
www.elsevier.com/locate/knosys

Knowledge-Based Systems 19 (2006) 480–488
The importance of retrieval in creative design analogies q

Paulo Gomes *, Nuno Seco, Francisco C. Pereira, Paulo Paiva, Paulo Carreiro,
José L. Ferreira, Carlos Bento

CISUC – Centro de Informática e Sistemas da Universidade de Coimbra, Departamento de Engenharia Informática – Polo II,

Universidade de Coimbra, Portugal

Received 23 January 2006; accepted 15 April 2006
Available online 12 June 2006
Abstract

Analogy is an important reasoning process in creative design. It enables the generation of new design artifacts using ideas from seman-
tically distant domains. Candidate selection is a crucial process in the generation of creative analogies. Without a good set of candidate
sources, the success of subsequent phases can be compromised. Two main types of selection have been identified: semantics-based retrieval
and structure-based retrieval. This paper presents an empirical study on the importance of the analogy retrieval strategy in the domain of
software design. We argue that both types of selection are important, but they play different roles in the process.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Creative design; Analogy; Case-based reasoning; Software design
1. Introduction

Creativity comprises at least four components [2]:
process, product, person or entity, and situation. Within
this model the creative product is the crucial component.
Creativity has no meaning except in relation to the creative
product. Thus an important issue in developing computa-
tional models of creativity is the evaluation of the creative
product. Research done in this domain has come up with
several methods used for generation of artifacts considered
creative [3–7]. Some methods identified in creative reason-
ing are: cross-domain transfer of ideas (analogy), combina-
tion of ideas, and exploration and transformation of
conceptual spaces. Most of these methods are used in
creative design [8].
0950-7051/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.knosys.2006.04.006

q This work was partially supported by POSI – Programa Operacional
Sociedade de Informação of Fundação Portuguesa para a Ciência e
Tecnologia and European Union FEDER, under Contract POSI/33399/
SRI/2000, by program PRAXIS XXI. REBUILDER homepage is http://
rebuilder.dei.uc.pt.

* Corresponding author.
E-mail address: pgomes@dei.uc.pt (P. Gomes).
Creative design can be defined as a cognitive process
that generates new classes of designs [4]. A cognitive pro-
cess is considered creative if the product that it generates
satisfies certain properties or attributes [1]. These proper-
ties determine the product’s creativity, thus defining guide-
lines to the product’s evaluator. We identify two main
properties: novelty and usefulness.

The first thing that comes into mind when talking about
creative design is novelty. This is a mandatory characteris-
tic in any creative artifact. The creative product must be
something different from what the evaluator knows or is
expecting. Evaluation of a creative product has to do with
the confrontation of two sets of knowledge. One is the
information conveyed by the design product and the other
is the knowledge that the evaluator possesses or uses in the
evaluation. If the knowledge from the design product does
not make part of the evaluator’s knowledge set or is suffi-
ciently different, then it can be said that the product is
novel.

During the evaluation of the potential creative design
product, the evaluator uses performance-measuring
functions, in order to determine to which extent the design
satisfies the problem requirements. These measuring func-
tions make part of the evaluator’s body of knowledge.

http://rebuilder.dei.uc.pt
http://rebuilder.dei.uc.pt
mailto:pgomes@dei.uc.pt

UML EditorKnowledge Base Manager

Knowledge Base Administrator Software Designer

Knowledge Base

Case Library

Case Indexes

WordNet

Data Type
Taxonomy

CBR Engine

Retrieval

Design Composition

Analogy

Verification Evaluation

Learning

Fig. 1. REBUILDER’s Architecture.

1 Unified Modelling Language [19].

P. Gomes et al. / Knowledge-Based Systems 19 (2006) 480–488 481
If minimal performance thresholds are met, then the design
product is useful and solves the problem. This is another
mandatory characteristic of creative design solutions. The
creative design product must be appropriate and useful.

Analogical reasoning [9–12] is a widely used problem
solving method. It consists in the transference of knowl-
edge between different domains. This transference is based
on similarities between past problems and the new prob-
lem. The transferred knowledge is then used to generate
solutions for the new problem. The main benefit of analog-
ical reasoning is its capability to transfer knowledge
between different domains. This cross-domain transfer
enables the generation of new creative designs, and can
be considered as a creative process.

