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Abstract

In this paper, an algorithm for ranking loopless paths in undirected networks, according to the transmission
time, is presented. It is shown that the worst-case computational time complexity of the algorithm presented
is O(Kr(m+n log n)), which is also the best-known complexity to solve this problem. The worst-case memory
complexity is O(Kn), which improves the existing algorithms. Finally, comparative computational results, with
other algorithms for the same problem, are reported.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The optimal path problem is very well known and many variants of this problem have been
proposed in the literature, the shortest path problem being one of the most studied. The quickest
path problem is an optimal path problem where it is intended to compute a path that sends a given
amount of data from an initial node to a terminal node with minimum transmission time.
Let (N;A) be a network with n nodes and m arcs where, for any given (i; j)∈A; lij ∈R+0 denotes

the lead time for traversing (i; j), and cij ∈R+ its capacity per time unit. Given 
∈R+, the total
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time to transmit 
 units of data throughout a path p is deHned by T (p) = l(p) + 
=c(p), where
l(p) =

∑
(i; j)∈p lij and c(p) = min(i; j)∈p {cij}. Let s; t ∈N (with s �= t) be the initial and terminal

nodes of (N;A), respectively, and denote the set of paths from s to t by P. Then the quick-
est path problem consists in minp∈P {T (p)}. This problem was introduced by Moore [1] in 1976,
and the Hrst algorithm to solve it was presented in 1990 by Chen and Chin [2]. These authors
noticed that with a Hxed capacity value the quickest path problem is reduced to a shortest path
problem, which lead them to propose an extension of the original network, with as many levels as
the number r of distinct capacity values. Each path between speciHc nodes in the modiHed network
corresponds to a path with a certain capacity in the original one; therefore, capacity values can be
ignored and the solution of the initial problem can be found with a labelling algorithm, since it
is a shortest path in the augmented network. This network contains rn nodes and rm arcs; there-
fore, the space complexity of the algorithm by Chen and Chin is of O(rm + rn), while its time
complexity is of O(rm + rn log n). Later, Rosen et al. [3] noticed that the extended network can
be replaced by a sequence of, at most, r networks with increasing capacity lower bound (therefore,
subnetworks of the original one), the shortest path problem resolution on the modiHed network be-
ing replaced by several shortest path problems resolution, one in each of those subnetworks. The
quickest path is the one with minimum total transmission time. A diLerent approach was intro-
duced by Martins and Santos [4] in 1997, whom studied the problem from a biobjective point of
view. The result is an algorithm very similar to the one by Rosen et al., but where the short-
est paths with maximum capacity are computed, instead of the shortest paths, trying to solve less
problems. When the worst case is considered, these two algorithms improve the space complexity
of Chen and Chin’s algorithm to O(m + n), although they still have the same time complexity.
Other variants of the quickest path problem have also been studied. We refer to the all-pairs quick-
est path problem [5], and the K quickest path problem [6], where paths may contain repeated
nodes.
As for the shortest path problem, the quickest path problem can be generalized to enumerate the
K quickest paths from s to t, or the K quickest loopless paths (or simple paths) from s to t, given
an integer K ¿ 1. The present paper deals only with the K quickest loopless paths problem. For
short, in the following the term path will be used in place of simple path. Two algorithms to solve
this problem are referred to:

• one due to Rosen et al. (very similar to another one, proposed for ranking optimal paths, by
Martins and Pascoal [7]), valid for any network and with time complexity O(Knr(m + n log n)),
and space complexity O(Kn);

• and another one by Chen [8], valid for any type of network, with the same time complexity but
O(Knr) space memory requirements, if using Yen’s algorithm [9] to rank shortest paths; and valid
only on undirected networks, with time of O(Kr(m+n log n)) and space of O(Knr), if using Katoh
et al.’s algorithm [10] to rank shortest paths.

