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Abstract. A separation between collective and intrinsic degrees of freedom in the Heisenberg 
model of a ferromagnet at a finite temperature is achieved by reformulating the thermal 
boson expansion previously obtained by the present authors. In the new approach, all the 
collective modes (spin waves) have wavenumbers lower than a certain value. The intrinsic 
energy turns out to be the usual mean-field energy minus a correlation energy due to the 
excitations of spin waves. The influence of the cutoff in momentum space on the critical 
temperature is studied and the temperature dependence of the spin-wave renormalisation 
factor and the magnetisation are calculated. 

1. Introduction 

Boson expansions are powerful techniques which aim at studying quantal fluctuations 
of physical systems around a state of stable equilibrium described in the framework 
of the mean-field approximation. 

In the case of magnetically ordered solids, the method consists basically of replacing 
the system of interacting spins by a system of bosons, which for all purposes is 
equivalent, if no approximations are introduced. Fourier transforms of spin operators 
are mapped into boson operators 

A + (A)B ( 1 . 1 )  

[A, B] = C (1.2) 

in such a way that if 

then 

[ ( A ) B ,  (B)B1=(C)B* 
We also require that Hermiticity be preserved, i.e. 

(At)B= (A);. 
To these conditions we add the requirement that the expectation values of the spin 

observables in the mean-field ground state 10) be equal to the expectation values of 
the corresponding boson images in the boson vacuum IO): 

(olAlo) = (ol(A)Blo). (1 .5)  
By mean-field ground state we mean the independent-particle state (antisymmetrised 

product of single-spin states) which minimises the energy of the system. In the case 
of a ferromagnetic system, each single-spin state which enters the ground state has the 
lowest possible value for S'. 

030S-4470/89/060703 + 13$02.50 0 1989 IOP Publishing Ltd 703 
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Clearly, boson expansion techniques lead to the replacement of the Hilbert space 
of the physical system under study by an appropriate subspace-the so-called physical 
subspace-of the entire boson Hilbert space. The operators representing spin observ- 
ables are replaced by boson operators. The physics of the problem remains unchanged 
when going to the boson representation. The Holstein-Primakoff expansion [ 11 is the 
classical example of a boson expansion of spin systems, although some other expansions 
have also been proposed (Dyson-Maleev [23], Schwinger [4], etc). 

The method of thermal boson expansion is intended to extend the standard boson 
expansions (where the ground state 10) is a pure state) to the case of mixed states. 
This aim is achieved by replacing the expectation value with respect to the mean-field 
ground state 10) by the statistical average with respect to an independent-particle density 
matrix Bo, such that 

for all relevant observables A. 
The philosophy of the present approach relies heavily on the idea of the separation 

of collective from intrinsic degrees of freedom, the collective degrees of freedom being 
bosonised and the intrinsic degrees of freedom being treated in the mean-field approxi- 
mation. 

By bosonisation of the spin degrees of freedom we mean a bosonic realisation of 
the specific representation of the Lie algebra of the spin operators. It should be kept 
in mind that the above-mentioned representation is temperature dependent. 

At zero temperature, we are dealing with an irreducible representation of the Lie 
algebra (1.2), but the same does not happen at finite temperature (i.e. for a mixed 
state). Therefore, the bosonic realisation of the Lie algebra (1.3) is no longer an 
irreducible representation [ 51. 

In [ 6 ]  we have applied the method of thermal boson expansion to the Heisenberg 
ferromagnet with S = i, having obtained a value of the critical temperature in good 
agreement with the most accurate value known and even better than the results obtained 
within the conventional approaches. This temperature has appeared as the maximal 
attainable solution of a self-consistent equation. Although the phase transition is not 
continuous (due to the truncation of the boson expansion) the result that a theory of 
‘free’ spin waves could be extended up to the vicinity of the critical point was 
encouraging. 

In [7] we have used the same method to describe systems with spins S 2  1. The 
agreement with experimental data requires in this case a convenient cutoff in momentum 
space. This reduction of the phase space available for the dynamics is usually invoked 
in boson expansions, since their rate of convergence is improved when only excitations 
with large wavelengths are considered. 

In the present work we implement a consistent separation between intrinsic and 
collective degrees of freedom in the Heisenberg model, trying to elucidate the necessity 
for the momentum cutoff and its influence on some physical quantities. We restrict 
our considerations to the case S = $. 