Analogical reasoning involves at least three phases:
identifying candidates for analogy, mapping the candidate
sources with the target, and transferring knowledge
between source and target. The first phase is crucial for
the generation of creative analogies, without a good set
of candidate sources the subsequent phases maybe at stake.
Two main retrieval strategies can be used: semantics-based
retrieval and structure-based retrieval. In the next para-
graphs we describe some of the most important works on
analogical retrieval.

Gentner and Forbus [13] have developed the MAC/
FAC (Many Are Called/Few Are Chosen) approach to
analogy retrieval. It comprises a two-stage structural
retrieval model, where in the MAC phase a crude idea of
the case structural content is used to retrieve a broad range
of cases from memory. Then, in the FAC phase, a complete
structural similarity metric is used to eliminate several
cases, and to rank the chosen ones.

The Holographic Reduced Representations approach
[14] combines semantic and structural similarity. The
semantic similarity is based on the common semantic prim-
itives of objects, while the structural similarity is accessed
using the various roles of each object. This structural sim-
ilarity is only a superficial assessment of the structural
similarity.

An approach using constraint satisfaction (ARCS –
Analogical Retrieval by Constraint Satisfaction [12])
applies three similarity types through the creation of a con-
straint network. These types are: lexical similarity,
structural similarity, and pragmatic similarity.

RADAR was developed by Crean and O’Donoghue [15]
with the goal of retrieving semantically distant analogies in
a computationally tractable manner. It is based on struc-
tural properties to retrieve candidate sources, and the main
concern of this approach is that distant analogies would
not be rejected by the semantic similarity.

In this paper, we present an approach to software design
using analogy, which is integrated in a Computer Aided
Software Engineering (CASE) tool named REBUILDER
[16]. This tool is based on Case-Based Reasoning (CBR)
[17] and comprises a Knowledge Base with several types
of knowledge, including WordNet [18], a lexical resource
used in REBUILDER as an ontology. We focus on the
retrieval phase of analogical reasoning, by studying the
influence of different candidate selection strategies in the
novelty and utility of generated artifacts. We have used
six combinations of semantic retrieval and structural
retrieval, to study the adequacy of each strategy to analog-
ical reasoning.

The next two sections describe REBUILDER and the
used knowledge base, which enable the reader to under-
stand the environment in which the analogical reasoning
module is used. Then Section 4 describes how analogy is
performed in REBUILDER, along with the different
retrieval strategies. Section 5 describes the experiments
performed and discusses the achieved results. Section 6
presents other approaches to analogy in design. Finally
Section 7 concludes this paper.

2. REBUILDER

The approach carried out in REBUILDER uses CBR as
the main reasoning framework, enabling the integration of
several different types of knowledge. This section provides
an overview on the system’s architecture.

Fig. 1 shows the architecture of REBUILDER. It com-
prises four main modules: the UML1 editor, the knowledge
base manager, the knowledge base (KB), and the CBR
engine. It also shows the two different user types: software
designers, and KB administrators. Software designers use
REBUILDER as a CASE tool, along with the system’s
reuse capabilities. A KB administrator is responsible for
keeping the KB updated and consistent. The UML editor
is the interface between REBUILDER and the software
designer, while the KB manager is the interface between
the KB administrator and the system.

The UML editor is the front-end of REBUILDER and
the environment where the software designer develops
designs. Apart from the usual editor commands to

School

+ name : String

+ address : String

+ phone : int

+ addDepartment(Dep: SchoolDepartment) : void

SchoolDepartment

+ name : String

+ addTeacher(prof: Teacher) : void

+ removeTeacher(name: String) : int

+ getTeacher(name: String) : Teacher

+ addStudent(name: String) : int

+ removeStudent(name: String) : int

+ getStudent(name: String) : Student

Student

+ name : String

+ studentID : int

Teacher

+ name : String

1..*

1..*

1..*

Fig. 2. Example of an UML class diagram (Case1), the package
classification is School.

482 P. Gomes et al. / Knowledge-Based Systems 19 (2006) 480–488
manipulate UML objects, the editor integrates new com-
mands capable of reusing design knowledge.

The KB Manager module is used by the administrator
to manage the KB, keeping it consistent and updated. This
module comprises all the functionalities of the UML edi-
tor, and adds case base management functions. These are
used by the KB administrator to update and modify the
KB.

The KB comprises four different parts: the case library,
which stores the cases of previous software designs; an
index memory used for efficient case retrieval; a data type
taxonomy; and WordNet [18], which is a general purpose
ontology. The KB is described in more detail in the next
section.

