEA model (Charnes et al, 1985) directly identifies Koopmans efficiency by focusing solely 

on reducing the slacks. The Russell measure (Färe and Lovell, 1978) is another approach to DEA that directly 

identifies Koopmans efficiency by allowing a non-radial contraction of inputs. 

Models such as the Additive DEA model and the Russell measure implicitly assume all factors have equal weight 

in the production process. The Weighted Additive model (Ali et al, 1995) and the Weighted Russell measure 

(Ruggiero and Bretschneider, 1998) allow this assumption to be dropped. In the latter case, the use of regression 

techniques has been proposed (Ruggiero and Bretschneider, 1998; Ruggiero, 2000) to derive the weights that best fit 
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a production process. If price information exists it can be used to measure allocative efficiency (e.g., see Färe et al, 

1994, Ch. 7), thus no longer emphasising only technical efficiency.   

When focusing on technical efficiency, the client requesting the study may want his or her judgment to influence 

the allowed trade-offs among inputs and among outputs. Thanassoulis et al (2004) set out some of the reasons to 

constrain the weights allowed for the factors, among them are: to prevent disregarding a factor, to capture prior views 

on the marginal rates of substitution and/or transformation of the factors of production, to improve discrimination 

among efficient DMUs, and to ensure that widely differing weights are not assigned to the same factor. Although 

complete flexibility in specifying trade-offs can be seen as useful to identify inefficiencies (Thanassoulis et al, 2004), it 

might lead to a valuation of inputs and outputs that is inconsistent with the preferences of the client, hindering the 

acceptability of the results. We should note that the client’s subjective value system, subject to the contingencies of 

the situation (e.g., the need to meet goals), not only may constrain the allowed factor weights but may well intervene 

earlier in the choice of the set of factors. 

Several approaches have been proposed to incorporate the judgment of a client in DEA, especially in CCR and 

BCC models (see Thanassoulis et al (2004) for a review). The most usual approaches are to impose relative weight 

constraints to define “Assurance Regions”, or to incorporate preferences indirectly through changes to the data, 

whether by transforming the original data vectors (e.g., cone ratio approach), or by including fictitious Unobserved 

DMUs. Approaches not involving direct inclusion of weight constraints or unobserved DMUs are, for instance, those 

proposed by Halme et al (1999), Podinovski (2004), and Cooper et al (2000). 

The field of Multi-Criteria Decision Analysis (MCDA) has developed many concepts and protocols to elicit and 

use the preferences of a client. Bridges between DEA and MCDA have been built by various authors, e.g. Joro et al 

(1998) and Halme et al (1999), relating DEA to multi-objective programming, by Bouyssou (1999) and Stewart (1996), 

relating DEA to MCDA ranking problems, and by Athanassopoulos and Podinovski (1997), relating linear 

programming formulations used in DEA to those used in MCDA with partial information on weights. 

In this paper we build on the bridge between DEA and MCDA built by Gouveia et al (2008), which proposed 

incorporating preferences in the Additive DEA model using concepts from multi-attribute utility/value theory with 

partial information (e.g. Dias and Clímaco, 2000). Gouveia et al suggested converting DEA inputs and outputs into 

value functions (possibly nonlinear), which are aggregated using the additive MCDA model. The weights are variables 

to be set by each DMU in order to become the best DMU (if possible) or else to minimize the difference in value to the 

best DMU. Gouveia et al’s paper presented these seminal ideas and illustrated them with an example. As the 

example used linear value functions there was no need to address the important practical concern of how to elicit 

value functions in this context. Furthermore, although Gouveia et al anticipated that restrictions on the weights could 

be included in their model, they did not formalize the idea. 

We felt the need to develop their methodology in the context of a real-world application, and this raised three 

important questions. First, how can we elicit a new type of value function that differs in meaning from what is usually 
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found in MCDA? Second, how can the idea of weight constraints be formalized and how can we elicit such weights? 

Third, how can we deal with the fact that many alternative optima exist when looking for efficiency targets, many of 

which do not make sense for the client?  

In this paper we present methodological contributions (elicitation protocols, a new formulation with constraints on 

the weights, and a new formulation for adding constraints to the efficient performance targets) that answer these 

questions and present the application that motivated them. The application consisted of a small-scale assessment of 

19 stores from a retail chain in Portugal, in interaction with the chain’s top-level management. An initial model was 

successively reformulated to reflect management feedback on the results that were being presented. The client 

organization had previously used output/input ratios to measure productivity. This type of performance assessment 

has been criticized for yielding only partial productivity measures (not amenable to meaningful aggregation) and for 

being inadequate to deal with issues such as the age and location of the stores, or the presence of economies of 

scale (Lusch and Moon, 1984; Kamakura et al, 1996). DEA is able to address these concerns, but if we consider 

specifically the evaluation of units within a chain of retail stores DEA applications are still scarce (as examples see 

Thomas et al (1998), Keh and Chu (2003), Barros and Alves (2003), and Camanho et al (2009)). 

Despite the application-driven character of the methodological developments, our presentation separates 

methodology from application. After briefly revisiting Gouveia et al’s proposals we present the developed models, and 

then we present the application that motivated these developments, which at the same time illustrates the proposed 

models. A concluding section includes some final remarks and suggestions for future work. 

Incorporation of preferences in Additive DEA: the idea of Value-based DEA 

Charnes et al (1985) proposed the Additive DEA model as an alternative to the BCC model, which also considers 

variable returns to scale. Instead of providing a radial measure of efficiency to be complemented with information 

about slacks, the Additive model works only with slacks, not requiring a choice between inputs-orientation and 

outputs-orientation. Ali et al (1995) subsequently proposed an Additive model with weights.  

