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Abstract 

This paper proposes a self-organizing fuzzy controller with a broad generality for minimum phase and stable systems. 
The controller learns the rules on-line with a minimum knowledge about the process. The rule base is built and 
permanently actualized from input-output real time data and has a fixed maximum number of rules (FMNR). An 
(on-line) adaptive similarity factor implements a special efficient inference technique. Feedforward and predictive effect is 
introduced in fuzzification and defuzzification stages. The defuzzification is carried out in such a way that as the learning 
process progresses the interval of the control becomes more and more accurate. Results are shown concerning 
simulations for non-linear SISO, MISO and MIMO systems and a real experimental application using a low-cost 
microcomputer. © 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Since the pioneer works of [21, 16] fuzzy control has been growing in importance and many progresses in 
real applications have been reported [14]. However, for mathematically ill-understood, non-linear, time- 
varying processes, there is still considerable work to be done. If, for relatively well known processes, the 
expert operator knowledge allows to build a set of rules capable of implementing a fuzzy controller, for more 
complicated situations only a self-organizing controller (SOC) can do the job. The main goal is to reduce the 
dependence on experts and to obtain a control structure that does not need (to some extend) ~-priori 
learning, i.e., the controller itself is (to some degree) able to learn about the controlled system and to adapt 
itself on-line. This is not a trivial goal and, to reach it, only the synergy of multiple experiences will allow to 
make real progresses and to converge to a general fuzzy control systems theory with a systematic synthesis 
methodology. 
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In that sense several Self Organizing Controllers have been developed in the past; for a review see, e.g. 
[3, 18]. In more recent years progresses in several directions were reported, as for example on elaborated 
strategies to adapt the scale-factors [5, 10]. Many discussions and some reviews [10] and some other 
particular techniques can be found in recent papers. For example in [8] is proposed an adaptive fuzzy 
controller using several controllers in parallel for the different expected situations. This corresponds in some 
sense to the classical gain-scheduling techniques, with its limitations- when a non-predicted new situation 
appears the controller may fail. Also [17] propose a systematic design for fuzzy sliding mode controllers, very 
useful in control of manipulators. 

In a different approach several authors have implemented the self-organization as a neural-network 
training problem, in a neuro-fuzzy architecture [4, 7, 11, 15] or as a genetic algorithm optimization problem 
[1, 6]. Usually those approaches require knowledge about the process to initialize the procedure and, 
because of neural networks training algorithms, they are computationally hard; moreover, they are complex 
to implement in real time control of dynamic systems where two identical situations are very uncommon (and 
learning by repetition is not possible). 

One of the most important tasks of an SOC is the on-line generation of the rule base - finally the 
knowledge base of the fuzzy system. Several works have recently been published about it. In [12] it is 
developed an iterative learning method based on a reference model to ameliorate the control trajectory. 
Several parameters and matrices must be tuned and the procedure requires repetitive trials in similar 
conditions, which is impossible to obtain in practical dynamic systems. In [19] is proposed an indirect 
adaptive fuzzy controller making an on-line nearest-neighborhood clustering of input-output data; the 
clusters are viewed as sample data and one rule is generated on-line for each input-output (cluster) pair; the 
method has the advantage of combining if-then rules and numerical input-output data but, besides needing 
several trial and error techniques and previous learning activity, does not guarantee that the number of rules 
will remain under an acceptable limit. In [20] is developed a general methodology based on the division of 
the input and state spaces into cell-groups followed by systematic search (based on multiple process 
simulations) in order to find the optimal (in some sense) control trajectory. Heuristics, resolution and 
accuracy requirements, as well as partial knowledge of the process dynamics are needed in order to determine 
the number of cell groups. However, the search for the optimal control strategy starting in each cell is an 
intensive computational task needing an acceptable process model. In [13] it is developed a very interesting 
controller using the history of input-output pairs and proper inference and defuzzification methods; the rules 
are updated on-line by a self-organizing procedure. The fuzzification is done based on assumed input and 
output ranges and the number of rules increases monotonically as new input-output data is experienced. The 
method goes in the same direction as the Cell Sate Space Algorithm of [2]. For the regulation problem the 
number of rules tends to a steady state number. For the tracking problem, according to our experience, this 
number grows without bound and so the computational resources will be exhausted after some time. 

The SOC developed and experimentally tested in this paper is initially inspired (for the fuzzification and 
inference stages) in the method proposed for regulation by [13] but it introduces a set of new features: it 
reduces complexity in implementation, reduces computational costs and solves effectively both the regula- 
tion and the tracking problems with low computational resources. It has a wide range of applicability for 
stable monotone processes. It does not need ~t priori training and has a rule base constructed on-line with 
a maximum number of rules, using a Fuzzy Auto Regressive with Exogenous Input (FARX) model. This 
maximum number of rules is fixed by the programmer giving him a more accurate control over the sampling 
time. The algorithm experiences an on-line learning phase, where it learns how to control the process for 
a particular reference, constant or time variant. After this initial learning phase, taking a relatively short time, 
if the process suffers changes in its dynamics, the algorithm reacts to these changes with a new learning phase 
without augmenting the number of rules. 