The CBR Engine is the reasoning module of
REBUILDER. As the name indicates, it uses CBR as the
reasoning framework. This module comprises five different
parts: Retrieval, Analogy, Design Composition, Verifica-
tion, and Learning. The retrieval module searches the case
library for designs or design objects similar to the query.
The most similar ones are presented to the user, allowing
the designer to reuse these designs or part of them. The
analogy module maps designs from the case library, to
the query design. The resulting mapping establishes the
knowledge transfer from the old design to the query design.
The composition module can be used to adapt a past
design (or part of it) to the query using design composition.
The verification module identifies and corrects errors in the
design. The learning module acquires new knowledge from
the user interaction, or from the system reasoning. In this
paper we focus on the analogy module.

3. Knowledge base

The KB comprises: the case library, the WordNet ontol-
ogy, the case indexes and the data type taxonomy. In
REBUILDER, a case describes a software design, which
is represented in UML through the use of class diagrams.
Fig. 2 shows an example of a class diagram representing
part of an educational system. Nodes are classes, with
name, attributes and methods. Links represent relations
between classes. Conceptually a case in REBUILDER
comprises: a name used to identify the case within the case
library; the main package, which is an object that compris-
es all the other case objects; and the file name where the
case is stored. UML class diagram objects considered in
REBUILDER are: packages, classes, interfaces and rela-
tions. A package is an UML object used for grouping other
UML objects. A class describes an entity in UML and it
corresponds to a concept described by attributes at a struc-
tural level, and by methods at a behavioral level. Interfaces
have only methods, since they describe a protocol of
communication for a specific class. A relation describes a
relationship between two UML objects.

WordNet is used in REBUILDER as a general ontology.
It uses a differential theory where concept meanings are rep-
resented by symbols that enable a theorist to distinguish
among them. Symbols are words, and concept meanings
are called synsets. A synset is a concept represented by
one or more words. If more than one word can be used
to represent a synset, then they are called synonyms.
The same word can have more than one different meaning
(polysemy). WordNet is built around the concept of syn-
set. Basically it comprises a list of word synsets, and dif-
ferent semantic relations between synsets. The first part is
a list of words, each one with a list of synsets that the
word represents. The second part, is a set of semantic
relations between synsets, like is-a relations, part-of rela-
tions, and other relations. REBUILDER uses the word
synset list and four semantic relations: is-a, part-of, sub-

stance-of, and member-of. Synsets are classified in four
different types: nouns, verbs, adjectives, and adverbs.
REBUILDER uses synsets for categorization of software
objects. Each object has an associated synset, which rep-
resents the object meaning, called context synset. The
object’s context synset can be used for computing object
similarity (using the WordNet semantic relations), or it
can be used as a case index, allowing the rapid access
to objects with the same classification.

Design cases can be large, so they are stored in files,
which makes case access slower then if they were in
memory. To solve this problem we use case indexes. These
provide a way to access the relevant case parts without hav-
ing to read all the case files from disk. Each object in a case
is used as an index. REBUILDER uses the context synset of
each object to index the case in WordNet. This way
REBUILDER can retrieve a complete case, using the case
root package, or it can retrieve only a subset of case objects,
using the objects’ indexes. This allows REBUILDER to
provide the user the possibility to retrieve not only packag-
es, but also classes and interfaces. To illustrate this

Institution Educational

Institution

School

Staff

Teacher
Classroom

Room is-a

is-a
is-a

part-of
member-of

member-of

[Case1]
Class: Teacher

[Case1]
Class: School

[Case1]

Package: School

index index index

College is-a

member-of
University

is-a

[Case2] Class:
University

[Case2] Package:

University

index index

Fig. 3. A small example of the WordNet structure and case indexes.

P. Gomes et al. / Knowledge-Based Systems 19 (2006) 480–488 483
approach, suppose that the class diagram of Fig. 2 repre-
sents Case1. Fig. 3 presents part of the WordNet structure
and some of the case indexes associated with Case1. As
can be seen, WordNet relations are of the types is-a, part-

of and member-of, while the index relation relates a case
object (squared boxes) with a WordNet synset (rounded
boxes). For instance Case1 has one package called School

(the one presented in Fig. 2), which is indexed by synset
School. It has also a class with the same name and categori-
zation, indexed by the same synset, making also this class
available for retrieval.