Let n denote the number of DMUs, let m denote the number of inputs, let s denote the number of outputs (hence 

q=m+s denotes the number of factors), and let subscript o denote the index of the DMU under evaluation. The linear 

program to be solved for each DMUo according to their model is: 
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In (1), xij denotes the amount of input i used by DMU j, yrj denotes the amount of output r produced by DMU j and 

(w1,...,wq) is a vector of weights provided beforehand that is fixed for all DMUs. Variables 1,..., n define a convex 
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combination of the n DMUs such that in the optimal solution only efficient DMUs will have j>0. The convex 

combination corresponds to a projection on the efficient frontier that is better than DMUo by a difference sk (slack) in 

each factor k. Slacks s1,…,sm represent reductions in inputs, whereas slacks sm+1,…,sq represent increases in outputs. 

This projection is the most distant point from DMUo according to the weighted L1 metric. For instance, in Figure 1 (a 

case with only two outputs) the inefficient DMU F is enveloped by the efficient frontier ABCDE. If w=(1,0), then F is 

projected into F(1,0); if w=(0,1) then F is projected into F(0,1). 

Gouveia et al (2008) proposed a value-based methodology to incorporate preferences in Additive DEA, which we 

will designate as V-DEA, or Value-based DEA. After defining the set of DMUs and the set of inputs and outputs to be 

used in the evaluation, V-DEA stipulates that outputs and inputs should be converted into value functions to be 

maximized. Given q factors (inputs and outputs), q value functions must be defined such that the worst level has 

value 0 and the best level has value 1. Hence, after being converted into value all factors are treated as outputs. For 

each DMU, the value obtained in the multiple factors (which is independent of the original units of measurement) can 

then be aggregated according to the well-known additive model of MCDA. The aggregation consists of a weighted 

sum of the values v1j,…,vqj obtained in the multiple factors where the weights w1,...,wq represent scaling constants 

reflecting value trade-offs for the client: 
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The V-DEA approach first finds the weights to be used in (2) that most benefit the DMU being analyzed (therefore 

evaluating it in the best possible light), yielding an efficiency score that can be meaningfully communicated to the 

client; in a second phase it finds an efficient target in case the DMU is inefficient. The details of this process are as 

follows: 

Preparatory Phase: Construction of the q value functions. 

Phase 1: For each DMUo (o=1,...,n) a linear program finds the vector of weights (w1,...,wq) that minimizes the loss 

of value to the best DMU when the same vector is used to evaluate all DMUs: 

 

),...,1(0

1

),...,1(..

min

1

11

,

qkw

w

njdvwvwts

d

k

q

k k

q

k kok
q

k kjk

wd













  (3) 

By convention, the weights’ sum is equal to 1. The score d* represents the worst case loss of value or the maximum 

“regret”, a well-known criterion used in decisions with partial information (e.g. Dias and Clímaco, 2000). If d*=0 in the 

optimal solution of (3), then DMUo is considered to be efficient (although it may be not strictly efficient if some weights 

are null); otherwise, it is surely inefficient. For the example in Figure 1, the optimal weights for DMU F would be 

w*=(4/11, 7/11), with d*=0.4, for which the DMUs B and C would be the best ones ex aequo. 
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Phase 2: For each inefficient DMUo, a linear program finds a point in the efficient frontier (the projected efficiency 

target), considering the optimal vector of weights found for the respective DMU in Phase 1.  
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This linear program corresponds to an oriented Additive DEA model (Ali et al 1995) with outputs only. The variables 

1,..., n define a convex combination of the n DMUs. The set of efficient DMUs (possibly only one) defining the 

convex combination with j>0 are called the “peers” of the DMUo. The convex combination corresponds to a point on 

the efficient frontier that is better than DMUo by a difference of value of sk (slack) in each factor k. For the example in 

Figure 1, the peers of DMU F would be B or C, or both (the linear program allows alternative optimal solutions). The 

optimal values of (3) and (4) coincide: d*=z*. 

 V-DEA addresses three shortcomings of Additive DEA: the targets’ dependence on the units of 

measurement, the pessimistic nature of the projections, and the lack of an intuitive interpretation for the efficiency 

score. But it should be noted that MCDA has its own limitations: in particular, it requires the assumption of 

independence among the involved attributes (for details see, e.g., Keeney and Raiffa, 1976), and the questioning 

procedures underlying the elicitation of value functions and weights require judgments that may be difficult to elicit 

from decision makers and are subject to biases (e.g., see Pöyhönen and Hämäläinen, 2001). 

New developments: protocols and extensions for V-DEA 

In the context of a real-world application, we came across three questions that Gouveia et al (2008) had not 

addressed: how the value functions should be interpreted and elicited, how weight constraints could be formalized 

and elicited, and how the fact that many alternative optima exist for linear program (4) should be dealt with. This 

section addresses these questions.  

Elicitation of value functions 

V-DEA enables the nonlinear conversions of inputs and outputs to a value scale be taken into account, which deals 

with concerns such as those recently addressed by Cook and Zhu (2009). In V-DEA the purpose of this conversion is 

to reflect the subjective value assessments of a decision maker (DM). The usual devices of decision analysis can be 

used (e.g. von Winterfeldt and Edwards 1986; Goodwin and Wright 1998), but the questions must be framed for this 

particular context. We intend to elicit the difference in the DMU’s merit that corresponds to decreases in inputs or 

increases in outputs, rather than the value of having these inputs available or outputs produced.  