We therefore split the Heisenberg Hamiltonian into intrinsic and collective terms. 
This separation is carried out along the lines of works initiated in the late 1950s in the 
framework of models of collective behaviour of plasmas and atomic nuclei. It is known 
that the phenomena of collective quantal motion which are found in nuclear as well 
as in solid state physics, may be described by unified many-body techniques. 
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In § 2 we present a brief review of the method for S = f (we refer the reader to [ 7 ]  
for the case S a  1 ) .  

In 0 3 we perform the separation of the Hamiltonian into an intrinsic and a collective 
part. We observe that this improvement is not a minor detail since it plays a relevant 
role in overcoming conceptual inconsistencies, such as overestimating the contributions 
of some degrees of freedom. We show that the main difference with respect to our 
previous result lies in the subtraction of an appropriate term from the mean-field 
energy. In the same section we also discuss the statistical mechanics of the new 
approach and compare the results with those found in the literature on thermal 
magnons. 

In § 4, we present some numerical results, describing the influence of the cutoff on 
some physical observables. We present the conclusions in 0 5 .  

2. Review of the method 

Let us consider the Heisenberg model of a lattice of coupled identical spins. We 
assume that the common value of all spins is S = f and that the interaction is restricted 
to the nearest neighbours. The generalisation of our results to higher spins is straightfor- 
ward (see [ 7 ] ) .  The Hamiltonian may be written 

where J is the exchange integral and SJ is the spin operator of the electron in the site 
j .  The prime on the summation sign reminds us that j runs over all N lattice sites 
while 1 runs only over the z nearest neighbours of the site j .  It is convenient to consider 
the lattice Fourier transforms of the operators SJ 

S i  = N - ” 2  c exp( *ik. RJ)S: 

Si  = N-”2  exp(ik. RJ)S: ( 2 . 3 )  

(2 .2)  
J 

J 

where RI is the vector from the origin to the site j .  The operators S ;  = S ;  * is’, satisfy 
the commutation relations 

In terms of the operators S i  and Sf, the Hamiltonian (2 .1)  may be rewritten as 

%!=-JZ C Y k [ f ( S ; S k + S k S : ) + S i S ’ k ]  ( 2 . 6 )  

yk = z-’ C exp(ik - 6,). 

k 

where 

( 2 . 7 )  
I 

Here, 8, denotes the vector from the site j to the neighbouring site 1. 

operators Bk and B: which satisfy boson commutation relations 
We are looking for the mapping of the operators S i  and S i  onto functions of 

[Bk,  BL.1 = 8k,k’ [Bk, B k ’ ] = [ B i ,  Bif]=O. (2 .8)  
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We denote by IO) the vacuum of the Fock space in which the operators Bk and B: are 
defined, so that BklO) = 0. The mapping should preserve the commutation relations 
(2.4) and (2.5), so that 

[ ( S l ) B ,  (sv),] = 2N-1'2( si-,,), (2.9) 
[(Si),, ( S i ' ) B I  = * N - 1 ' 2 ( S ; l k ' ) B  (2.10) 

as well as the expectation value with respect to a mean-field density matrix 9o describing 
the 'mixed ground state' 

Tr(gOS;) = ( o l ( s ~ ) B l o )  (2.11) 

Tr(gOsf) = ( o l ( S i ) B l o ) *  (2.12) 

By mixed ground state we mean the statistical state represented by a density matrix 
a0 such that 

T r ( 9 0 X )  s Tr( U9,U'X)  (2.13) 

for all unitary operators U which preserve the independent particle character of ado. 
Therefore 

U = exp(i 7') (2.14) 

Since Bo describes a mean-field or independent-particle mixed state, it may be 
where T is an arbitrary Hermitian one-body operator. 

written in the form 

Bo = A exp CY S: = A exp( CYN"~S;) 
( j )  

(2.15) 

where Si = Si , ,= ,  and A and CY are constants related to each other by the normalisation 
condition Tr go = 1. We denote the probability of finding a spin up byp  = exp(ia)  
and the probability of finding a spin down by q = 1 - p  = AllN exp(-ia). The density 
matrix go depends on a single parameter which may be taken to be the difference 

(2.16) 

(2.17) 

(2.18) 
(2.19) 

(2.20) 
(2.21) 

(2.22) 

(2.23) 
(2.24) 
(2.25) 
(2.26) 
(2.27) 

(2.28) 
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These requirements establish the boson expansions 