In this paper, the algorithms of Rosen et al. and of Katoh et al. are merged, in order to obtain a new
one, able to rank quickest paths in undirected networks with O(Kr(m+n log n)) time complexity and
O(Kn) space complexity. In Section 2, the algorithms of Rosen et al. and Katoh et al. are reviewed,
the new algorithm is introduced, and its theoretical complexity is studied. Section 3 is dedicated to
computational results and conclusions are presented in Section 4.
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2. The K quickest loopless paths problem

Let subp (x; y) denote the subpath of p from node x to node y, and let p�q denote the concate-
nation of paths p and q, that is, the path formed by p and followed by q.
In [9], Yen presented an algorithm to rank the shortest paths. He suggested the use of a set X of

paths, each one candidate to the kth shortest path, for some k ∈{1; : : : ; K}. Thus, set X is initialized
with the best path (regarding the cost function) and, after that, the best element in X is selected and
analysed, in order to Hnd new paths to insert in X . The paths selected correspond to p1; p2; : : : , and
the algorithm halts when K paths are found. Given one of those paths pk = 〈s= v1; v2; : : : ; t= v‘(pk)〉,
the new candidates for following shortest paths are obtained from the remaining set of paths,

Pj(vd(pk))− {pk}=
‘(pk)−1⋃

i=d(pk)

Pk(vi)

and solving the shortest path problem in every Pk(vi): vd(pk) is the deviation node of pk , that is,
the node where pk separates from the path pj that generated it. Pk(vi) is the set of paths, diLerent
from p1; : : : ; pk , of the form qi = subpk (s; vi)�q, where q is a path from vi to t.
To exemplify, consider the paths from 1 to 5 in the network depicted in Fig. 1, and p1 =
〈1; 3; 4; 5〉; p2 = 〈1; 2; 4; 5〉. According to Yen’s partition, P−{p1}=P1(1)∪P1(3)∪P1(4), which
is represented in the Hrst tree in Fig. 2. The diLerent sets in the partition are distinguished by
diLerent line styles, the solid one being p1. Analogously, p2 ∈P1(1) and P1(1)− {p2}=P2(1) ∪
P2(2) ∪P2(4). This partition is depicted in the second tree of Fig. 2.

Fig. 1. Network (N;A).

Fig. 2. Trees of paths from 1 to 5 in (N;A).
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Table 1
Alternative costs to (N;A)

i 1 2 3 4
j 2 3 4 4 5 4 5 5
(lij ; cij) (10; 10) (15; 10) (50; 5) (10; 5) (10; 2) (5; 10) (15; 5) (35; 10)

In [3], Rosen et al. use Yen’s process, but considering the objective function to be the total
transmission time. However, a suitable adaptation has to be made, to compute the quickest path in
a given Pk(vi). In fact, for Yen’s algorithm, i.e. for the shortest path problem, it is enough to

• delete from (N;A) the arcs (vi; vi+1) and (vd(pk); x)∈pj, for some j∈{1; : : : ; k} (so that the new
path is not p1; : : : ; pk);
• assure that qi is loopless, then the nodes in subpk (s; vi) cannot be repeated; therefore, they are
also deleted (except vi);

• and then determine q, the shortest path from vi to t (then qi is the shortest path from s to t).
This last statement is not valid for quickest paths, 1 therefore, analogously to the algorithm they
proposed for the quickest path problem, Rosen et al. replaced the resolution of the shortest path
problem by the resolution of one shortest path problem in each network, of a sequence obtained by
Hxing the minimum capacity allowed, based on Theorem 1. Let (Np;Ap) denote the subnetwork
of (N;A) without the nodes of p (except the last one), and (N;A(w)) the subnetwork of (N;A)
without the arcs with capacity smaller than w. Rosen et al. proved:

Theorem 1. Let q′j be the minimum lead time path from vi to t in (Nsubpk (s;vi)
;Asubpk (s;vi)

(c(q′j)))
and p′

j = subpk (s; vi)�q
′
j, with j = 1; : : : ; r. Then the quickest path in Pk(vi) is p∗, such that

T (p∗) = min16j6r {T (p′
j)}.

To illustrate this result, consider the graph in Fig. 1 but with the arc lead time and capacity per
time unit as in Table 1 and 
=100. According to Theorem 1, to compute the quickest path from 1
to 5 in (N;A) with initial part 〈1; 4〉, the shortest path problem from 4 to 5 is solved in (N;A(2))=
(N;A); (N;A(5)) and (N;A(10)), thus obtaining q1=〈4; 2; 5〉 (or 〈4; 3; 5〉), q2=〈4; 3; 5〉; q3=〈4; 5〉,
respectively. Since T (〈1; 4〉�q1) = 120; T (〈1; 4〉�q2) = 90 and T (〈1; 4〉�q3) = 105, the quickest
one is 〈1; 4; 3; 5〉.
The two major contributions of Rosen et al.’s algorithm are:

• to notice that the set of paths partition used by Yen does not depend on the objective function;
• to propose a procedure to Hnd the quickest path satisfying speciHc constraints.
This is the motivation to use an analogous approach for adapting Katoh et al.’s algorithm to the
same problem. The major drawback of Yen’s algorithm is that, in a worst-case, it demands the

1 For instance, consider 
=20 and paths p=〈1; 3〉, p′=〈1; 2; 3〉 and q=〈3; 4〉, with l(p)=l(q)=10; l(p′)=8; c(p)=20
and c(p′) = c(q) = 5. Then, p is quicker than p′, and yet T (p�q) = 24¿T (p′�q) = 22.
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computation of n − 1 new paths (the maximum number of arcs in a simple path), for each pk
analysed. In [10], Katoh et al. presented another algorithm for the K shortest paths problem which,
in turn, uses a set of paths partition that does not depend on the size of pk , and allows to rank
shortest paths, computing at most three new paths for each pk .
Let pk be obtained as the best path in P

j
k(v�; v�), where

• pj is the path analysed to obtain pk ,
• v� is the deviation node of another path obtained from pj, which is the farthest from s and
precedes vd(pk),
• v� is the deviation node of another path obtained from pj, closest to s and that follows vd(pk).

P
j
k(v�; v�) is formed by paths p = subpj (s; v�)�q, diLerent from p1; : : : ; pk , where q is a path

from v� to t that deviates from pj before node v�. Katoh et al. noticed that

P
j
k(v�; v�)− {pk}=P

j
k+1(v�; vd(pk)) ∪P

j
k+1(vd(pk); v�) ∪Pkk+1(vd(pk)+1; t):

The process to determine the shortest path in each of those subsets, say P
j
k(vx; vy), uses a Yen-like

procedure. In fact, that path is p=subpj (s; vx)�q, where q deviates from subpj (vx; t) before vy; so,
as before, the nodes in subpj (s; vx) and some arcs of other paths generated from pj, precedent to
vx, are deleted. Moreover, Katoh et al. introduced a procedure that computes such a q, as long as
the network is undirected and lij¿ 0, for any (i; j)∈A, based on the computation of two shortest
path trees and the analysis of the arcs and nodes in the network. From now on, only undirected
networks will be considered. Let Ts be the tree of the shortest paths from s to any i∈N, and Tt
be the tree of the shortest paths from any i∈N to t. Denote by Ts(i) the path from s to i∈N in
Ts, and by �s(i) the index of the node where Ts(i) deviates from p∗=Ts(t)=Tt(s) (analogously
for Tt(i) and �t(i)). Katoh et al. proved the following result.

Lemma 1. Let p∗ =Ts(t) =Tt(s), and p∗ = 〈s = v1; v2; : : : ; v‘(p∗) = t〉, be the shortest path from
s to t in (N;A). If there exists a path from s to t deviating from p∗ before v� ∈p∗, then the
shortest one is either of type 1 or 2:

Type 1: Ts(u)�Tt(u), with �s(u)¡�,
Type 2: Ts(u)�(u; v)�Tt(v), with (u; v) �∈Ts ∪Tt and �s(u)¡�.

As mentioned, the adaptation of this algorithm uses the strategy of Rosen et al., considering the
partition of Katoh et al. Moreover, based on Theorem 2, solving the constrained problem of Hnding
the quickest path in P

j
k(vx; vy) is replaced by computing the shortest paths in that set deHned over

(Nsubpk (s;vx)
;Asubpk (s;vx)

(ci)), for any i = 1; : : : ; r, where c1; : : : ; cr are the distinct values of the arcs
capacities.

Theorem 2. Let q′j be the minimum lead time path from vx to t, deviating from subpj(vx; t) before
vy ∈pj, in (Nsubpk (s;vx)

;Asubpk (s;vx)
(c(q′j))) and p′

j = subpk (s; vk)�q
′
j, with j = 1; : : : ; r. Then the

quickest path in P
j
k(vx; vy) is p∗ such that T (p∗) = min16j6r {T (p′

j)}.
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Fig. 3. Trees of the shortest paths from 4 to i∈N, and from i∈N to 5, in subnetworks of (N〈1;4〉; A〈1;4〉).