Consider for instance a “Units produced” output. It could happen that after a certain level that corresponds to its 

natural market these units would need to be sold at a discount (Cook and Zhu 2009). Hence, a DM might consider 

that if a DMU operating much below that level would see its merit increase v by producing y more units, another 
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unit operating above that level would need to increase its production by an amount greater than y to obtain the 

same increase in merit v, leading to a concave function typical of MCDA. If a similar output was expressed in terms 

of “Sales amount” (in currency) then the same DM might consider an increase y would be equally meritorious, 

regardless of the starting level, leading to a linear function. If the output of concern was “market share”, a DM might 

consider that above a certain level it is much harder to improve market share (hence more meritorious) than if the 

starting level is very low, leading to a convex function. A convex function might also be appropriate for an input like 

“number of employees” (if another input was the salary costs). A DM might consider a decrease x in the input is 

more meritorious if a DMU is understaffed than if it is overstaffed. Hence, the value of an understaffed DMU might 

increase z by decreasing x employees, but an overstaffed DMU would need to decrease more to obtain the same 

value increase. By defining convex functions the DM is encouraging larger cuts in inputs that might be abnormally 

high and larger increases in outputs that are abnormally low (as small variations yield small increases in merit). 

Let vk(.) denote a value function to be constructed. If the k-th factor is an input and xki, xkj, xkm, and xkn refer to four 

consumption levels, then: 

 vk(xki) > vk(xkj) if and only if using xki units of input k to produce some output reveals more merit (of the 

DMU) than using xkj units (normally in this case xki would be less than xkj); 

 vk(xki) - vk(xkj) > vk(xkm) - vk(xkn)  if and only if there is more merit in reducing consumption from xkj to xki 

units of input k than in reducing consumption from xkn to xkm units, all other things being equal. 

By analogy, if the k-th factor is an output and yki, ykj, ykm, and ykn are four production levels, then: 

 vk(yki) > vk(ykj) if and only if producing yki units of output k using some input reveals more merit (of the 

DMU) than producing ykj units (normally in this case yki would be greater than ykj); 

 vk(yki) - vk(ykj) > vk(ykm) - vk(ykn)  if and only if there is more merit in increasing production from ykj to yki units 

of output k than in increasing production from ykn to ykm units, all other things being equal. 

The elicitation protocol can be based on comparing the merit of increasing an output (or decreasing an input) from w 

to z versus increasing the same output (or decreasing the same input) from w’ to z’, all other things being equal, and 

asking the DM to adjust one of these four figures such that the increase of merit would be approximately equal. We 

will make no assumption about this function except continuity: for instance, it might be partly concave and partly 

convex (our study shows an example), or it might not even be monotonous (highest value on an ideal level). 

Incorporation and elicitation of weight constraints 

Weights have a precise meaning in V-DEA: they are scaling coefficients of the value functions that permit marginal 

value to be converted into global value, enabling possible trade-offs of value between different factors. Directly asking 

for the weights values should be avoided as the magnitude of the scaling coefficients does not represent the intuitive 

notion of importance. Rather, they are strongly dependent on the performances chosen to represent the levels 0 and 
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1 on the value scale. MCDA protocols such as the swings technique (von Winterdeldt and Edwards, 1986; Goodwin 

and Wright, 1998) are therefore preferable.  

Let W denote a q-dimensional polyhedron defining the weight vectors the DM finds acceptable, defined by the 

constraints 1
1

 

q

k kw , 0kw  (k=1,…,q), plus additional constraints. Additional constraints can include rank 

order constraints (e.g.  w1  w2), trade-off bounds (e.g. w1 / w2  1.5), etc., see Salo and Hämäläinen (2001). In our 

study the DM felt comfortable indicating a rank order of the weights, plus a limit to the ratio between the weights 

ranked first and last to avoid null weights. The purpose of this elicitation is only to exclude weights considered 

unacceptable, while still granting the DMUs freedom to choose their weights. After defining W, the formulation (3) for 

Phase 1 has to be slightly adapted to constrain the weights to this set: 

 

Www

njdvwvwts

d

q

q

k kok
q

k kjk

wd



 

),...,(

),...,1(..

min

1

11

,

 (5) 

Thus, let d* denote the optimal loss of value of DMUo relative to the best DMU, obtained for DMUo’s optimal weights 

(w1
*,...,wq

*). We also have to change the formulation (4) for Phase 2; slacks must now be allowed to be negative (see 

example in Appendix), otherwise it might not be possible to keep the optimal loss of value d*:  
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Model with restrictions on weights and targets 

Let v* denote the value of the best DMU using the optimal weights found using (5), i.e., the value that DMUo ought to 

achieve, which is such that: 
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The formulation (6) typically admits alternative optimal targets, each of which corresponds to a different way of 

closing the value gap d*. These targets correspond to different projections on the efficient frontier. As we learned from 

our study, the DM may wish to constrain the efficiency targets that are proposed to achieve v*, particularly to avoid 

those targets that imply an increase of inputs or a decrease of outputs. One idea is simply to impose that value 

cannot decrease in any factor: targets are forced to maintain or improve performance of all factors. 

