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Vlasov description of the collision between two slabs 
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Abstract. A simple analytical description of the adiabatic collision between two slabs of 
nuclear matter is presented, as an illustration of a recent variational formulation of the 
Vlasov equation. 

It is the purpose of this short paper to present a description of adiabatic large- 
amplitude collective motion of a nuclear system, within the framework of the Vlasov 
equation. We consider the collision along the z axis of two slabs of nuclear matter, 
since this system has been treated extensively in TDHF theory, which is the quantal 
background of the Vlasov equation [l] .  

The Vlasov equation may be derived from an action principle [2,3]. This is the 
starting point for a variational solution in which the relevant degrees of freedom are 
taken into account by a hopefully suitable parametrisation of the trial distribution 
functions. We choose as variational fields the velocity potential # ( z ,  t ) ,  the density 
fluctuation around equilibrium p l (z ,  t ) ,  such that pI =p-p l , ,  where p is the actual 
density and p,, the equilibrium one, and the displacement of the nuclear surface along 
the normal direction dR=dR.L.  The motion is irrotational, in view of the one- 
dimensional geometry of the problem. We consider that the motion is slow enough 
that anisotropic deformations of the Fermi sphere may be disregarded. It is possible to 
improve this approximation by including further variational fields [4]. 

An equilibrium distribution function, which is the solution of the Thomas-Fermi 
problem, reads as 

where 1, is the Fermi energy and U,,(z) = U0(p,,(z)) the self-consistent mean-field 
potential, which is determined by the Hamiltonian of the system. 

The following distribution function describes a system with a static deformation: 

where the field W ( z ,  t )  is responsible for the density fluctuations and for the 
displacement of the nuclear surface. Considering W ( z ,  t )  to be small, it is possible to 
relate it directly to p l : W ~ p l .  We remark that although the amplitude of the surface 
motion may be large, it is assumed that the motion is slow enough that at each instant 
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of time the static distribution function does not differ very much from an equilibrium 
solution. 

The dynamically deformed distribution function reads as 

Let us consider for the system a Hamiltonian H containing two- and three-body 
zero-range forces, which provides correct values for the Fermi momentum and the 
binding energy of nuclear matter [4]. In view of the locality of the interactions, there is 
no surface tension. 

The lagrangian of the system is then 

where the second term is the collective kinetic energy, the third one the potential 
energy, the parameter c being the velocity of propagation of H-sound disturbances (it 
is obtained from H by evaluating the second functional derivative of the energy with 
respect to the density), and the last one accounts for the boundary motion. The 
lagrangian (4) is harmonic in both variational fields, in contrast with the lagrangian 
which leads to Bloch’s equations [ 5 ] .  The latter is quadratic in the velocity but its 
potential energy corresponds to the well known Thomas-Fermi (or extended 
Thomas-Fermi) functional between energy and static density. In both cases an 
adiabatic hypothesis is assumed, although in our case this is more drastic, preventing 
any anharmonic terms in the potential energy. 

The variation of the lagrangian (4) leads to the following equations of motion 

. mc2 . Po 2 $---p,=O p,--v $ = 0  
PI1 m 

and to the boundary conditions 

( 5  ) 

The first of equations ( 5 )  is an Euler equation and the second a continuity equation. 
Combined, they yield a wave equation for the fields $ ( z ,  t )  and pl(z, t ) ,  c being the 
velocity of the wave. The first boundary condition assures that the surface follows the 
motion of the quasiparticles in the interior of the slab, while the second does not allow 
the surface to acquire an acceleration. 

As an example of the utility of this dynamical scheme, we consider the motion 
against each other of two parallel slabs of different thicknesses. We begin with the 
case of a single slab in uniform motion along the z axis and take as initial conditions 
for the two fields 
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Since dk = - ( l /m)  d@laz = aim, it follows from equations ( 5 )  and (6) that the slab is 
actually moving with velocity alm along the z direction. At  time t ,  the velocity 
potential is 

@ ( z ,  t ) = - a  z--t i 3 
so that the distribution function is 

Now let U and b be the thicknesses of two different slabs, and let eb and -ea be 
their respective velocities in the frame of the centre of mass ( E  being a parameter small 
enough to make the collective velocity small compared with the sound velocity in the 
medium). At  the instant t = 0, when the two slabs touch each other, the velocity field is 

@(z,  0 )  = - Eb(Z + U )  

@ ( z ,  0) = ea(z - b )  

z E [ - a ,  01 

z E [O, b ] .  (10) 

The density fluctuation and the surface displacement vanish at t = 0: 