The adaptation and learning abilities are shown to be good. Adaptation is introduced in a modified 
version of the similarity factor of [13] instead of calculating it by trial and error. This improves the speed of 
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response without increasing the settling time. Learning proceeds by replacing an old invalid rule by a new 
one when changes occur in the process detectable by the controller. 

The controller is easily extended in the paper to multiple input single output (MISO) and multiple input 
multiple output (MIMO) processes. 

It was experimented in simulations of SISO (including a non-linear time varying process) MISO and 
M I M O  (a medical application) processes and also in a real experimental process. The presented SOC is able 
to show good performance in all those tested cases. 

The paper is organized as follows. Section 2 presents the problem, the assumption and the FARX equation. 
Section 3 describes the fuzzification and inference stages. In Section 4 the new SOC is developed, in its several 
proper characteristics. Section 5 extends the SOC to MISO and M I M O  systems. Simulations and practical 
experimentation are presented in Section 6 and finally Section 7 discusses the potentialities, limitations and 
further needed developments to enlarge still more broadly the generality of the controller and to give him 
a higher degree of autonomy. 

2. The problem assumptions and the FARX model 

2.1. Problem assumptions 

The objective of the SOC is to use the minimum possible ~t priori knowledge about the process. This 
minimum knowledge needed is given by the following assumptions: 

(i) The process can be modeled by an nonlinear auto regressive with exogenous (NARX) input model (1): 

y(k )  = f [ y ( k  - 1 ) , y ( k -  2) , , . . . ,  u(k  - T) ,  u(k  - T -  1), . . . ,e(k)]  (1) 

w i t h f a  linear or non-linear function, time variant or not, y(k),  y ( k  - 1), ... the outputs of the system 
and u(k), u(k  - 1) . . . .  , the inputs to the system at the k, k - 1 . . . .  instants. T represents the discrete pure 
time delay and e(k)  is a stochastic disturbance. 

(ii) The pure time delay T is known or, at least, its upper bound. 
(iii) The reference is known at least T + 1 sampling instants in advance. 
(iv) The memory (order) of the system is known (at least its upper bound). 
(v) The relation, one out of two possible, between the change in the input signal and the change in the output 

signal is known: 

(1) The output increases/decreases with the increase/decrease of the input. 
(2) The output increases/decreases with the decrease/increase of the input. 

If assumption (iii) is dropped, we can still control the system, but a longer learning phase and a not so good 
performance is expected (particularly in the tracking problem). The main objective of the assumption is to 
give the controller an anticipative characteristic so that it can deal more efficiently with the pure time delay of 
the process. 

2.2. The F A R X  model and the rule base 

The rule base is initially empty and is constructed on-line. Considering (1), solving for u ( k -  T) ,  (2) is 
obtained: 

u ( k -  T) = g[y(k),  y ( k -  1) . . . . .  u ( k -  T -  1) . . . . .  e(k)] (2) 
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Then the rules format is derived from the linguistic transformation of (2) as shown by (3) in the form of 
a FARX system (named by analogy with the NARX model of control theory) 

If y(k)  is A1 and y (k  - 1) is A2 and ... and u(k  - T - 1) is Bx and ... 

then u(k - T )  is C (3) 

A 1 ,  A 2 . . . .  , B1 . . . . .  C are linguistic values and, in the kth iteration, are substituted by "approximately y(k)", 

"approximately y (k  - 1)", ... .  "approximately u(k  - T - 1)", and so on, with y(k),  y (k  - 1), u(k - T - 1), 
the outputs read from and the inputs sent to the process. Each situation experienced by the process is 
considered a valid rule. 

If we add T + 1 to each and every index, each rule gives us a value for u(k  + 1), if the antecedent is true (in 
a fuzzy way). We consider the future values of the process output the same as the future (known) values of the 
reference; implicit in this consideration is the assumption that the controller will be capable of making the 
output follow the reference and so, by this simple way, some feedforward effect is introduced in the control 
signal. 

If assumption (iii) is not fulfilled, then we can consider the future values of the reference equal to its past 
values. Despite the fact that this is not true for the tracking problem, it is the best information we have. This 
leads to an increase in the learning period and the controller will no longer be capable of dealing properly 
with the pure time delay of the process. This behavior is an unsolved (and probably unsolvable) problem. 
When future values of the reference are not known there is no way to introduce any feedforward effect (only 
feedback is possible). However, for the regulation problem the controller still behaves well. 

3. The fuzzification and inference stages 

3.1. Fuzzification 

The fuzzification membership functions follow the ones proposed in [13] and are triangular shaped 
defined by (4): 

x ( k )  - x i  
1 +  , a<~x(k )<~x i ,  

b - a  

x ( k )  - x i  
1 b - a  ' xi<<'x(k)<~b' 

O, otherwise. 