Let    2 Phase in  0|,...,1 *  ksqkS  denote the negative slacks in the optimum for (6); these slacks will 

now become null constants. Let     2 Phase in  0|,...,1 *  ksqkS  denote the remaining slacks, which will be 
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considered as non-negative variables. According to this idea, if S< is not empty, a formulation that yields a target 

alternative to that obtained with (6) can be obtained by solving the following linear program: 
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For each factor, this model will suggest a target value of vko+sk (k=1,...,q), with sk equal to zero if kS<. Negative 

slacks are thus avoided, but the target will no longer be a convex combination of the observed DMUs. As in other 

DEA models, weight constraints are associated with a virtual expansion of the admitted set of production possibilities 

(Thanassoulis et al, 2004). The targets will never exceed value 1 on any factor due to the constraint vko+sk ≤ 1. This 

ensures no extrapolations of the value function are made for ranges outside the elicited interval of performances. 

A different possibility is to compute “balanced targets”, i.e., targets that would require improvements in more 

factors, but less substantial in each factor. The idea is to achieve the target value while minimizing the maximum 

slack (in terms of value). According to this idea, if S< is not empty, a formulation that yields a target alternative to 

those obtained with (6) and (7) can be obtained by solving the following linear program: 
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The next section illustrates the use of these models by presenting the application that motivated their development. 

The motivating application 

Context of the intervention 

This section describes a small-scale assessment of stores from a Portuguese retail chain in the pharmacy-cosmetics-

hygiene products sector, in which there was interaction with the topmost management level. The methodology 

proposed by Gouveia et al (2008) was suggested to assess the performance of stores within the chain. The client 

found the possibility of using multiple factors in an integrated model and the prospect of identifying best-practices and 

identifying sources of inefficiency particularly interesting. This would be useful not only for introducing corrective 

measures, but also for informing decisions about the configuration and location of future stores. Due to the limitations 

of the existing information system and also to the agreed time span of the intervention, it was agreed that a small-

scale study would be undertaken on one of the sales regions. 19 stores would be selected (the DMUs to analyze) that 

would cover the entire region while ensuring reasonable homogeneity.  
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From a discussion with the client’s management team (MT) three main interrelated objectives emerged: to 

indicate which stores are inefficient, to identify typical efficiency profiles, and to propose efficiency targets for the 

inefficient stores. There was an understanding that the stores’ autonomy is limited, to the extent that management is 

shared between the local supervisor and the chain’s managers. On the one hand, the MT makes decisions centrally 

that affect the stores’ performance (such as product mix, supplier negotiations, logistics, pricing, and general human 

resources policies); on the other hand, it is the local supervisor’s responsibility to motivate workers, to maintain 

customer satisfaction, etc. It was agreed that this study would evaluate this combined management between the 

chain’s MT and the store supervisors.  

Definition of inputs and outputs 

After defining the objectives and scope of this study, there was a discussion with the MT about the management 

indicators they regularly used to assess the performance of stores, which were mainly economic-financial ratios. The 

discussion was geared to highlighting which aspects were being disregarded by those indicators. It also revealed that 

some of the data that might have been interesting to include in the analysis would probably not be available in time. 

Furthermore, since there were not many stores to be evaluated, some parsimony in the number of variables was 

advisable (Dyson et al 2001). After discussing several possibilities, a consensus on seven factors emerged: 

 Average stock (STK): Average value of inventory, in euros (an input); 

 Number of employees (EMP): Number of full-time equivalent employees (an input); 

 Salary costs (SAC): Total cost with salaries in euros (an input); 

 Rent (RNT): Cost of space, in euros (an input); 

 Area (ARE): Total area of the store, in square meters (an input); 

 Global sales (SAL): Global value of sales, in euros (an output); 

 Family 4 sales / Global sales (%F4): Proportion of Family 4 products in global sales (an output). 

The average stock (also used by, for instance, Thomas et al, 1998; Barros and Alves, 2003), is included for its 

importance regarding the level of service offered to customers. An inventory matching customers’ preferences will 

minimize investments while minimizing stock-out risks (unfortunately, data on stock-outs was not available). Including 

the number of employees as an input aims at evaluating the operational productivity of labour, and including the 

salary costs allows anticipated differences of performance to be taken into account: it is expected that a higher paid 

salesperson will be a more experienced one who is expected to contribute more to generating sales. Thomas et al 

(1998) and Barros and Alves (2003), for instance, also included these two inputs in their analyses. The remaining two 

inputs concern the store as real estate. The area is a commonly used input (e.g., Thomas et al 1998; Camanho and 

Dyson 1999; Barros and Alves 2003), as is the rent: Portela and Thanassoulis (2007) and Thomas et al (1998) 

consider that this cost indirectly allows inclusion of the attractiveness of the store’s location in the analysis. We should 

note, however, that it is questionable to mix prices with quantities in technical efficiency assessments. In this case, 

the fact that all DMUs apply the same salary table to reflect employee experience and the fact that the rents are set 
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by the property owners (mostly shopping centre developers) as a function of sales expectancies reflecting the store’s 

location, allowed us to take these as adequate proxies for the purposes of this study. 

The availability of data limited the choice of output variables. Sales are a commonly used output (e.g.: Barros and 

Alves, 2003; Athanassopoulos, 2004). The other output chosen was the proportion of sales accounted for by a 

specific family of products. The client organization is used to monitor the relative weight of the “Family 4” (F4) 

products as an indicator of customer loyalty. F4 products are expensive and require special customer care and 

counselling from the salespersons. Therefore, the MT considers that a higher proportion of sales from this family of 

products indicates a closer proximity to the client and a recognition of a good level of service. According to the MT, it 

was the proportion of sales (not the absolute sales volume) that would better serve as a proxy. 