The data type taxonomy is a hierarchy of data types
used in REBUILDER. Data types are used in the defini-
tion of attributes and parameters. The data taxonomy is
used to compute the conceptual distance between two data
types.

4. Analogical reasoning

Analogical reasoning is used in REBUILDER to sug-
gest class diagrams to the designer. The analogy process
has three steps:

• Identify candidate diagrams for analogy.
• Map each candidate diagrams with the target diagram.
• Create new diagrams, by knowledge transfer, between

the candidate diagram and the target one.

4.1. Candidate selection

Cases are selected from the case library to be used as
source diagrams. The selected candidates must be appro-
priate, otherwise the whole mapping phase can be at risk.
Six alternative strategies for candidate selection can be
used in REBUILDER. To better describe these strategies,
candidate selection is decomposed in two subtasks: retriev-
al and ranking. While retrieval should be a fast comparison
task yielding a subset of candidate cases, ranking is a more
complex and computational demanding phase, where cases
are ordered accordingly to a defined criteria.
Candidate retrieval returns a subset of cases from the case
library. This should be a computational inexpensive task,
with the main purpose of identifying a first set of cases that
are possible candidates for analogy mapping with the target
problem. Case retrieval is based on the WordNet structure,
which is used as an indexing structure. The retrieval algo-
rithm uses the classifications of the target problem object
as the initial search probe in WordNet. For example, if the
designer selects a package as the target problem, the retriev-
al algorithm uses the package’s synset as the initial search
probe. Then the algorithm checks if there are any packages
indexes associated with the WordNet node of that synset. If
there are enough indexes, the algorithm stops and returns
them. Otherwise, it explores the synset nodes adjacent to
the initial one, searching for package indexes until the num-
ber of found indexes reaches the number of objects that the
user wants to be retrieved. Suppose that the N best objects
are to be retrieved, QObj is the query object, and ObjectList

is the universe of objects that can be retrieved (usually
ObjectList comprises all the library cases), the retrieval
algorithm is depicted in Fig. 4.

Candidate ranking receives a set of cases, which are then
ranked based on a metric. This metric incorporates several
criteria, which basically assesses semantic and structural
similarity. Three different similarity metrics are used: one
that combines semantic and structure evaluation, a second
one that uses an independence measure, and another that
evaluates structural properties.

The first similarity metric compares two UML class dia-
grams based on the diagram synset (the package’s synset,
which is a semantic evaluation) and diagram structure
(combines structural evaluation of the diagram with object
synset distances, is both structural and semantical), for a
detailed description of this metric, see [16].

The independence measure is specific to UML and eval-
uates the independence of each object in the class diagram,
based on the structural relations of diagram objects. Each
class or interface in the class diagram is assigned a score
that reflects the independence level of that object from
other objects in the diagram, thus yielding a sense of
importance of that object in the diagram.

Fig. 4. The retrieval algorithm used in REBUILDER.

484 P. Gomes et al. / Knowledge-Based Systems 19 (2006) 480–488
The third similarity metric is based on the structural
properties of the diagrams being compared. This metric
is based on the work of O’Donoghue [20]. The main idea
of this metric is using the graph-like properties of
diagrams to determine the structural similarity of two
diagrams. O’Donoghue argues that structural similarity
is more important for the identification of good analogi-
cal candidates than semantic similarity. But, because the
most accurate way to assess structural similarity can only
be done using structural mapping, which is computational
expensive, he has used structural properties to assess the
structural similarity, which are fast to assess [21].

The structural properties that we have used are:

• Number of loops in diagram.
• Average loop size.
• Number of classes.
• Number of interfaces.
• Number of generalizations.
• Number of realizations.
• Number of associations.
• Number of dependencies.
• Independence metric comparison.