(4) 

with x (k )  e [a, b]. This interval includes all possible values for the variable in cause. All the fuzzy sets have the 
same support interval [a, b]. Every crisp u(k)  value defines the unity vertex of a membership function and all 
the membership functions have the same slope. These facts minimize the quantity of information required to 
define these functions: this minimum is simply the unity vertex x~. On the other hand the rule base is always 
complete. 

3.2. The inference mechanism with feedforward effect 

In [13] a very interesting defuzzification method is developed, taken as a starting point for the proposed 
SOC. In usual defuzzification stage the rain operator is applied to the antecedents membership degrees and 
the consequent membership function is processed accordingly (e.g. by a-cut). This may become very 
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unsatisfactory particularly when the number of inputs increases (as is the case of most practical problems in 
dynamic systems) because relevant input variables will always be ignored. Instead of the min operator, these 
authors proposed a compounding function of all input variables by the Euclidean distance between the newly 
measured crisp input variable and the vertices of the existing membership functions. 

Considering, for instance, a 1st order process each rule has the format: "I fy(k)  is approximately Yli and 
y ( k -  1) is approximately Y2i then u ( k -  T) is approximately ui". Now, and giving in the presented SOC 
a feedforward content to the computation of the control signal, if the future values of the reference are R 1 and 
R2 (respectively in k + T + 1 and k + T sampling times), the degree of equality ~o~ between them and each 
rule antecedent is calculated by (5) and by the similarity function (6): 

(i) D i = N / ( Y l i  - -  R1) 2 q" (Y2i - R2) 2, (5) 

1 
- - -  * D i  + 1. (6) (ii) e~ Dmax 

The Dmax parameter, called here the similarity factor, is introduced in [13] by a trial and error procedure. 
However, as will be shown later, it is more convenient to make it adaptive (on-line). If D~ is greater than Dmax 
then the rule is ignored because it is considered that there is no similarity between the rule and the desired 
situation. 

The consequent fuzzy set for each rule is an interval of values, [pl, p2], where 

#ui(u(k)) >1 ¢oi, Vu(k) e [pl, p2]. (7) 

The total output is taken as the intersection of all the intervals (one for each rule). So, at the end of the 
inference mechanism at instant k, we have an interval of possible values for u(k + 1): 

Au(k + 1) = [min(k), max(k)]. (8) 

The justification for the choice of the intersection operator can be found in the theory of fuzzy equality 
relations [9]. 

4. The proposed SOC 

In the method proposed in [13], it is necessary to perform a discretisation of the output variable domain 
and, for systems of higher order than the 1st, also of the input variable domain. The discretisation of the 
output should be done accordingly to the desired reference, in order to achieve better performance. When the 
discretisation of the input variable domain is needed, it should be done uniformly throughout all the domain. 
What we experienced was that, for tracking problems where the references can have broad amplitudes, the 
discretisation required to achieve good results leads to a too high number of rules. This increases prohibitive- 
ly the computational resources. For more complex processes than a second order one, the number of needed 
rules is prohibitive. 

The method presented in this paper does not require any kind of discretisation and has a rule base with 
a fixed maximum number of rules (FMNR). 

4.1. The on-line construction of the rule base 

At every sampling time an input signal is sent to the process and an output signal is received from it. Based 
on these new values and on the values memorized, the rules are constructed accordingly to the experiments 
(every experiment is considered a valid rule). 

Each rule is continuously added to the rule base until the FMNR is reached. At this point the new rules are 
written over the older ones, so that the FMNR is never exceeded. This gives the algorithm the characteristic 



32 J.M. Dias, A. Dourado / Fuzzy Sets and Systems 103 (1999) 27--48 

of easily forgetting one system condition and adapting to a new one. The technique of fixing the maximum 
number of rules was issued from empirical research and extensive experimentation, and in order to avoid the 
explosion in size of the rule base. It is effective if the FMNR is chosen properly. 

4.2. The choice of  the FMNR 

The choice of the FMNR must be considered with care. The membership functions in the rule base must 
span over all the domain of the input and output signals for the desired reference (by this way the controller 
will always know what to do). As the implementation is in discrete digital form, the reference is represented 
by a discrete number of different situations. This number is a function of the desired sampling time and of the 
reference itself; the following principles give a guide line to calculate FMNR: 

(i) If the reference is a periodic signal with period P and the sampling time is Ts, then FMNR = PITs. By 
this way every input-output  pair will produce a new rule. 

If the reference is constant (a step), its period is infinite and this guideline cannot be applied. In principle (in 
ideal conditions) the controller should only need one rule, at least in the long-run. In practice this is not 
possible because it has to learn how to control the process even in the case of external or internal 
disturbances; in these cases more rules are needed to control the "new" process. What is done in this case is to 
consider a number of rules compatible with the desired sampling time. Generally, the (re)learning time 
decreases with the increase in the number of rules. In the long-run, and if no changes occur, all the rules in the 
rule base will be similar. 