This set of inputs and outputs was aligned with the concerns and objectives of the MT; it was relevant for all the 

stores, and it required data that were available and reliable. All these factors were regarded as discretionary from the 

standpoint of evaluating the combined management of the stores, so that the study would be able to identify efficiency 

targets related to improvements in factors controlled locally as well as in factors controlled centrally. Table 1 (left) 

indicates the observed performance of each DMU on the original scale of each factor.  

Value elicitation for inputs and outputs 

A meeting was held with the MT to learn their views on how variations in the use of inputs and the production of 

outputs reflected managerial merit, following the developments presented in the “Elicitation of value functions” 

section. As the goal of “measuring” value accurately is often elusive (von Winterfeldt and Edwards 1986), linear value 

functions were used whenever this method represented a close approximation to the MT’s answers, and piece-wise 

linear approximations were used for the remaining cases. The elicited ranges were chosen to include the observed 

performance ranges plus a margin for improvement (or deterioration) of performance.  

The resulting value functions linked to a monetary scale (average stock, salaries, rent, and sales) were linear, as 

shown in Figure 2 (left). The value function for the number of employees is depicted in Figure 2 (centre), and the 

value function for area is similar. The typical number of employees is in the 12-16 range. Reducing the number of 

employees from 16 to 12 represents an increase of value (merit), all other things being equal, of 0.15; a reduction by 

the same number of employees from 20 to 16 is not as valued, since this is seen as a modest reduction for an 

overstaffed store; in contrast, a reduction from 12 to 8 employees (all other things being equal) represents a lot of 

merit for the store as the operating conditions become much more difficult. Concerning the proportion of sales from 

F4 shown in Figure 2 (right), the MT considers that 30% is a normal figure; so there is more merit in increasing one 

percentage point above that threshold than the same increase below that threshold. But above 40% the value 

increase is of lesser magnitude, as the MT considers that the store may be reaching an unbalanced sales structure. 

Note that the value function model is general enough to accommodate a situation where after say, 50%, value might 

even decrease. Table 1 (right) indicates the result of the conversion of the original units into value. 
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Initial models 

The first results presented to the MT did not consider constraints on the weights so that a discussion could be 

fostered about what constraints to introduce. Table 2 gives the results of model (3). Most of the stores are efficient, 

i.e. there is a vector of weights that makes them the best ones (d*=0). But the chosen vectors include at least two null 

weights, and for DMU 10 all weights are null except one. As expected, the MT found the existence of these null 

weights to be undesirable as this corresponded to disregarding some of the factors being used in the evaluation. This 

clearly motivated the need to introduce weight constraints. 

Weight constraints were elicited by asking the MT to compare the “swings” from value 0 to 1 depicted in Table 3. 

The MT was invited to imagine a store having the value level of 0 for all the factors (first row of Table 3) and to 

choose the factor where a change to the level of value 1 would represent the highest merit. The MT said that that 

factor would be Sales, which allows the inference that wSALES is the highest scaling constant. By repeating this 

question successively for the remaining factors, the following rank order was elicited: 

wSAL ≥ wSTK ≥ wRNT ≥ wSAC ≥ w%F4 ≥ wEMP ≥ wARE. 

To avoid null weights, an indifference judgment question was posed to limit the ratio between the weights ranked first 

(wSAL) and last (wARE): “What would be the highest amount z that would allow a store with an area of 150 m2 and 

annual sales of 500,000 EUR to be considered as having more merit than a store with an area of 450 m2 and annual 

sales of z?”. The idea was to elicit as high a value z as possible that was yet low enough to ensure:  

wARE v(150 m2) + wSAL v(500,000€) ≥ wARE v(450 m2) + wSAL v(z) 

The elicited bound was z = 1,000,000 €, as increasing this amount would make the MT start wondering whether the 

inequality would hold.  Substituting z in the previous expression yields: 

wSAL ≤ 11.1 wARE  

The results for (5) and (6) are presented in Table 4, and indicate only DMUs 2, 10, 12, and 18 as efficient (d*=0). 

There are no longer any null weights and being the best DMU in some of the factors no longer guarantees being 

considered efficient. Figure 3 indicates the profiles of the four efficient DMUs, which corresponded to the targets 

(peers) of the inefficient units. The centre of the heptagon represents value 0 in all factors, whereas the heptagon’s 

vertices represent value 1. DMU 12 has relatively low value (points near the centre) on inputs (meaning a high level of 

inputs use) but generates a high value on output sales. The remaining efficient stores have generally higher valued 

inputs (they use less), but sell less than DMU 12.  

Stores 2, 10, and 18 are relatively close in terms of salary costs, but differ substantially in the input number of 

employees. DMU 18 has more employees but has the lowest average salary per employee, which is approximately 

35% below the average salary for DMUs 2 and 10. As the salary per employee is a proxy for the experience of the 

salespersons, this suggests that experience plays an important role in the performance of the stores; for similar 

outputs, fewer employees may be required if they are more experienced.  
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An analogous analysis can be made for the inputs area and rent. The areas of stores 12 and 18 are 

approximately 50% higher than the areas of stores 2 and 10. As the rent per m2 of store 12 is approximately twice the 

rent of store 18, this signals that the location of store 18 is less attractive than the location of store 12. The rent per m2 

of store 18 is also lower than that of the smaller efficient stores 2 and 10. This suggests that for similar outputs, less 

area may be required if the store has an attractive location.  