In order to solve equations ( 5 )  and (6) with boundary conditions (10) and (11) we 
adopt the standard procedure of considering the normal modes of the fields @ ( z ,  t )  and 
p l ( z ,  t )  in the box [ - a ,  b ] .  These eigenmode solutions are respectively 

Po k, p1,,2(z, t )=  --- sin[k,,(z+a)] sin[ck,,(t-q)] m c  n = l ,  2 ,  3, . . . (13) 

with the wavenumber 

k,, = n d (  a + b )  . (14) 

Note that the modes GH are time-even, while the functions p l ,n  are time-odd. The 
initial phase q must vanish in view of the initial condition (11) fulfilled by the field pi. 
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Figure 1. Time evolution of the velocity potential @ and the density fluctuation pi as a 
function of z .  The time unit is (a  + b)/c.  

The required solution for @ ( z ,  t )  may be expressed in terms of the normal modes 
or alternatively as a sum of one forward and one backward travelling function: 

=ix A,,{sin[kfl(z + a + ct)] + sin [kl I (z + a - ct)]} 

=+[@(z + ct) + $(z  - ct)] 

I 1  

where @ ( z )  = @ ( z ,  0) may be continued for z E [ - 2a, 261: 

@ ( z )  = - eb(2 + a) 
@ ( 2 )  = E U ( 2  - 6) 

2 E [ - 2a, 01 
2 E [ O ,  261. 

On the other hand, the density fluctuation may be written as 

p,,, ,(z, t ) =  A,,k,,sin[k,,(z+a>] sin(ck,,t) 
mc f l  

-- - Po E A,k,{cos [kn(z + a  + ct)] - cos [kn(z  + a - ct)]} 
2mc 

Figure 1 shows a sequence of snapshots at different times for the velocity potential 
and the density disturbance. In the region where the two slabs touch, a positive 
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disturbance of the density appears, which first propagates towards the nearest 
boundary (reached at time alc), then moves towards the other extreme and finally 
disappears at the position b - a .  This front shock arises also in the much more 
involved TDHF calculations. At the time t = ( a  + b)/c ,  the velocity potential is 

z E [ - a ,  b - a ]  

and the density fluctuation vanishes as initially. The two surfaces are now moving 
outwards. According to our variational solution, the system becomes compound, with 
a negative disturbance arising at z = b - a ,  growing until the nearest boundary is 
reached and finally vanishing at z = 0, when the initial conditions recur. The combined 
system remains oscillating back and forth. 

The Vlasov description presented here predicts the fusion of the slabs after 
collision. It should be remarked, however, that in the absence of surface tension no 
energy is necessary to create two new surfaces along the line z = b - a .  Therefore, our 
treatment is not inconsistent with the separation of the compound slab at t = ( a  + b)/c  
into two pieces defined by the instantaneous pattern of the velocity field. The 
equations of motion assure that the subsequent motion of the two slabs is in opposite 
directions. Let us then examine how less restricted theories, such as TDHF and 
complete Vlasov, deal with the permanence of the compound slab. 

It is known from TDHF numerical studies [1] of systems with the same geometry 
that for small kinetic energies per particle ( H A  6 1 MeV, in the CM frame), corres- 
ponding to the adiabatic hypothesis assumed here, the slabs actually fuse and that for 
high kinetic energies ( H A  3 4 MeV) the two slabs become transparent to each other. 
There is an intermediate region with a mixed behaviour, as a result of delicate shell 
effects. The numerical solution of the Vlasov equation for the same problem yields a 
result that agrees surprising well with TDHF [6].  On the other hand, Holzwarth [7] has 
solved Bloch’s equations (sometimes also called time-dependent Thomas-Fermi 
equations) for the collision of two equal slabs, using an extended Thomas-Fermi 
energy functional. His results look qualitatively similar to TDHF or Vlasov ones. We 
should conclude that a modification of our harmonic potential energy is essential to 
correctly account for the break-up of the compound system. Nevertheless, the TDHF 

results corresponding to very high energies should be taken with care, since particle 
collisions, not included in the mean field, are important in that regime. 

We have described analytically the fusion at low energies of two colliding slabs, 
using a variational formulation of the Vlasov equation. Numerical instabilities, which 
are characteristic of more sophisticated approaches, are absent in the present 
approach. The kinetic energy was shown to be transformed in undamped wave 
motion. With respect to one-body damping, we point out that a richer parametrisation 
of the distribution function may be implemented, leading to more than one velocity of 
sound. The recurrence of a given situation then becomes more unlikely. A short 
recurrence time is typical of models, such as ours, with a restricted geometry and with 
restricted dynamics, allowing only for one kind of sound. 
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