Analogously, the conditions 

(2.35) 

This expansion, when taken to all orders, is a bosonic realisation of the original 
Hamiltonian which is able to reproduce the same results. It is important to estimate 
the rate of convergence of the boson expansion. This may be done by evaluating 
quantities such as 

Tr( go[S,,p, [si',, s:,s:]]) = x'( 8k',k"8k,k"'+ 8k,k'8k",k"') + o( I /  N) 

= (Ol[BL,r*, [BL.,, Bk'Bk]]lO)+ B(I /N) .  (2.36) 

This kind of result clearly indicates that the replacement of the operators S i  by boson 
operators is a good approximation to order 1/N. Therefore, our method may break 
down only when it is applied to the description of highly excited states, for which the 
number of bosons is of order N. 

3. Intrinsic and collective degrees of freedom 

In this section we are interested in decomposing the Hamiltonian into intrinsic and 
collective parts, starting from the bosonised Heisenberg Hamiltonian obtained in the 
last section. 

In contrast with the treatment given in [6], we would like to consider now a kind 
of boson expansion where only some degrees of freedom are bosonised (collective 
degrees of freedom). All collective bosons have wavevectors lower than a given value 
k,< kBzr with kB, being the Brillouin boundary radius. The remaining degrees of 
freedom are called intrinsic. We are going to use the mean-field approximation to 
account for the intrinsic dynamics and to look at the influence of the momentum cutoff 
on the critical point (maximal attainable temperature) and some physical observables 
(spin-wave renormalisation factor, magnetisation). 

The intrinsic energy calculated in the mean-field approach will turn out to be simply 
the mean-field energy of the total Hamiltonian minus the energy of the magnons, 
calculated in the spin space. 

In order to demonstrate this statement, we take advantage of a procedure for 
separating the Hamiltonian into collective and intrinsic parts which has been proposed 
by Tomonaga [8], who was interested in a unified approach to different examples of 
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collective motion (nuclear surface vibrations and charge oscillations of the electron 
gas). The method has since been used to handle similar problems (e.g. the Villars 
formalism for describing nuclear rotations [9]). 

In Tomonaga's approach, the Hamiltonian which one wants to study is expanded 
in such a way that only some degrees of freedom are bosonised, while the remaining 
are re-expressed as many-particle degrees of freedom. Up to the harmonic order in 
the collective bosons the bosonised Heisenberg Hamiltonian is written as 

( 2 q B =  x(o)+x(1)+Ye(2)+ . . .  (3 .1 )  

x(O) = xi"t (3.2) 
%(l) = c' ( GiB: + GiBk) (3.3) 

with 

k 

and 

where the prime on the summations indicates an imposed cutoff on the wavevectors 
( lk l<  km) ,  The operators 2fint, Gk, G:, G;;, G&,  G;; are called intrinsic. They 
are functions of the intrinsic degrees of freedom (intrinsic boson operators) and 
commute with the collective boson operators, e.g. 

[x in t ,B: l= [xmt ,  Bkl=o lkl< km (3.5) 

[ G l ,  BL,]=[G:, Bk']=O lkl< km (3.6) 
with analogous relations for the remaining operators. We remark that (3 .1)  is nothing 
more than a way of rewriting (2.35). 

Simple algebra shows that ( G i i  = G l c  = 0 )  

[ ( x ) ~ ,  B;]=Gl,[Bks, BL]fG;:,,[B;,Bk8,, Bi1-t . .  . 
= G:+ G~;B:,+. . . (3.7) 

[ (%)B,  Bk]=-Gi-Gi;Bk'+. . . . (3.8) 

G ; = [ ( ~ ) B ,  B:]-GizB:,+..  . (3.9) 

while 

We have then 

Gi=[Bk,  (%f)B]-Gi;Bk'-t.. . . (3.10) 

The following double commutators are easily evaluated 

[Bk', [(xe)B,  B:ll = Gi; ( 3 . 1 1 )  
[B:' ,  [(%)E39 Bkll= G;;ki;. (3.12) 

We now replace the operators G;;k'; and G;: by their expectation values with respect 
to the density matrix Bo (the fluctuations around mean-field values are hopefully 
negligible) and use the mapping between boson and spin operators S l  = X1"Bk, and 
S--X ' /2B:  k -  (these relations are valid to first order): 

Gi;=( l /X)  Tr(g0[S:, [x, S , l l )  
= (1/X) Tr(9o[Si,, [X, s:11> 
= JXZ(1 -Yk)$k,k'=Wk(X)~k,k'. (3.13) 
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(3.14) 

(3.15) 

Taking again the expectation value after having replaced boson operators by spin 
operators we conclude that these intrinsic operators are very small. One obtains 

(3.16) 

The smallness of the intrinsic terms G: and G; may be explained by the fact that 
they describe the coupling between collective and intrinsic variables, which is small. 
In our case these operators are of at least second order in the intrinsic boson operators, 
due to momentum conservation. 