The efficiency of Stores 2, 10, and 12 agreed with the expectations of the MT. This was an important aspect for 

the acceptability of the results and less obvious conclusions provided by the models. However, the MT was not 

expecting DMU 18 to be considered efficient. The explanation is that although DMU 18 sells less than DMU 12, which 

has a similar area, it compensates for this by having a better performance (more merit) in four inputs (STK, EMP, 

SAC, and RNT). Compared with DMUs 2 and 10, DMU 18 is worse mainly in the factors that are less important in the 

weights rank order. DMU 18 is able to offset its relatively large area and high number of employees by not reflecting 

this scale of operation in the salary costs (inexperienced employees) and rent (less attractive location). 

Phase 2 suggests an efficiency target (projection) for each inefficient DMU. The latter would be considered 

efficient if they changed their value in each factor by the amount indicated in Table 4 (right). But not all the proposed 

changes correspond to improvements, as some of the slacks are negative (remember that slacks are considered as 

free variables in (6)). The MT considered that targets suggesting increasing the use of some input or decreasing the 

production of some output were undesirable, which motivated the development of models (8) and (9). 

Model with restrictions on weights and targets 

Model (8) was the first to be developed, but the MT considered that the targets were not realistic. Indeed, it 

happened that the solution suggested that all inefficient DMUs could achieve their target global value v* by improving 

in only one factor but by an unrealistic amount (e.g. decreasing average stock by 70% or increasing sales by 58%, 

keeping all other factors unchanged). This is due in general to the characteristics of linear programming, but also to 

the fact that some slacks are set at zero, and the presence of the constraint vko+sk ≤ 1. This constraint discourages 

improvements in factors where the DMU already has a relatively high value and also in factors with low weight (in 

which a significant increase in value to a figure greater than 1 might be necessary to attain v*). 

By discussing these results it was possible to understand that the MT preferred what we later named “balanced 

targets”, for which model (9) was developed. The new targets are presented in Table 5 in terms of required 

percentage change on the original units (i.e., the performance change required to obtain the value specified by the 

slack, according to the value functions, some of which were nonlinear). Although some relatively significant changes 

remain for some of the DMUs (e.g. the 43.5% decrease in average stock for DMU 8), the MT found no need to place 

further constraints on the targets. After these improvements the model was now considered as requisite for the 

client’s purposes. 

As an aid to the interpretation of the results a graph similar to the one in Figure 4 (which concerns DMU 1) was 

drawn for each inefficient DMU. It represents (on the value scales) the performance of the DMU, the performance of 



 

13 

the peer identified in Phase 2, and the value for the balanced target. We can see that the peer DMU was worse than 

DMU 1 in the sales factor. The alternative target obtains the same global value as the peer in a more balanced way 

and without worsening the performance in any factor. 

Conclusions 

Applying V-DEA in a real-world intervention to assess the performance of stores from a retail chain raised previously 

unaddressed questions on how to elicit preferences and led to new developments on what concerns constraints on 

the weights and constraints on the targets. Preference modelling has been used at three different levels. First, input 

and output measurements were converted into value functions, which required interpreting these value functions as 

devices to compare the change in merit that corresponds to performance differences. Care was also taken to elicit the 

value functions for intervals wider than the interval of observed performances. At another level, weight constraints 

were elicited. The swings technique was partially used to obtain a ranking of the weights, and a trade-off question 

was used to limit the ratio between the weights ranked first and last. Finally, besides providing Peer DMUs as 

performance targets for the inefficient stores, two sets of alternative targets were computed: one using a new 

formulation to avoid negative slacks, another one minimizing the maximum slack (while keeping slacks non-negative). 

The MT regarded the balanced targets obtained by this process as a realistic complement to the indication of the peer 

DMUs. The required improvements correspond to adjustments in several factors and do not require radical changes 

to the production characteristics. Working with value scales both facilitates the incorporation of preferences and lets 

the Peer DMUs be seen as a model to be attained in terms of overall value. This targeted overall value, however, may 

be attained in different ways. 

One interesting aspect of the construction of our models was that it occurred almost in real-time, in direct 

interaction with the MT, to successively tune the model according to managerial preferences. Naturally, as this study 

had a limited time span and limited resources, the analysis was not as ambitious as it might otherwise have been if it 

had been able to involve other stores, other persons (e.g., the store supervisors), or include more factors. The current 

state of the client’s information system particularly hindered the latter desideratum, as many data were not available 

when needed or at the level of detail required. 

The MT deemed the methodology used in this paper as very useful to assess the performance of the retail 

chain’s stores, especially the way the incorporation of preferences enhanced the conclusions obtained. After learning 

the methodology and the possibilities it offered, the latter were fully explored, e.g. to be able to translate performance 

into nonlinear value functions or to use weight constraints. One aspect that seems to have been crucial for the MT to 

learn and to accept the methodology was the constructive character of the model’s development, with the results 

being successively presented and discussed throughout the process so that subsequent changes to the model could 

be decided. 
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V-DEA can be applied in many other contexts, and it would be very interesting to test it on new applications 

which bring new challenges. For instance, although it was not needed in this study, the conversion of the original 

scale into a value function is a natural way of dealing with undesirable outputs, which are often a problematic aspect 

(see, e.g. Dyson et al, 2001). The future application of V-DEA can further extend the methodology by leaving the 

DMUs some freedom to shape their own value functions, as suggested by Cook and Zhu (2009) for convex (or 

concave) functions in the CCR model. 
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Appendix 

Figure 5 illustrates why the introduction of weight constraints may yield negative slacks. If DMU G is allowed to freely 

choose weights in Phase 1, then it would select weights w=(0.56,0.44) (rounded values) that would minimize its 

difference in value to the best DMUs with the chosen weights, the DMUs D and E. For instance, its projection could 

be point G(0.56,0.44). However, if a constraint w2w1 is imposed, the previously chosen weights are not admitted and the 

optimal weights become w=(0.5,0.5). Now, the best DMU with the chosen weights is DMU C. Suggesting C as a 

target for G, however, implies worsening the performance under output y1 (s1<0). If slacks are forced to be positive, 

then the projection has to be made keeping the value of DMU C when w=(0.5,0.5), i.e. in the line joining C and point 

U. This corresponds to considering an expansion of the production possibilities set or to adding an unobserved DMU 

U. 
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Figure 1 – Projections according to the weighted Additive DEA model. 
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Figure 2 – Three of the value functions elicited (points refer to the observed DMU values). 
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Figure 3 – Profiles for efficient DMUs under weight constraints. 