(ii) If the FMNR that results from applying (i) is too high for the desired Ts (the computational time 
needed is directly related to the number of rules), then one must increase the time interval between two 
consecutive updates of the rule base. In this case the rule base will have less information about the process 
behavior but will still store information about different situations during one reference period. The FMNR 
calculated in (i) is divided by n, n e N, and the situations experienced by the system are included as new rules 
just when the number of the sampling instant k is divisible by n. 

(iii) If we want the system output to follow successively two periodic references with different mean and 
amplitude values, so that every m sampling intervals the desired reference changes from one periodic function 
to another, one must have a rule base that is able to store all the needed information. If different spaces (in the 
rule base) are not defined for these two periodic references, what happens is that the rule base only remembers 
the last reference and a new learning phase is needed every time the reference changes. If one structures the 
rule base such that each different reference has its own set of rules, the set regarding the non-active reference 
will not be updated (overwritten) when the other reference is active. The controller will only experience two 
learning intervals, one for each reference. At each instant k only the set of rules of the active reference will be 
used. By this way the total size of the rule base will increase, but not necessarily the computational time, since 
only a sub-set of the rule base will be used at each instant k. 

(iv) If the reference is not periodic, the rule base is constructed, when this is feasible, in a way similar to (iii), 
using all the information available about the reference, particularly its domain. When this is not feasible, the 
maximum number of rules is fixed and the rule base is permanently refreshed. This is the most difficult 
situation because the controller needs the rule base to be illustrative of the reference domain, and this cannot 
be guaranteed in this case; as a consequence some trial and error must be done to fix the FMNR. Fortunately 
this is an unusual situation. 

4.3. I f  the intersection results in an empty set 

In the inference mechanism, one has to take the intersection of all the consequent intervals, one for each 
rule. It is possible that this intersection results in an empty set. This can happen with a single rule whose 
interval is disjunctive with all the others. In this case, the best thing to do is just ignore that rule. The 
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conclusion reached by the experiences made was that this rule is insignificant, it illustrates a transitory state 
of the system and should not be taken into account. 

4.4. The defuzzification method 

The output of the inference mechanism is an interval [min(k), max(k)] (8). Now a crisp value for u(k + 1) 
must be computed. 

In the present proposed algorithm, a simple but efficient method is derived, using the concept of 
error_in_advance which is the difference between the actual output and the desired reference after the pure 
time delay T of the process plus one: 

(i) error_in_advance = reference(k + T + 1) - y(k). 
(ii) Now considering relation (1) of assumption (v), then (9) and (10): 

if error_in_advance > 0 then 

u(k + 1)= ½[max(k) + u ( k -  T)] 

else u(k + 1) = ½ [min(k) + u(k - T)]. 

Considering relation (2) of assumption (v), then (11) and (12): 

if error_in_advance > 0 then 

(9) 

(10) 

u(k + 1) = ½ [min(k) + u(k - T)] (l l)  

else u(k + 1) = ½[max(k) + u(k - T ) ] .  (12) 

The min(k) and max(k) quantities are those from (8). 
If assumption (iii) (Section 2) is not fulfilled, one can use the error instead of the error_in_advance and the 

value for u(k) instead of the value for u(k - T ) .  
In this way the pure time delay of the process tends to be compensated since the control signal acquires the 

predictive characteristics intrinsic in the error_in_advance. In fact u ( k -  T) is the most recent input 
influencing y(k). The input u(k + 1) will only influence the output y(k + 1 + T)  (and at instant k + 1 
nothing can be done to improve the outputs before k + T + 1); this fact leads to the definition of the 
error_in_advance, u(k + 1) must then depend on the error_in_advance. Now to compute the control 
u(k + 1) the expressions (9)-(12) calculate the average between the past value u(k - T) and a limit of the 
inference interval (8) according to the signal of the error_in_advance and also according to the signal of the 
monotonicity of the process. 

4.5. The adaptive degree of  similarity 

The Dmax parameter represents the maximum distance considered that allows o)i to be positive. This 
parameter not only determines which rules will contribute with an interval for the final outcome, but also 
influences the calculation of the interval. 