Then we have devised four different candidate selection
strategies (see also Table 1):
Table 1
The retrieval strategies implemented in REBUILDER

Strategy Retrieval Ranking

1 Semantic Semantic and structural
2 Semantic Structural (independence)
3 Semantic Structural
4 No Semantic and structural
5 No Structural (independence)
6 No Structural
Strategy 1: this strategy first uses the semantic retrieval
to retrieve a set of cases, which are then ranked by the
first similarity metric. This is the first implemented strat-
egy in REBUILDER, but is also the more complex one.
Strategy 2: this strategy uses the semantic retrieval and
then uses the independence measure to rank the
retrieved cases.
Strategy 3: this strategy uses also the semantic retrieval,
but then, retrieved cases are ranked using the third
similarity metric.
Strategy 4: this strategy does not use a retrieval algo-
rithm, instead all the cases are feed into the similarity
metric, which in this strategy is the first similarity
metric. This strategy is the most computational
expensive one, it is used only for comparison with
the other strategies.
Strategy 5: this strategy is similar to strategy 4 where no
retrieval algorithm is used. The ranking is then
performed by the independence measure.
Strategy 6: this strategy is similar to the previous one, in
the sense that it does not use a retrieval algorithm. It
only ranks all the cases in the case library using the third
similarity metric. This strategy is also implemented to be
compared with the other ones.
4.2. Mapping process

The second step of analogy is the mapping of each can-
didate diagram to the query diagram, yielding an object list
correspondence for each candidate. This phase relies on
two alternative algorithms: one based on relation mapping,
and the other on object mapping, but both return a list of
mappings between objects.

The relation-based algorithm (see Fig. 5) uses the UML
relations to establish the object mappings. It starts the
mapping selecting a relation from the query diagram, based
on an UML heuristic (independence measure), which
selects the relation that connects the two most important

Fig. 5. The relation-based mapping algorithm.

P. Gomes et al. / Knowledge-Based Systems 19 (2006) 480–488 485
diagram objects. Then it tries to find a matching relation on
the candidate diagram. After finding a match, it starts the
mapping by the neighbor relations, spreading the mapping
using the diagram relations. This algorithm maps objects in
pairs corresponding to the relation’s objects.

The object-based algorithm (see Fig. 6) starts the map-
ping selecting the most independent query object, based
on the UML independence heuristic. After finding the cor-
responding candidate object, it tries to map the neighbor
objects of the query object, taking the object’s relations
as constraints in the mapping.

Both algorithms satisfy the structural constraints
defined by the UML diagram relations. Most of the result-
ing mappings do not map all the problem objects, so the
mappings are ranked by number of objects mapped (see
[22]). An important issue in the mapping stage is: which
objects to map? Most of the time, there are several candi-
date objects for mapping with the problem object. In order
to solve this issue, we have developed a metric that is used
to choose the mapping candidate. Because we have two
mapping algorithms, one based on relations and another
on objects, there are two metrics: one for objects, and
another for relations. These metrics are based on the
WordNet distance between the object’s synsets, and the
relative position of these synsets in relation to the most
specific common abstraction concept (for details on these
metrics see [22]).
Fig. 6. The object-based
4.3. Knowledge transfer

The last step is the generation of new diagrams using the
established mappings. For each mapping the analogy
module creates a new diagram, which is a copy of the query
diagram. Then, using the mappings between the query
objects and the candidate objects, the algorithm transfers
knowledge from the candidate diagram to the new dia-
gram. This transfer has two steps: first there is an internal
object transfer, and then an external object transfer. In the
internal object transfer, the mapped query object gets all
the attributes and methods from the candidate object that
were not in the query object. This way, the query object is
completed by the internal knowledge of the candidate
object. The second step transfers neighbor objects and rela-
tions from the mapped candidate objects to the query
objects. This transfers new objects and relations to the
new diagram, expanding it.

5. Experiments

In this section, we present the results obtained from our
experiments. The aim of these experiments is to study the
correlation between the analogical retrieval strategies and
the creative properties of the generated diagrams in the
software design domain. The creative properties studied
are usefulness and novelty.
mapping algorithm.

Table 2
Experimental results obtained for solution novelty

Strategy Similarity with
the case base (N1)

Similarity with
best case (N2)

Similarity with
source case (N3)

1 0.277 0.693 0.693
2 0.275 0.654 0.544
3 0.275 0.655 0.505
4 0.277 0.690 0.689
5 0.276 0.646 0.432
6 0.274 0.649 0.304

Table 3
Experimental results obtained for solution usefulness

Strategy Incorrect mapped
objects (U1) (%)

Partially incorrect
mapped objects
(U2) (%)

Number of Incorrect
transferred objects
(U3)

1 14 1 0.600
2 14 3 1.640
3 15 40 1.400
4 9 2 0.600
5 20 20 3.560
6 21 36 2.720

486 P. Gomes et al. / Knowledge-Based Systems 19 (2006) 480–488
5.1. Setup

The results presented in this paper were obtained using a
case library compromising 60 cases, each case has one pack-
age with 5–20 objects (there is a total number of 586
objects). These cases are from four different domains: bank-
ing information systems, health information systems, edu-
cational institution information systems, and store
information systems (grocery stores, video stores, and oth-
ers). A set of 25 UML class diagrams were used as problems
during these experiments, each problem compromises, on
average, four objects. The problems used in these experi-
ments also belong to the four domains formerly presented.