As the result, the proof of Theorem 2 is analogous to the one of Theorem 1, which can be found
in [3], and therefore is omitted. It remains to answer the question of how to determine the path with
minimum lead time, coincident with pj until a node previous to vy in each network that has to be
considered. It should be noticed that the conditions of Lemma 1 may not be satisHed, since it can
happen that q=subpj(vx; t) is not a path in the network, or that it is not the shortest one. Assuming
there exists a path p=Ts(t) =Tt(s), the following procedure is suggested:

• If q �= p, then p is the path to be used.
• Else Lemma 1 can be applied.
Recall the network in Fig. 1 with 
 = 100, and consider the path p = 〈1; 4; 5〉. According to

Theorem 2, the quickest path from 1 to 5, diLerent from p and with the form 〈1; 4〉�q, can be
found by determining the trees in Fig. 3, in subnetworks of (N′;A′)= (N〈1;4〉;A〈1;4〉). Computing
T4 and T5 in (N′;A′(2)) = (N;A), Hrst two plots, and then analysing the nodes in N′ and
the arcs in A′ − Ts − Tt , two paths are found: q1 = Ts(2)�Tt(2) = 〈4; 2; 5〉, of type 1, and
q2 =Ts(3)�(3; 5) = 〈4; 3; 5〉, of type 2. Either of them can be chosen since they both have the
same cost, so it will be considered p′

1 = 〈1; 4; 2; 5〉. In (N′;A′(5))—trees represented in the last
plots—q3=〈4; 3; 5〉 is the only path obtained. Thus p′

2=〈1; 4; 3; 5〉. Finally, there are no paths besides
p in (N′;A′(10)); therefore, as T (p′

1) = 120 and T (p
′
2) = 90, the path we are looking for is p

′
2.

The method described above is summarized in Algorithm 1 and Procedures 1.1 and 1.2.

Algorithm 1. Adaptation of algorithm of Katoh et al. to enumerate quickest simple paths

p1 ← Quickest path from s to t
p← Quickest path from s to t; deviating from p1 before t; X ← {p}
For (i∈{2; : : : ; K}) Do
pi ← Quickest path in X ; X ← X − {pi}
pj ← Path analysed to obtain pi

/* Quickest path in P
j
i+1(v�; vd(pi)) */

Delete (v�; x) such that (v�; x)∈{pj; : : : ; pi−1}
Pc ← Quickest path coincident with pj until v� and deviating before vd(pi); X ← X ∪ {Pc}

/* Quickest path in P
j
i+1(vd(pi); v�) */

Delete (v�; x) such that (v�; x)∈{pj; : : : ; pi−1}
Pb ← Quickest path coincident with pj until vd(pi) and deviating before v�; X ← X ∪ {Pb}
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/* Quickest path in Pii+1(vd(pi)+1; t) */
Pa ← Quickest path coincident with pi until vd(pi)+1 and deviating after; X ← X ∪ {Pa}
Restore original network

EndFor

Procedure 1.1. Adaptation of Katoh et al.’s procedure for the quickest path problem coincident
with q until vx and deviating before vy

Sort A by increasing order of the arcs capacities
X ← ∅
i ← 1
While (i6 r) Do

Nsubq (s;vx) ← {u∈N : u �∈ subq (s; vx) ∨ u= vx}
Asubq (s;vx)(ci)← {(u; v)∈A : u∈Nsubq(s;vx) ∧ v∈Nsubq(s;vx) ∧ cuv¿ ci}
p← Minimum time path from vx to t, coincident with q and deviating before vy in
the modiHed network
X ← X ∪ {p}
j ← k such that c(p) = ck ; i ← j + 1

EndWhile
p∗ ← Quickest path in {q�p : p∈X }

Procedure 1.2. Procedure for the minimum time path problem deviating from q before v�

Compute tree Ts
If ((q is not deHned) or (q �=Ts(t))) Then
p←Ts(t)

Else
Compute tree Tt
l∗ ← +∞; X ← {s}
While (X �= ∅) Do
u← element in X ; X ← X − {u}
If (�s(u) = �t(u)) Then

For ((u; v)∈A−Ts −Tt such that �s(u)¡�t(v)) Do
If (l(Ts(u)) + luv + l(Tt(v))¡l∗) Then

l∗ ← l(Ts(u)) + luv + l(Tt(v)); u∗ ← u; v∗ ← v
EndIf

For ((u; v)∈Ts such that �s(v)¡�) Do X ← X ∪ {v}
EndIf
If (�s(u)¡�t(u)) Then

If (l(Ts(u)) + l(Tt(u))¡l∗) Then
l∗ ← l(Ts(u)) + l(Tt(u)); u∗ ← u

EndIf
For ((u; v)∈Ts such that �s(v)¡�) Do X ← X ∪ {v}

EndIf
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EndWhile
If ((u∗; v∗) is deHned) Then p←Ts(u∗)�(u∗; v∗)�Tt(v∗)
If (u∗ is deHned) Then p←Ts(u∗)�Tt(u∗)