The final result (3.16) says that a collective energy term (energy corresponding to 
the collective variables) must be subtracted from the total energy calculated in the 
mean-field approximation. We are thus sure that the collective degrees of freedom are 
not being counted twice in the energy. 

4. Results 

We may now evaluate the free energy of the system and, with the aid of the Peierls 
variational principle, derive an equation which expresses the parameter determining 
the statistical mixture in terms of the temperature. We follow the approach of [6], 
extended by the addition of the new term obtained in the previous section and restricting 
all summations in k space. 

The free energy may be written 

F=F,+F, (4.1) 

where Fo is the intrinsic contribution in the mean-field approximation, now corrected 
with respect to expression (3.2) of [6]: 

F,= Eo - TS, - PE,  = -$NJX22 + iNkBT{( 1 + X )  log[$( 1 + X ) ]  

- (1 - X )  log[:( 1 - X)]} - AE, (4.2) 

with 

k A  

and the collective contribution in the independent-boson approximation is 

- ( l + n k ( X ) )  log(l+nk(X))l  (4.4) 

nk(X) = l/[exp(fiwk(X)) -11 (4.5) 

where 

is the number of magnons and f i  = l /kBT, with kB being the Boltzmann constant. 
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The parameter X is determined by imposing the condition of extremum for the 
free energy 

d F / d X  = 0 (4.6) 
yielding for a simple cubic lattice ( z  = 6 )  

We remark again that the modifications relative to [6]  are the inclusion of a new 

The magnetisation is given by the expectation value of 
term and the restriction in the summations. 

where g is the Lande factor, pB is the Bohr magneton, a is the lattice constant and 
f =  1,2 and 4 for sc, BCC and FCC lattices respectively. 

The reduced magnetisation is 

Equation (4.7) has been solved for X and the magnetisation has been obtained by 
inserting X into (4.9). The summations in momentum space have been done numeri- 
cally by evaluating an integral whose upper limit corresponds to the cutoff value. 

The transcendental equation (4.7) only has solutions for temperatures lower than 
a maximum value, which we identify with the critical temperature T,. The curve for 
X re-enters near T,, i.e. in that region two solutions X are found for the same 
temperature. The magnetisation is also double valued near T = T,, the upper branch 
corresponding to a lower free energy. This type of behaviour (coexistence of two 
phases) is characteristic of first-order phase transitions [ lo] .  It is interesting to note 
that a first-order phase transition for the Heisenberg model has been reported in a 
mean-field approach to the phenomenon of magnetostriction, which brings about a 
renormalisation of the exchange constant in terms of the magnetisation [ 111 .  

In figure 1 the dependence of the critical temperature on the value of the cutoff is 
shown. We note that although the curves shown agree for small values of the cutoff, 
as they should, since switching off the magnons effectively reproduces the Weiss 
mean-field theory, the two curves are clearly different when the cutoff approaches the 
Brillouin edge. In fact, in the present approach it is not even possible to consider the 
wavevector corresponding to the Brillouin zone limit (there is no solution above 0.9 kBz). 
The conclusion, therefore, is that a cutoff momentum is indeed meaningful. 

In figure 1 the lower horizontal line indicates the ‘exact’ critical temperature (by 
‘exact’ we mean the value obtained by a conventional high-temperature expansion for 
the magnetic susceptibility, incorporating a high number of terms [ 121) and the upper 
line indicates the approximation to the critical temperature calculated by Rushbrooke 
and Wood (the Rushbrooke-Wood empirical formula yields very good results for high 
spins, as discussed in [ 7 ] ) .  