5.2. Method

During these experiments we used the six candidate
selection strategies presented in Table 1 for choosing the
most promising candidates for reuse through analogy.
When semantic retrieval is used as part of one of these
strategies, only 10 (the first 10 cases found by our retrieval
algorithm) cases are used for ranking, otherwise the whole
case library is used. After the ranking phase, the most
promising candidate is submitted to the analogy module.
Afterwards the output of the analogy module (an UML
class diagram) is evaluated for both usefulness and novelty.
For these experiments we use the object-based mapping
algorithm, since this algorithm has shown better results
in previous work [22].

Novelty is assessed using the similarity metric used in
case retrieval. We assess the novelty of a solution (the out-
put of the analogy module) using the similarity with the
cases in the case base. Three different similarity values
are computed using the generated solution:

N1: the average similarity between the generated solu-
tion and the cases in the case library.
N2: the similarity value between the solution and the
most similar case in the case library.
N3: the similarity value between the solution and the
source case chosen for establishing the analogy with
the target case.

Since the similarity metric, returns values between 0 and 1
where 1 is an identical match, we are interested in situations
where this value is low. The results of this evaluation is
presented in Table 2.

Usefulness is evaluated through human judgement of
the generated diagrams. Two human judges evaluated these
diagrams, identifying:

U1: the percentage of target objects that were mapped to
a source case in which the knowledge transferred
(methods and attributes from the source case to the
target case) was incorrect or useless.
U2: the percentage of target objects that were mapped
to a source case in which the knowledge transferred
(methods and attributes from the source case to the tar-
get case) was partially incorrect.
U3: the number of objects that were transferred into the
target diagram and that were considered incorrect or
useless.

These values are presented in Table 3. We are aware of the
subjectivity involved in these experiments, especially in the
judgement of the usefulness. We think that the only faithful
evaluation is through a case study in a real software pro-
duction environment, where the tool is judged by its users.
Despite this fact we will present our evaluation in the next
section.

5.3. Results

In Tables 2 and 3, we present some of the values com-
puted for our analysis of novelty and usefulness by analogy
retrieval strategy.

As can be seen in Table 2 the average distance of the
solution in relation to the rest of the case library is practi-
cally the same. This observation can result from the fact
that the cases in the library are very sparse. So, whatever
the solution, on average it will tend to be dissimilar
to the case library. Observing the value of similarity between
the solution and the most similar case (N2) we can see that
strategy 1 and 4 present the highest values, which makes
sense, since this metric contains a semantic component. In
respect to N3, strategy 5 and 6 obtain solutions that are dis-
similar to the source case used for establishing analogies.
These values are expected, taken in consideration that nei-
ther of these strategies use semantics during the retrieval
or ranking phases, and that the similarity metric does. Thus,

P. Gomes et al. / Knowledge-Based Systems 19 (2006) 480–488 487
these strategies are able to generate more novel solutions
than the other strategies, which are by some way using
semantics to retrieve and rank source cases.

Table 3 presents the values obtained during the evalua-
tion of the usefulness of the generated solution. We remind
the reader that these values represent situations that were
considered wrong or useless, this means that lower values
correspond to solutions that are more useful since these
require less corrections from the software designer. As we
can observe strategies 5 and 6 seem to generate the
diagrams which require the most correction. These high
values may be due to the fact that the knowledge transfer-
ence scheme implemented simply transfers objects from the
source domain into the target domain without transform-
ing the source object into an analog in the new target
domain. If these source objects are transferred into
completely different domains they will usually be consid-
ered incorrect.

These results suggest that semantics should be consid-
ered during the retrieval phase in order to obtain the most
useful diagrams, that is, diagrams that require fewer
corrections. On the other hand, novel analogies tend to
occur when the ranking phase is based on structural prop-
erties. Using a retrieval strategy that combines both aspects
can be a good option for analogy retrieval. Examples of
this are strategies 2 and 5, which are able to maintain a
compromise between strategies 1 and 4, which are more
accurate but less aimed to generate novel solutions, and
strategies 3 and 6 that are capable of generating more novel
solutions but with an increase in the number of errors in
the class diagrams.