 

19 

 

0.00

0.20

0.40

0.60

0.80

1.00

STK

EMP

SAC

RNTARE

SAL

%F4

DMU 1

Peer (DMU2)

Target
 

 

 

 

 

 

Figure 4 – Observed performance, Peer, and Target for DMU 1 (in units of value).
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Figure 5 – Expansion of the efficient frontier by weight restrictions or a UDMU. 
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 Factors (inputs and output) in original scales Factors in units of value 

DMU xSTK xEMP xSAC xRNT xARE ySAL y%F4 vSTK vEMP vSAC vRNT vARE vSAL v%F4 

1 360,614 13.2 153,071 275,240 213 1,994,652 36.4% 0.71 0.21 0.48 0.56 0.69 0.27 0.58 

2 263,736 9.5 111,409 117,916 213 1,194,289 44.6% 0.82 0.56 0.69 0.96 0.69 0.13 0.89 

3 628,938 17.8 218,122 492,305 436 3,841,226 32.2% 0.41 0.08 0.16 0.02 0.03 0.61 0.33 

4 479,582 16.5 189,495 134,824 262 2,299,879 23.8% 0.58 0.09 0.30 0.91 0.46 0.33 0.08 

5 600,449 15.9 222,567 411,982 331 3,905,880 39.7% 0.44 0.10 0.14 0.22 0.26 0.62 0.78 

6 299,876 12.3 159,338 185,368 208 1,554,821 37.2% 0.78 0.24 0.45 0.79 0.71 0.19 0.63 

7 171,010 9.2 92,436 124,355 231 625,315 22.0% 0.92 0.60 0.79 0.94 0.60 0.02 0.04 

8 354,506 13.9 153,228 231,525 400 1,570,432 24.4% 0.72 0.18 0.48 0.67 0.10 0.19 0.09 

9 521,819 13.1 155,918 145,527 222 2,249,522 28.0% 0.53 0.21 0.47 0.89 0.64 0.32 0.16 

10 357,204 7.3 96,041 179,931 200 1,505,312 45.4% 0.71 0.84 0.77 0.80 0.75 0.18 0.91 

11 307,347 11.3 135,895 171,760 313 1,387,585 28.1% 0.77 0.34 0.57 0.82 0.31 0.16 0.16 

12 701,109 15.8 214,814 300,106 290 5,425,809 32.4% 0.33 0.11 0.18 0.50 0.38 0.90 0.34 

13 392,894 15.2 170,675 250,726 216 2,269,410 40.5% 0.67 0.13 0.40 0.62 0.67 0.32 0.81 

14 604,291 20.0 222,424 387,543 443 3,410,820 27.8% 0.44 0.05 0.14 0.28 0.01 0.53 0.16 

15 272,851 12.0 148,268 159,532 197 1,410,839 33.9% 0.81 0.25 0.51 0.85 0.77 0.17 0.43 

16 327,304 11.9 181,352 168,006 207 1,263,137 29.1% 0.75 0.26 0.34 0.83 0.72 0.14 0.18 

17 356,157 11.5 130,337 181,693 286 1,371,183 26.5% 0.72 0.31 0.60 0.80 0.39 0.16 0.13 

18 152,850 11.4 87,223 147,252 301 877,671 32.6% 0.94 0.33 0.81 0.88 0.35 0.07 0.36 

19 295,598 13.3 193,606 160,607 199 1,634,121 26.0% 0.78 0.20 0.28 0.85 0.76 0.21 0.12 

 

 

 

 

Table 1 – DMU performances: original scales (left) and value scales (right). 
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DMU d* w*
STK w*

EMP w*
SAC w*

RNT w*
ARE w*

SAL w*
%F4 

1 0.007 0.36 0.00 0.04 0.00 0.20 0.36 0.04 

2 0.000 0.00 0.17 0.00 0.45 0.00 0.37 0.00 

3 0.071 0.53 0.00 0.00 0.00 0.00 0.39 0.08 

4 0.000 0.00 0.11 0.00 0.52 0.00 0.37 0.00 

5 0.000 0.00 0.23 0.00 0.00 0.00 0.47 0.30 

6 0.003 0.47 0.00 0.00 0.00 0.11 0.37 0.04 

7 0.000 0.47 0.14 0.00 0.00 0.00 0.39 0.00 

8 0.076 0.58 0.00 0.00 0.00 0.00 0.42 0.00 

9 0.000 0.00 0.10 0.00 0.50 0.03 0.37 0.00 

10 0.000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

11 0.041 0.34 0.00 0.00 0.28 0.00 0.38 0.00 

12 0.000 0.00 0.49 0.00 0.00 0.00 0.51 0.00 

13 0.000 0.00 0.00 0.00 0.02 0.25 0.40 0.33 

14 0.093 0.58 0.00 0.00 0.00 0.00 0.42 0.00 

15 0.000 0.50 0.04 0.00 0.00 0.08 0.38 0.01 

16 0.035 0.00 0.03 0.00 0.32 0.47 0.18 0.00 

17 0.063 0.04 0.00 0.31 0.27 0.00 0.39 0.00 

18 0.000 0.49 0.11 0.00 0.00 0.00 0.39 0.01 

19 0.000 0.51 0.03 0.00 0.00 0.08 0.38 0.00 

 

 

Table 2 – Phase 1 results without weight restrictions: optimal distance and weights for each DMU. 