In contrast to the previous formulation, in which good prediction of the critical 
temperature was found at k ,  = k B z ,  the ‘exact’ critical point is now achieved for a 
cutoff value of 0.61kB,. That means that almost half of the phase space should be 
excluded. Although the cut-off k ,  has been adjusted to known results, we point out 
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I 1 I I I I 1 I I I 
0 0.2 0.L 0.6 0.8 1 .o 

K’KB, 
Figure 1. Reduced critical temperature as a function of the reduced cutoff momentum (in 
units of the Brillouin momentum) for a simple cubic lattice and spin i. The full curve 
represents calculations based on the corrected thermal boson expansion-there is no 
solution above k /  k,, = 0.9. The broken curve is the result obtained without subtracting 
the correction to the mean-field energy (see [ 6 ] ) .  The upper horizontal line indicates the 
critical temperature as given by the Rushbrooke-Wood formula, while the lower corre- 
sponds to the exact critical temperature. 

that it is possible to indicate some bounds for k,: 0 .4kB2s k,~00.68kB, .  For k,< 
0.4kBz, the magnetisation is no longer re-entrant, having a negative slope at T =  T, 
(when M = 0), while for k, > 0.68kBZ, the lower branch of the magnetisation does not 
reach zero. 

The results for the renormalisation factor X and the reduced magnetisation are 
shown in figures 2 and 3, respectively (the cutoff is fixed, once and for all, as being 
k, = 0.61kB2), in comparison with the results of [6]. The discrepancy between both 
results is only significant near the critical point. This fact is easy to understand since 
the thermodynamics is dominated by magnons near absolute zero and by both the 
mean-field and magnons at high temperatures, so any correction to the mean-field 
result will have a clear influence on the physical observables. For instance, at T = T, 
both X and M ( X ) / M ( l )  have a lower value than in [6]. 

Table 1 displays information on the values of the different terms which add up to 
yield the total free energy. We note that the different terms of the expansion for the 
energy converge rapidly (i.e. E2<< (Eo[  throughout the full range of temperature). 
Furthermore, we have verified that the first anharmonic term is indeed small when 
compared with E2 and with IEol. The correction to the mean-field energy is always 
smaller than E 2 .  The ratio AEo/ E2 does not go beyond 50%. The inequality E2 f AEo 
can be explained by the fact that the latter has been evaluated by a statistical average 
of SlS, in spin space while the former has been calculated by taking the expectation 
value of B:Bk in boson space. 

At low temperatures the internal energy U = Eo+ E2 - AEo displays the correct 
asymptotic behaviour U - T5’2, while very close to the critical point it increases 
abruptly, leading to a singularity in the specific heat. 

We would like to comment on the number of magnons. The last column of table 
1 shows that this number is always much smaller than the number of spins, as required 
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0 . 8  - 

0 . 6  - 

X 

0 . 4  - 

I 1 I I I 

0 0.2 0.4 06 0 8  

K B  T I 2 1  

Figure 2. Renormalisation factor X for the spin-wave energy as a function of reduced 
temperature for a simple cubic lattice and spin A. The full curve represents calculations 
based on the corrected thermal boson expansion with the cutoff fixed at 0.61kB,.  The 
broken curve is the result published in [ 6 ]  (the lower branch is not shown). 

1.0 

0.8 

0 6  

0 

0.4  

0 2  

0 

Ks T / 2  J 

Figure 3. Reduced magnetisation M / M ,  as a function of the reduced temperature for a 
simple cubic lattice and spin f. The full curve represents calculations based on the corrected 
thermal boson expansion with the cutoff momentum fixed at 0.61kB,. The broken curve 
is the result published in [6] (the lower branch is not shown). 
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Table 1. Values (in units of 2JN x of all the contributions to the free energy and the 
ratio between the number of magnons and the total number of particles for different 
temperatures. The momentum cutoff is fixed at k/ k,, = 0.61. 

T l  T, Eo TSO E2 TS, A Eo X n,/N 

0.2 -748 5 x 1 0 - ~  1.6 2.6 I x io+ 0.01 
0.4 -147 1.2 9.3 15.2 0.2 0.03 
0.6 -135 18.6 25.3 42.1 2.1 0.06 
0.8 -666 87.6 50.8 87.5 10.1 0.11 
1.0 -397 331.9 97.1 181.7 47.2 0.20 

to assure the convergence of the boson expansion. The fact that the number of magnons 
is always lower than N represents an advantage over the random phase approximation 
(RPA) results as discussed below. 