6. Related work

There are several research works that use analogy to
generate designs. From these we have selected the ones that
are similar to our work. Most of these are from other
domains of application, such as mechanical design, but
the last two works presented address the software design
domain.

Qian and Gero [23] show how analogy-based design can
be implemented using the Function-Behavior-Structure
(FBS) knowledge representation. They claim that the
FBS path connecting function with behavior, and behavior
with structure is the key to analogy in design. They consid-
er that function and behavior are analogical retrieval cues,
due to the one to many mapping between function and
behavior, and between behavior and structure.

KDSA [24] is an approach to analogy-based design,
using a controlled search algorithm in a semantic network.
The base idea of this approach is that good analogies stem
from artifacts with similar functions, but different
behaviors and structures.

Goel and Bhatta [25] developed model-based analogy, a
computational theory of analogy-based design that uses
domain models about artifacts. These models represent
the structure, behavior and function of a design. It uses
design patterns as generic design abstractions that are
learned during system operation. A design pattern can then
be applied to a concrete situation, generating a new analog
design.

CADET is a system developed by Sycara and Navinch-
andra [26] that uses behavior as a thematic abstraction
for case retrieval. They use influences as an appropriate
thematic abstraction for representing behavior of physical
devices.

There are some research works that address the area of
analogy applied to software reuse. From these we point out
the work of Maiden and Sutcliffe in Ira [27]. Ira is a CASE
tool system that enables the reuse of software specifications
based on analogy. It provides user support for the task of
system specification. Specification reuse involves three
processes: categorization of a new problem, selection of
candidate specifications, and adaptation of the selected
specification to the new domain. Ira addresses these three
issues by: obtaining the description of the new target prob-
lem from the software engineer; controlling the interaction
with the user during selection and adaptation of an analo-
gous specification; and reasoning with critical problem
features to match new problems.

Spanoudakis [28] developed a computational model of
similarity for analogical software reuse based on conceptu-
al descriptions of software artifacts. This approach is based
on semantic similarity of software objects.
7. Conclusions and future work

This paper describes the analogy module of
REBUILDER, and presents some preliminary experi-
ments exploring the relation between the retrieval strategy
used and the novelty and utility of analogy-generated
solutions. From these first experimental results, it can be
inferred that semantic retrieval generates more useful class
diagrams, but they are less novel than diagrams generated
using structural strategies. These findings are in
accordance with our idea that there is a trade-off between
novelty and usefulness. Using a combination of both
retrieval aspects indicates that it is a good retrieval
strategy for generation of designs using analogy. Future
work will address further variations of the retrieval strat-
egies and different generation mechanisms, like design
composition. An empirical study on a real development
environment is also a goal of our research.
References

[1] S. Dasgupta, Creativity, invention and the computational metaphor:
Prolegomenon to a case study, in: T. Dartnall (Ed.), Artificial
Intelligence and Creativity, Kluwer Academic Publishers, Dordrecht,
1994.

[2] R. Brown, Creativity: What are we to measure? in: J. Glover, R.
Ronning, C. Reynolds (Eds.), Handbook of Creativity, Plenum Press,
New York, 1989.

[3] D. Partridge, J. Rowe, Computers and Creativity, Intellect Books,
1994.

488 P. Gomes et al. / Knowledge-Based Systems 19 (2006) 480–488
[4] J. Gero, Computational models of creative design processes, in: T.
Dartnall (Ed.), Artificial Intelligence and Creativity, Kluwer Aca-
demic Publishers, Dordretch, 1994.

[5] J. Gero, M.L. Maher, Modelling Creativity and Knowledge-Based
Creative Design, Lawrence Erlbaum Associates, Sydney, 1993.

[6] F. C. Pereira, A. Cardoso, Knowledge integration with conceptual
blending, in: 12th Irish Conference on Artificial Intelligence &
Cognitive Science (AICS 2001), Ireland, 2001.

[7] P. Gomes, C. Bento, P. Gago, E. Costa, Towards a case-based model
for creative processes, in: 12th European Conference on Artificial
Intelligence (ECAI’96), John Wiley, Budapest, Hungary, 1996.