 

 

 

Value level xSTK xEMP xSAC xRNT xARE ySAL y%F4 

v(.)=0 1,000,000 24 250,000 500,000 450 500,000 20% 

v(.)=1 100,000 6 50,000 100,000 150 6,000,000 50% 

 

 

Table 3 – Performances associated to the value levels 0 and 1. 
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 Phase 1 Phase 2 (slacks in value units) 

DMU *d  w*
STK w*

EMP w*
SAC w*

RNT w*
ARE w*

SAL w*
%F4 s*

STK s*
EMP s*

SAC s*
RNT s*

ARE s*
SAL s*

%F4 

1 0.046 0.38 0.05 0.05 0.05 0.05 0.38 0.05 0.11 0.36 0.21 0.39 0.00 -0.15 0.31 

2 0.000 0.21 0.10 0.10 0.21 0.10 0.21 0.10        

3 0.118 0.41 0.04 0.04 0.04 0.04 0.41 0.04 -0.08 0.03 0.02 0.48 0.35 0.29 0.01 

4 0.057 0.24 0.03 0.03 0.24 0.03 0.38 0.03 0.24 0.47 0.39 0.04 0.22 -0.20 0.82 

5 0.061 0.38 0.03 0.05 0.05 0.03 0.38 0.05 0.37 0.46 0.56 0.74 0.43 -0.49 0.11 

6 0.035 0.38 0.03 0.03 0.10 0.03 0.38 0.03 0.04 0.32 0.24 0.17 -0.02 -0.07 0.26 

7 0.003 0.23 0.02 0.23 0.23 0.02 0.23 0.02 0.02 -0.27 0.03 -0.06 -0.25 0.05 0.32 

8 0.106 0.38 0.03 0.07 0.07 0.03 0.38 0.03 0.10 0.38 0.21 0.28 0.59 -0.07 0.80 

9 0.060 0.24 0.03 0.03 0.24 0.03 0.38 0.03 0.29 0.35 0.22 0.07 0.05 -0.19 0.73 

10 0.000 0.20 0.08 0.20 0.20 0.02 0.20 0.08        

11 0.067 0.38 0.03 0.07 0.07 0.03 0.38 0.03 0.05 0.22 0.12 0.13 0.37 -0.04 0.73 

12 0.000 0.10 0.10 0.10 0.10 0.10 0.41 0.10        

13 0.034 0.38 0.03 0.05 0.05 0.03 0.38 0.05 0.14 0.43 0.30 0.33 0.02 -0.20 0.08 

14 0.137 0.38 0.05 0.05 0.05 0.03 0.38 0.05 -0.11 0.06 0.04 0.22 0.37 0.37 0.19 

15 0.029 0.38 0.03 0.03 0.10 0.03 0.38 0.03 0.01 0.31 0.18 0.10 -0.08 -0.04 0.46 

16 0.080 0.38 0.03 0.03 0.10 0.03 0.38 0.03 0.07 0.30 0.35 0.13 -0.03 -0.01 0.71 

17 0.089 0.38 0.03 0.07 0.07 0.03 0.38 0.03 0.10 0.25 0.09 0.16 0.29 -0.03 0.76 

18 0.000 0.23 0.02 0.23 0.23 0.02 0.23 0.02        

19 0.044 0.38 0.03 0.03 0.10 0.03 0.38 0.03 0.04 0.36 0.41 0.11 -0.07 -0.08 0.77 

 

 

Table 4 – Phase 1 and Phase 2 results under weight constraints and free slacks. 
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DMU xSTK xEMP xSAC xRNT xARE ySAL y%F4 

1 -18.4% -10.7% -9.6% -10.7% -6.9%  3.4% 

3  -33.8% -18.2% -16.1% -21.8% 28.4% 10.3% 

4 -17.8% -17.3% -10.0% -25.8% -9.1%  19.9% 

5 -14.9% -16.6% -8.9% -9.6% -10.0%  10.9% 

6 -17.8% -5.7% -7.4% -12.8%   2.7% 

7 -2.4%  -1.0%   4.0% 1.0% 

8 -43.5% -19.5% -22.4% -29.6% -18.4%  26.8% 

9 -16.6% -11.7% -12.4% -26.5% -8.7%  10.5% 

11 -32.0% -7.8% -16.1% -25.5% -11.6%  10.9% 

13 -12.7% -9.7% -6.5% -8.8% -5.1%  6.8% 

14  -40.9% -19.9% -22.9% -23.7% 35.8% 18.7% 

15 -16.6% -3.3% -6.8% -12.6%   2.5% 

16 -37.9% -9.2% -15.2% -32.8%   9.9% 

17 -36.3% -10.0% -22.0% -31.6% -15.1%  17.7% 

19 -23.1% -11.2% -7.8% -18.9%   14.6% 

 

 

 

Table 5 – Balanced targets: required variation in the original units. 

 

 