If Dmax has a value that is too low, then the system output will oscillate around the reference because few 
rules will be used and the interval (8) will be large, and as a consequence the control signal tends to oscillate. If 
its value is too high, the system output will have steady error because too many rules are used, even some that 
are far away from the actual situation. Observing the behavior during a time window, these two situations 
are identified, and the Dmax parameter becomes an adaptive parameter. Its value is increased proportionally 



34 J.M. Dias, A. Dourado / Fuzzy Sets and Systems 103 (1999) 27-48 

in the presence of the first situation (the highest observed amplitude) and decreased proportionally in the 
presence of the second: 

Dmax  = Omax  * (1 + percentaoe o f  oscillation) (13) 

if the D m a x  has to be increased; 

Dmax  = Dmax  * (1 - percenta9 e o f  error) (14) 

if the Dmax  has to be decreased. 
The time window is a number of sampling intervals during which the controller surveys the output to see if 

it is oscillating around the reference or has steady error. In the case of periodic references, the time window 
can be a fraction of the period. The shorter the time window, the oftener the Dmax  parameter will be adapted, 
resulting in a shorter learning interval. However a too short time window may disable the correct assessment 
of the situation (if, e.g., the error is oscillating and the time window is short compared with this oscillating 
period, the controller may erroneously conclude that the situation is of steady error). 

Experiences were made to adapt on-line the width of the time-window. This only improved the complexity 
of the SOC and it was shown to be unnecessary for the cases treated. However this is a point of further 
research. 

4.6. Tracking changes in the process parameters  

In the presence of changes in the process parameters, particularly heavy ones, the previous algorithm does 
not react immediately in order to overcome this problem. It waits until all the rules in the rule base are 
illustrative of the new situation. This drawback of non-reaction period of the controller can be overcome if 
the calculation of Di (now D*) at instant k is complemented by (15) after computation of (5): 

D* = ½ In ,  + x / (Y l ,  - Y(k)) 2 + (Y2, - y ( k  - 1)) 2 + (u, - u ( k  - T))2]. (15) 

The expression (15) considers the distance between each rule and the desired reference in Di (as does (5)), 
but also the distance between each rule and the present situation of the process output (as opposed to (5)). If 
there is a change, for instance, in the process dynamics such that the present rule base does no longer 
illustrate the process behavior, the value of D* will rapidly increase due to (15), increasing by consequence the 
width of the interval calculated in the inference stage. As a consequence the controller will immediately enter 
in a new learning phase. 

4. 7. Initialization and other aspects 

The initial value of D m a x  and of the observation window width are two parameters that influence the 
performance of the controller. At start-up, in the beginning of the learning phase, there are few rules and the 
process output is still far away from the reference, resulting in a high value of Di in (5). To make o~ in (6) not 
a very low value, D m a x  must be high. 

The time window cannot neither be very short (to allow a good evaluation of the error) nor very large (to 
allow a frequent adaptation of Dmax).  

The performance of the algorithm, at least in its early iterations, can also be influenced by other factors, 
like the interval considered as being the domain of the input variable (which is unknown at start but can be 
guessed from the actuator range and the reference). The smaller the interval, the faster is the convergence of 
the algorithm. 

If, in the learning phase, the process output oscillates in an unreasonable way (over some threshold), the 
control signal will also tend to oscillate unreasonably. In this case the defuzzification mechanism can be 
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Set the observation window to 20 sampling intervals, the initial D m a x  to 60 and n = 2. Fig. 1 shows the 
results. In the beginning of the start-up learning phase, until k = 10, the control signal shows some oscillation 
but then becomes rather smooth. After some time, the SOC makes the output of the system rapidly follow the 
reference. In the long run, the two signals become practically indistinguishable. Although the rule base is full 
only at k = 250 (since n = 2), and at start it is empty, the performance is good after k = 100. After k = 250 the 
rules are replaced on-line, with a progressive performance increase. 

Fig. 2 shows the control signal. It is becoming smoother and smoother as time goes on. The input interval 
defined by (8) is shown in Fig. 3. During the initial instants the value of u(k) calculated by (9)-(12) may exceed 
max(k) since only u ( k  + 1) is influenced by max(k). It is interesting to see how quick is the convergence of 
this learning interval. Fig. 4 shows the evolution (as a consequence of the adaptation) of D m a x .  

In [19], with the on-line nearest-neighborhood clustering technique, the tracking performance is lower 
than here after the learning phase. Considering complexity and performance, the presented SOC is superior. 

Case  2: R e g u l a t i o n  o f  a t ime  var ian t  non- l inear  s y s t e m  

Considering now two continuous non-linear systems (25)-(26) from [20] 

dXl 
~ - ~ X  2 

d x 2  
= -9 .25xl  - x2 - 0.1x 3 + 9.25u 

dt 

y(t)  = x l ( t  - -  0.1) 

until t = 40s (25) 

and 

d x 1  
= 1.5xz 

dxz 
- 11.25xl - x z  - -  O.lxa 3 + 9.25u 

dt 

y( t )  = x l ( t  - 0.1) 

after t = 40 s (26) 
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Fig. 1. Case 1. (a) Start-up learning phase. After 40 instants the control is already acceptable. (b) The control performance after k = 100 
is very good. Only at k = 250 the rule base is full. 
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Fig. 2. Case 1. The control signal (observation window is 10). (a) At start-up; (b) on long-run. 
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input during the learning phase. 

Fig. 4. Case 1. The evolution of Dmax. 

representing a time varying system (the coefficient of the first equation and one coefficient of the second) with 
two states xl and Xz. 