[8] J. Gero, Introduction: Creativity and design, in: T. Dartnall (Ed.),
Artificial Intelligence and Creativity, Kluwer Academic Publishers,
Dordretch, 1994.

[9] D. Gentner, Structure mapping: a theoretical framework for analogy,
Cognit. Sci. 7 (2) (1983) 155–170.

[10] R. Hall, Computational approaches to analogical reasoning: a
comparative analysis, Artif. Intell. 39 (1) (1989) 39–120.

[11] K.J. Holyoak, P. Thagard, Analogical mapping by constraint
satisfaction, Cognit. Sci. 13 (1989) 295–355.

[12] P. Thagard, K.J. Holyoak, G. Nelson, D. Gochfield, Analog retrieval
by constraint satisfaction, Artif. Intell. 46 (1990) 259–310.

[13] D. Gentner, D. Forbus, Mac/fac: A model of similarity-based
retrieval, in: 13th Conference of the Cognitive Science Society,
1991, pp. 504–509.

[14] T. Plate, Distributed representations and nested compositional
structure, Ph.d., University of Toronto, 1994.

[15] B.P. Crean, D. O’Donoghue, Features of structural retrieval, in:
IASTED – International Symposia, Applied Informatics, Innsbruck,
Austria, 2001, pp. 295–300.

[16] P. Gomes, F.C. Pereira, P. Paiva, N. Seco, P. Carreiro, J.L. Ferreira,
C. Bento, Case retrieval of software designs using wordnet, in: F.v.
Harmelen (Ed.), European Conference on Artificial Intelligence
(ECAI’02), IOS Press, Amsterdam, Lyon, France, 2002.

[17] J. Kolodner, Case-Based Reasoning, Morgan Kaufman, Los Alto,
CA, 1993.
[18] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, K.J. Miller,
Introduction to wordnet: an on-line lexical database, Int. J. Lexico-
grap. 3 (4) (1990) 235–244.

[19] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling
Language Reference Manual, Addison-Wesley, Reading, MA,
1998.

[20] D. O’Donoghue, B. Crean, Searching for serendipitous analogies, in:
European Conference on Artificial Intelligence ECAI’02 Workshop:
2nd Workshop on Creative Systems, Lyon, France, 2002.

[21] B. Crean, D. O’Donoghue, Radar: finding analogies using attributes
of structure, in: Proceedings of the 13th Irish Conference on Artificial
Intelligence and Cognitive Science (AICS’02), Springer-Verlag, Lim-
erick, Ireland, 2002, pp. 20–27.

[22] P. Gomes, F.C. Pereira, P. Paiva, N. Seco, P. Carreiro, J.L. Ferreira,
C. Bento, Experiments on software design novelty using analogy, in:
European Conference on Artificial Intelligence ECAI’02 Workshop:
2nd Workshop on Creative Systems, Lyon, France, 2002.

[23] L. Qian, J.S. Gero, Funtion-behaviour-structure paths and their role
in analogy-based design, Artif. Intell. Engin. Des. Anal. Manuf. 10
(1996) 289–312.

[24] M. Wolverton, B. Hayes-Roth, Retrieving semantically distant
analogies with knowledge-directed spreading activation12th National
Conference on Artificial Intelligence (AAAI-94), vol. 1, AAAI Press/
The MIT Press, Seattle, Washington, USA, 1994, pp. 56–61.

[25] S. Bhatta, A. Goel, Design patterns; a computational theory of
analogical design, in: International Joint Conference on Artificial
Intelligence (IJCAI’97), 1997.

[26] K. Sycara, D. Navinchandra, Influences: a thematic abstraction for
creative use of multiple cases., in: First European Workshop on Case-
Based Reasoning, 1991.

[27] N. Maiden, A. Sutcliffe, Exploiting reusable specifications through
analogy, Communications of the ACM 35 (4) (1992) 55–64.

[28] G. Spanoudakis, P. Constantopoulos, Similarity for analogical
software reuse: a computational model, in: A. Cohn (Ed.), 11th
European Conference on Artificial Intelligence, John Wiley, Ame-
sterdam, The Netherlands, 1994, pp. 18–22.

	The importance of retrieval in creative design analogies
	Introduction
	REBUILDER
	Knowledge base
	Analogical reasoning
	Candidate selection
	Mapping process
	Knowledge transfer

	Experiments
	Setup
	Method
	Results

	Related work
	Conclusions and future work
	References