Essentially two methods have been proposed for extending spin waves to finite 
temperatures. In the Bloch approach [13], the spin waves are renormalised by the 
energy (dynamical renormalisation), this procedure leading to a phase transition similar 
to ours. On the other hand, the RPA method [ 14,151, which departs from a somewhat 
ad hoc decoupling of the temperature-dependent spin Green function, consists of a 
renormalisation in terms of the mean field (kinematical renormalisation). An important 
drawback of the latter procedure is that the renormalisation factor vanishes at the 
transition point, there being then an infinite number of magnons [ 16,171. 

Our thermal boson method combines mean-field and boson contributions to the 
free energy. As in the above-mentioned approaches, the results near the transition 
point are not close enough to experimental values. We obtain a first-order phase 
transition instead of a second-order one. The magnetisation does not go to zero at 
T = T,, so that we cannot define critical exponents (the concept of universality is only 
pertinent to continuous phase transitions). The descriptions near the critical tem- 
perature provided by the available theories of finite-temperature magnons should be 
regarded as more qualitative than quantitative. In all these approaches, some continu- 
ation of low-temperature results is obtained at intermediate temperatures, the treatment 
breaking down at a point near the exact critical temperature. We believe that our 
description of temperature-dependent magnons takes proper account of the kinematical 
problem (ignored in the energy renormalisation method), being assured that the number 
of magnons is always lower than N (in contrast to the RPA method). We have obtained 
( l /N)  nk = 0.20 at T = T,. 

5. Conclusions 

In this paper we have developed the theory of free spin waves at finite temperatures 
introduced in [ 6 ] .  We refer to the spin waves as ‘free’ since no explicit interaction 
between them through anharmonic terms is considered. Notwithstanding, they do 
effectively interact with each other. This interaction is described by a spin-wave 
renormalisation factor which is determined by a variational principle for the total free 
energy. According to the usual terminology, this interaction has a ‘kinematical’ origin 
[2]. One conclusion of our work is that the kinematical interaction is very important 
near the phase transition. 

Our technique is called a ‘thermal boson expansion’ since there is a mapping of 
spin observables onto boson operators which is temperature dependent. The expansion 
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may be extended by incorporating any desired number of terms. The fact that the 
operators which are chosen to be mapped are collective (i.e. lattice Fourier transforms 
of localised spin operators with large wavelengths) is very important, since it assures 
a good convergence of the expansion and therefore allows for reliable truncations. 
We have verified that anharmonic terms are not relevant if the number of magnons is 
small enough. At the same time, the restriction to the collective subspace avoids a 
large spurious coupling with boson states having no physical counterpart (the boson 
Hilbert space is infinite in contrast with the spin space) and therefore takes kinematical 
correlations into account. 

We are therefore in agreement with Stoller [ 181 when he writes that ‘any approach 
to the kinematical problem that does not perform some state space reduction has, ab 
initio, missed a large part of the physics’ or, later and more explicitly, that ‘state space 
reduction is a large part of the kinematical effect’. 

We have particularly addressed the problem of avoiding the duplication, in the 
mean-field dynamics, of the degrees of freedom which are considered in the form of 
spin waves. This problem, well known in many domains of many-body physics, has 
so far, to the best of our knowledge, not been studied for the Heisenberg ferromagnet. 

Our goal has been accomplished by means of Tomonaga’s formalism of separation 
of the Hamiltonian into intrinsic and collective parts, resulting in some correlation 
energy associated with the collective motion being subtracted from the total mean-field 
energy. 

The correction to the mean-field energy, although unimportant at low temperatures, 
increases for high temperatures, in agreement with the fact that the number of magnons 
increases with the temperature. Therefore it is mainly near the critical point that the 
picture developed in [6] has been modified. The description of the transition region 
remains, however, qualitative. 

We have analysed the dependence of the critical temperature on the momentum 
cutoff, concluding that the improved formalism indeed requires such a cutoff. The 
value of the cutoff remains the only free parameter of the theory, having been adjusted 
to the known critical temperature. Although the introduction of a cutoff in momentum 
space has a physical justification, we remark that there seems to be no unambigous 
way of fixing the cutoff without invoking some extra information. 

We have also analysed the case S 3 1, which proceeds along similar lines. The 
conclusion was that no essential modification to the numerical results presented in [7] 
arose. We stress the fact that for S 2 1 there are, besides S : ,  other possible mechanisms 
of producing collective excitations, namely mechanisms related to the use of lattice 
Fourier transforms of some power of the raising operators, e.g. (S:)’ .  
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