A sampling time of 100 ms and an F M N R  of 40 are considered and one controls firstly the system (17) and 
latter the system (18), with a constant reference with amplitude 5. 

Set the time window to 20, initial Dmax = 60 and n = 1. 
The results are shown in Fig. 5. The start-up learning is good. When the system dynamic changes, at 

k = 400, there are some damped oscillations during the (re)learning phase. 
Now if the time window is increased to 40 (maintaining Dmax), the results are shown in Fig. 6. The 

response shows some oscillations at start-up and the learning phases are longer. This is in accordance with 
the frequency of adaptation of Dmax, as shown in Fig. 7. The shorter is the observation window, the better is 
the Dmax adaptation. However if the window is too short, resulting in an overadaptation, then the 
performance may be degraded and the closed loop system may become unstable, as was observed in some not 
shown runs. 
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changed in the following way: while the oscillation is over that threshold, the calculation of the control value 
is made with a weighted average of the value issued from (9)-(12) with past control values, where the heaviest 
weight is put on the preceding values of the input variable instead of on (9)-(10) or (11)-(12). This can lead to 
an increase in the learning phase time but will result in a much smoother control signal because the learning 
interval, that changes abruptly, contributes less to the averaged control signal. 

5. Development for MISO and MIMO systems 

As the FMNR in the rule base does not depend on the complexity of the system, the computational time 
will not increase drastically when considering MISO or even MIMO systems. 

5.1. MISO processes 

In the case of an MISO process, it is necessary that the assumption (v) (Section 2) be fulfilled for each and 
every input. 

Supposing for example a zero order system with two inputs ul and u2, each rule, for calculating the control 
signals ul and u2 is in the form: 

I f  y(k)  is approximately Yl then 

ul(k  - T 1) is approximately uli and u2(k - T2) is approximately u21 (16) 

with T1 and T2 pure time delays relative to inputs ul and u2, respectively. 
Each rule can be interpreted in two different ways: 

(a) Splitting the rule into two rules 

If y(k)  is approximately Yi then u l ( k  - T1) is approximately ul~. (17) 

If y( k) is approximately Yi and ul(k  - T1) is approximately uli 

then u2(k - T2) is approximately u2 I. (18) 

In this case the value for u2(k  + 1) is calculated knowing the value for ul (k  + 1). 
(b) Splitting still the rule into two rules but in a different way: 

If y(k)  is approximately yi then ul(k  - T 1) is approximately ul i. (19) 

If y(k)  is approximately Yi then u2(k - T 1) is approximately u2~. (20) 

In this case u l ( k  + 1) and u2(k + 1) are calculated independently of one another. 
The results obtained using (a) or (b) were similar. As the first alternative requires a longer calculation time, 

the second alternative was chosen. If we think of a system with n input variables, the first alternative would 
require that each rule would be used n times. This represents an enormous increase in the computational 
time. 

5.2. Case o f  MIMO processes 

Some changes have to be made to control MIMO systems with this algorithm. The assumptions are 
maintained, with the only difference that assumption (v) (Section 2) must be fulfilled for all the possible 
input-output pairs. The additional problem to handle is the coupling between input and output variables. 

Supposing, for illustrative purposes, a zero-order system with two inputs and two outputs, each rule is: 

If yl(k) is approximately yl~ and y2(k) is approximately y2i 

then ul(k - T1) is approximately ul~ and u2(k - T2) is approximately u2i (21) 
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Each rule is interpreted as two independent rules: 

If yl(k) is approximately yl i  and y2(k) is approximately y2i 

then ul( k - T 1) is approximately uli. (22) 

If yl(k)  is approximately yli  and y2(k) is approximately y2i 

then u2(k - T2) is approximately u2i. (23) 

The changes in the algorithm occur in the inference mechanism and in the defuzzification mechanism. 

5.2.1. The modified inference mechanism 
The most important parameter in this stage is the Dmax parameter. Its adaptation is done based on the 

performance of the output of the system. In the case of a MIMO system, there are more than one output. 
Then we consider as many Dmax parameters as there are outputs. Each of them is adapted according to the 
performance of one particular output. As we need the Dmax parameter to calculate the input interval, we 
make a correspondence between inputs and outputs, so that the calculation of an interval for a particular 
input variable is done with the Dmax adapted according to the output that corresponds to that input. This 
correspondence is made in an empirical way. If we have extra knowledge about the system, we can use that 
information to make this input-output pairing. It is not necessary that the MIMO process has as many 
inputs as outputs. One output can have correspondence with more than one input. Each of these inputs uses 
the same value of Dmax from the calculation of (5) or (15). 

In the inference mechanism it is possible that we have to calculate several values for D~ (possibly as many as 
input variables), depending on the pure time delays of each input variable with respect to each output 
variable (since in (5) the pure time delay of each channel must be considered). 