EndIf

To exemplify the algorithm presented here, consider the enumeration of K = 3 quickest paths
in the network depicted in Fig. 1, with 
 = 100. The set A will be considered to be sorted by
the arc capacities: c1 = 2; c2 = 5 and c3 = 10. First, a quickest path algorithm is used to determine
p1=〈1; 3; 4; 5〉, with T (p1) = 35. Then the quickest path deviating from p1 before 5 is computed, thus
looking for the minimum time path deviating from p1 before 5 in each network (N;A(ci)); i=1; 2; 3
(see Procedures 1.1 and 1.2). Considering q = 〈1; 3; 4; 5〉 and vy = 5 in (N;A(2)) = (N;A), the
path p= 〈1; 2; 5〉=Ts(5) with c(p) = 2 is obtained, since q �=Ts(5). For network (N;A(5)); q=
Ts(5)=Tt(1) and p= 〈1; 2; 4; 5〉. Finally (N;A(10)) is used, thus obtaining p= 〈1; 4; 5〉. From the
three paths computed, the quickest, 〈1; 2; 4; 5〉, is stored in X . The best element p2 = 〈1; 2; 4; 5〉 is
selected in X and analysed. Node v� is not deHned, since vd(p2) = s = 1, and v� = t = 5; therefore,
only the quickest paths in P1

3(1; 5) and P2
3(2; 5) are computed and named, respectively, Pb and Pa.

Considering the determination of Pb; (1; 2) is deleted and the quickest path problem from 1 to 5,
which deviates from p1 before 5, is solved. In (N;A(2)); p=〈1; 3; 5〉 is computed and c(p)=5; then
in (N;A(10)); p = 〈1; 4; 5〉. The quickest one is Pb = 〈1; 3; 5〉, which is stored in X . After that Pa,
the quickest path from 2 to 5, deviating from 〈2; 4; 5〉 before 5, is determined. Once again, networks
(N;A(2)), where 〈2; 5〉 is obtained, and (N;A(5)), determining 〈2; 4; 3; 5〉, are considered. Thus,
Pa = 〈1; 2; 3; 4; 5〉 and X = {〈1; 3; 5〉; 〈1; 2; 3; 4; 5〉}. The following quickest path is then selected in X ,
so p3 = 〈1; 3; 5〉; X = {〈1; 2; 3; 4; 5〉}, and the algorithm stops when K paths are found.
Regarding the number of operations performed, in the algorithm proposed K paths are selected

in X and scanned. This analysis produces at most three new paths by applying Procedure 1.2 r
times, in a worst case. That procedure demands the computation of two shortest paths trees, with
O(m + n log n), if Dijkstra’s algorithm [11] is used, and the analysis of every arc and node in
the network, with O(n + m). Therefore, it has computational complexity O(m + n log n). Thus, the
time complexity of the proposed algorithm is O(Kr(m + n log n)). In terms of memory require-
ments, at most 3K paths are generated, which have at most n nodes, so the space complexity is
of O(Kn).

3. Computational experiments

In this section, experimental results regarding algorithms for ranking quickest paths are reported.
The algorithms implemented were: Rosen et al.’s (RA); the one described in Section 2 (NA); Chen’s,
using Yen’s algorithm to rank shortest paths (CYA), and Chen’s, using Katoh et al.’s algorithm to
rank shortest paths (CKA).
It should be noticed that, in order to solve this problem, Chen [8] proposed to rank K paths with

minimum lead time in each (N;A(ci)); i = 1; : : : ; r, storing all those paths and then selecting, by
order, the K quickest ones. As referred to previously, to rank K shortest paths Yen’s and Katoh
et al.’s algorithms were used. Some of the paths may be obtained repeatedly. CYA and CKA store all
the paths, and only in the ranking phase the repeated ones are ignored.
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Table 2
Number of stored paths in undirected random networks with 
 = 1000

d= 2 d= 10

(a) n= 1000
RA 698.875 617.100
NA 235.875 228.400
CYA 25909.500 48808.100
CKA 9231.750 19687.600

(b) n= 5000
RA 851.800 732.400
NA 241.100 232.700
CYA 35339.200 50440.400
CKA 10270.100 19651.300

All the implementations were coded in C language and the tests were carried out on an AMD
Athlon 1:3 GHz computer with 512 Mbytes of RAM. We present average results for solving 10
problems generated with the same parameters, except for a seed. In the tests presented K = 100
paths were ranked in undirected networks with both lead times and capacities uniformly generated
in {1; : : : ; 100}, s and t are randomly chosen in {1; : : : ; n}, and 
=1000. Three types of experiments
have been performed:

• Random connected network problems, with n∈{1000; 5000} nodes, and m arcs (with m= nd and
d∈{2; 10}). A Hamiltonian path is created and then the remaining arcs are generated. There are
no multiple arcs between a pair of nodes.
• Complete network problems, with n∈{100; 200; 500} nodes, and arcs joining each pair of distinct
nodes.
• Grid network problems, with p = 100 rows, q∈{50; 100; 150; 200} columns and n = pq nodes,
arranged in a planar grid, numbered consecutively from left to right and top to bottom. Each pair
of adjacent grid nodes is connected by an arc.

Table 2 shows the total number of paths generated and stored by each implementation until p100
is determined, while Table 3 presents the CPU times obtained. The results in the tables reUect the
two diLerent approaches of Rosen et al. and of Chen. In fact, in the Hrst one, computing new paths
is alternated with determining each pk , while in the second all paths are generated before p1; : : : ; pK
can be known. So, Chen’s algorithm demands that more paths are computed and this is also shown,
from an empirical point of view, in Table 2, and in Table 3 concerning running times.
In order to compute the performances of the algorithms until the last path is found, the following

Hgures show partial results, concerning the number of paths generated and the CPU times, for
obtaining the Hrst 10; 20; : : : ; 100 paths. The results on those Hgures regard only RA and NA.
Those plots conHrm what could already be expected from the theoretical complexity order and

from Tables 2 and 3, that the algorithm based on Katoh et al.’s method, NA, in general, outperforms
the one based on Yen’s method, RA. In Tables 2 and 3 it can also be seen that CKA was more
eVcient than CYA, both in terms of time and memory space.
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Table 3
Total CPU times (in s) in undirected random networks with 
 = 1000

d= 2 d= 10

(a) n= 1000
RA 1.253 20.356
NA 0.901 7.183
CYA 11.863 135.564
CKA 8.140 51.119

(b) n= 5000
RA 46.400 448.268
NA 17.833 159.266
CYA 47.025 618.996
CKA 54.997 537.571
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Fig. 4. Random undirected networks with 
 = 1000.
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Fig. 5. Random undirected networks with 
 = 1000.

Figs. 4 and 5 show random network results, while Figs. 6 and 7 concern complete networks, and
Figs. 8 and 9 grid networks. Those plots show that NA outperformed RA and, as expected from the
theoretical complexity results, both algorithms’ CPU times increased linearly with K . Moreover, RA’s
behaviour seems to have a higher dependence on the size of the network. In fact, for any type of
network in Figs. 5, 7 and 9 it is clear that RA CPU times increase faster than NA CPU times when
n grows. This is quite evident in grid networks, where RA running times were better than the ones
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Fig. 6. Complete undirected networks with 
 = 1000.
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Fig. 7. Complete undirected networks with 
 = 1000.
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Fig. 8. Grid undirected networks with 
 = 1000.

presented by NA for 50× 100 grids, and they were very close for 100× 100 grids, but the diLerence
between them increased for 150× 100 and 200× 100 grids.
NA was also better than RA in terms of the number of stored paths. In fact, Figs. 4, 6 and 8 show

that the number of stored paths was independent of the network size for NA, although it increased
with K (recall that, at most, 3K paths are computed). On the other hand, the same number but
concerning RA increased both with K and with n, being higher than for NA.
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Fig. 9. Grid undirected networks with 
 = 1000.

4. Conclusions

In this paper, a new algorithm for ranking quickest paths on undirected networks, which is an
adaptation of Katoh et al.’s algorithm (of the same type of the adaptation of Yen’s algorithm made
by Rosen et al.), was presented. It was shown that this algorithm improves the time complexity
of Rosen et al.’s algorithm, and the space complexity of Chen’s algorithm. Experimental results
confronted with Rosen et al.’s and Chen’s algorithms results were presented. The new algorithm
seems to be the most eVcient.
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