5.2.2. The modified defuzzification method 
After the inference mechanism, we have one interval for each input variable. The defuzzification procedure 

is then constituted by a set of rules that decide which value will be chosen for each input variable. This set of 
rules transmits to the algorithm the knowledge we have about the relations between the input and output 
variables in the sense of assumption (v) of Section 2. This will be illustrated later by an example. 

There is not a unique set of rules for the defuzzification method. Once again, if we have extra information 
about the process (as, e.g., the relative sensitivities between each input and each output), it can help us to find 
a good set of rules. If not, we should try several sets and see which has better performance. 

6. Results and discussion 

The controller was tested in simulations and in a real implementation. 

6.1. Simulations on SISO systems 

Case 1: Tracking, non-disturbed system 
Consider the non-linear system from [19] 

y(k - 1) y(k - 2) (y(k - 1) + 2.5) 
+ u(k - 1) (24) 

Yk --  1 q- y 2 ( k  - 1) + y 2 ( k  - -  2) 

to be controlled with a sinusoidal reference with period 25 s, and a sampling time of lOOms, with an FMNR 
equal to 125 (by the principle 2 of 4.2, with n = 2). 
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For a window of 20 and an initial Dmax equal to 30 or 100, the results are shown in Figs. 8 and 9. The 
Dmax adaptation proves to be very effective (see Fig. 9) and the performance is not very sensitive (at least in 
this case) to the initial value of Dmax, except when it is too low (as in Fig. 8(a); then the performance is not so 
good and a tendency to oscillate may appear). 

These results, compared with those of 1-20], show a more realistic control signal. Here, besides, there is no 
need for a priori learning of the process fuzzy model and the SOC is much simpler to implement. 

6.2. Case 3." Application to a real process 

The process is a small scale laboratory in which one intends to produce a certain quantity of heated air 
(Fig. 10). The air enters the process due to a blower. Inside the tube there is an energized electrical resistance 
that heats the air (the actuator). The goal is to control the air temperature along the tube, which can be read 
by a sensor placed in one of the three possible positions. The angle of the air overture can also be changed 
(introducing load disturbances). 

The sampling time used in all these experiments was 150 ms. 
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Fig. 8. Case 2. Influence of Dmax initialization, with window = 20. (a) Initial Dmax = 30; (b) initial Dmax = 150. 
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Fig. 10. Case 3(a) Picture of the experimental process PT326. (b) Case 3. Schematic representation of the real process PT326. 

The a priori knowledge about the process is: (i) it can be approached by a first order one, (ii) its time delay 
is not superior to two sampling intervals, (iii) its monotonicity is relation (1), from assumption (v) in 
Section 2.1. 

Figs. 11-13 illustrate the results obtained with a sinusoidal reference of period 30 s, and F M N R  -- 100, 
n -- 2. Despite the noisy environment, the algorithm is capable of controlling the process with a smooth input 
signal. In Figs. 14 and 15 are shown the results when considering a triangular wave as reference, with equal 
FMNR. The proposed SOC is able to manage appropriately the abrupt change in the ramps declive. 

Figs. 16 and 17 compare the performance of the proposed SOC with the case where there is no adaptation 
of Dmax  and the formulae (15) is not used (but only the formulae (5)). For a load disturbance, the proposed 
SOC reacts immediately because of formulae (15), a new learning phase is started, (Fig. 16(a)), and soon the 
output recovers from the disturbance. In the other situation (Fig. 16(b)), the controller takes some time to 
react because it is necessary that a significative number of rules will be overwritten (by the new data) in order 
to change the control signal; the learning phase is much longer, the output takes a long time to reach again its 
good value. 

If a process dynamic change occurs, in the form off a change in the process gain (it is halfed by an electronic 
amplifier in cascade with the process), the proposed SOC, as seen in Fig. 17(a), with a (re)learning phase of 
120 sampling intervals (approximately), compensates the control signal for that change. However, if Dmax  is 
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not adapted neither (15) is applied, then the performance is substantially deteriorated, as shown in Fig. 17(b), 
by the same reasons as in the previous case. 

The vertical scales in the figures are in volt, from the sensor/transducer. Its relation with the temperature in 
°Celsius is 1 V - 22°C, 3 V - 32°C, 5 V - 38°C. By the construction of the apparatus there is a non-linearity in 
this relation. 

The disturbances and changes are manually made and are as similar as possible for the sake of comparison. 

6.3. Case 4." Simulat ions with an M I S O  system 

Considering the system (27) with two inputs ul and u2 and one output y: 

u l ( k  - l )u2(k  - 2) [u l (k  - 1) + 3/23 
y(k )  = 0 .1y2 (k  - 1) + (27) 

1 + u l 2 ( k  - 1) + u 2 2 ( k  - 2) 
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to be controlled as shown in Fig. 18. The controller must be an SIMO system. For  a sinusoidal reference, the 
results obtained are illustrated in Fig. 19, showing a good behavior. After 300 iterations the error is almost zero. 

6.4. Case 5: Simulation with an M I M O  process  

The problem adopted here is described in [12]. The main purpose is the simultaneous regulation of the 
blood pressure (mean arterial pressure - MAP) and of the cardiac output (CO). It  is desirable to maintain or 
increase CO and, at the same time, to decrease MAP. There are two drugs that are often used in order to 
achieve this goal: an isotropic drug dopamine (DOP) that increases CO and MAP, and a vasoactive drug 
sodium nitroprusside (SNP) that increases CO but decreases MAP. Considering the following transfer 
matrix (28) model of the process 

F " ~ o  l_- P~" '~'~l["l (28) 
L A MAPJ L~2, /422JLu2J 
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Fig. 19. Case 4. A non-linear process with one output and two inputs: (- - - -) process outputs, (---) reference. 

Considering a sampling interval of 30 s, the discretised difference equations are (33) 

with yl representing the variation of CO, y2 the variation of MAP, ul the input DOP and u2 the input SNP. 
The correspondence between output and input variables that was found to give better results was ul to yl 

and ~2 to y2. The set of relations used in the defuzzification method was the following: 

if we want to increase yl and increase y2 then increase ul and maintain ~2, 
if we want to increase yl and decrease y2 then increase ul and increase ~2, 
if we want to increase yl and maintain y2 then increase ul and increase ~2, 
if we want to decrease yl and decrease y2 then maintain ul and decrease ~2, 
if we want to decrease yl and increase y2 then maintain ul and decrease ~2, 
if we want to decrease yl and maintain y2 then decrease ul and decrease ~2, 
if we want to maintain yl and increase y2 then increase ul and decrease ~2, 
if we want to maintain yl and decrease y2 then decrease ul and increase ~2, 
if we want to maintain yl and maintain y2 then maintain ul and maintain ~2. 
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The values of the variables are increased or decreased in the same way as described in Section 4.4. The only 
difference in this defuzzification method is that instead of two If. . .  then rules we have a set of rules that 
transmit to the algorithm our knowledge about the relations between the outputs and the inputs. 

Using a rule base with only ten rules, the results obtained are illustrated in the following. 
The proposed SOC shows good regulating capabilities (Fig. 20), without the need for a reference model, 

comparable to those of [12], but here with a smoother control signal at least for the case shown by Fig. 21. 
The decoupling capabilities are shown in Fig. 22 where the two references are independently followed up, 
although (as it happens for all realizable controllers) it is not possible to completely eliminate the coupling in 
transient state. Such properties are not shown in [12]. 

If the process parameter K22 changes by + 20°/'0, the results of the control system are illustrated by Fig. 23. 
After a short (re)learning phase, the regulation error tends to zero. This effect is obtained with a relatively 
smooth control signal (Fig. 24). These results are comparable to those of [12], but here without repetitive 
trials (for learning) and in a much simpler way. 
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7. Conclusions 

The most important and original characteristics of the controller are that (i) the FMNR is a parameter 
given by the programmer to the controller, so one can have a more accurate control over the sampling time 
and simultaneously maintain the computational resources needed at a reasonable level and (ii) the adapta- 
tion technique is effective and easy to implement. The assumptions made in order to allow the application of 
the controller do not require much knowledge about the process and are easily fulfilled for the majority of 
systems. The on-line construction of the rule base as well as the adaptive similarity degree makes it easy for 
the controller to forget one system and learn how to control another when process dynamics change or other 
disturbances appear. The feedforward and predictive effects given in the fuzzification and defuzzification 
stages allow to compensate for the pure time delays and give a good dynamics to the control system. 

The learning phase can probably be quite longer in real more complex processes (than the ones 
experimented) if the similarity factor adaptation is not well done. This may be caused by the existence of 
noisy data in the time window observation. If noise could be appropriately separated from the good signal, 
then learning would be improved. The simple technique used for the adaptation of Dmax (see expressions (13) 
and (14)) was found by experimental research but is sufficiently effective at least in the examples shown. 
Probably in more complex situations a more elaborated adaptation strategy can also improve the learning 
abilities. 

Further research about the introduction of a fuzzy higher level in charge of supervising the behavior of the 
control loops is planned. This level should be able to give a higher autonomy to the SOC by changing the 
FMNR and the observation window width when needed (and also the other aspects focused in Section 4.7) 
and by improving the adaptation tasks if the learning phase would be too long. Problems were found trying 
to control unstable systems and those of non-minimum phase. The unstable systems do not allow the initial 
learning phase. The non-minimum phase systems do not fulfill completely the assumptions made (v). Further 
research is also needed for these cases. 

Note: The computer configuration used was the following: Pentium 100 MHz ktcomputer, 16MB Ram, 
Matlab Programming Language for simulations, Dos LabWindows for real-time control (with data loaded 
in Matlab for hardcopy printings). 
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