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Abstract

In this paper, we describe the monitoring of human activity in an indoor environment through the use of multiple vision
sensors. The system described in this paper is made up of three cameras. Two of these cameras are active and are part of a
binocular system. They operate either as a set of three static cameras or as a set of one fixed camera and an active binocular
vision system. The human activity is monitored by extracting several parameters that are useful for their classification. The
system enables the creation of a record based on the type of activity. These logs can be selectively accessed and provide
images of the humans in specific areas. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Automated monitoring of human activity is impor-
tant for many applications. The problem of analysing
human activity in video has been the focus of several
researchers’ efforts and several systems have been de-
scribed in the literature [4,5,8–10,13,15,16]. Many of
these systems consist of a computer vision system to
detect and segment a moving object and a higher level
interpretation module.

In very specialised applications other sensors are
used besides vision. Automatic interpretation of the
data is very difficult and most systems in use require
human attention to interpret the data. These systems
are characterised by the storage of large amounts of
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data that require no specific action. A single and spe-
cific event which may require immediate intervention
can be difficult to find among a lot of redundant in-
formation.

Tracking human motion in an indoor environment
is of interest in several applications. A consider-
able amount of work has been devoted to tracking
humans with a single camera. Images of the envi-
ronment are acquired either with static cameras with
wide-angle lenses (to cover all the space), or with
cameras mounted on pan and tilt devices (so that all
the space is covered by using good resolution im-
ages) [6,7,11,12,14,17]. In some cases both types of
images are acquired but the selection of the region
to be imaged by the pan and tilt devices depends
on the action of a human operator. The combination
of several modalities of imaging devices enables the
achievement of robust performance. In addition, the
monitoring of events requires the use of multiple
sensing agents. This is an important and essential
step towards the full automation of high-security
applications in man-made environments.
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The system described in this paper tries to explore
the combination of several vision sensors in order to
cope with the proposed goal of autonomously detect-
ing and tracking human intruders in man-made envi-
ronments. In the current setup the system is made up
of three cameras that can operate in two modes: pas-
sive mode and active mode. In the passive mode the
three cameras remain static and monitor the environ-
ment. When specific events occur the system starts
operating as a combination of a static camera and a
binocular active system (entering in the active mode).

The system is also able to detect and log the pres-
ence of targets in some specific areas of interest. This
log file can be consulted off-line in order to search for
some particular event.

2. Global vision

During the active mode of operation the global vi-
sion system (the wide-angle static camera) is responsi-
ble for the detection and tracking of all targets visible
in the scene. It is also responsible for the selection of
the target that is going to be tracked by the binocular
active system.

2.1. Ground plane correspondence

In order to redirect the attention to a new target the
active vision system should know where to look for
it. Since, the position of the target is known in the

Fig. 1. Correspondence between image points and ground plane points.

static camera image, we will need to map that position
in terms of rotation angles of the neck (pan and tilt)
and vergence (we are assuming a symmetric vergence
configuration). The goal would be to fixate the active
vision system on the target head.

Assuming that all target points considered in the
static camera image lie on the ground plane then any
point on this plane can be mapped to a point in the
image plane of the static camera using a homography
[3].

For each detected target on the image plane p(x,y),
we compute the corresponding point on the ground
plane. Then the relationship between the point P(X,Y)
in the plane and the joint angles can be derived directly
from the geometry of the active vision system (see
Fig. 1):

θp = arctan
X

Y
,

θv = arctan
B/2√

X2 + Y 2 − D
,

θt = arctan
H − h√
X2 + Y 2

,

where B is the baseline distance.
To compute the tilt angle, we must know the

target height which can be easily computed, since we
can obtain the projection of the targets head and feet
points (detected in the image plane) on the ground
plane. Assuming that the static camera height and
position, relative to a predefined referential on the
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Fig. 2. Target height computation.

ground plane, are known we can compute the target
height (see Fig. 2). In fact the camera height and
position can be estimated if we know the position and
height of two objects in the scene (we used a doorway
and a closet).

2.2. Target tracking and initialisation

One of the most important steps in detecting ob-
jects in video is to localise, where motion is occurring
in a frame. The simplest technique is to use image
differencing of consecutive frames of video, to see
where motion has occurred. Another, more sophisti-
cated, approach is the use optical flow/image motion
algorithms. The information provided by the optical
flow algorithms is more detailed than simple change
detection.

In each frame a segmentation procedure based
on optical flow allows the detection of the possible
available targets. A Kalman filter is attached to each

Fig. 3. Dealing with shadows: (a) real image captured by the static camera; (b) result of the segmentation process.

detected target and the information returned by the
filter is used to predict the location of the target in
the next frame. The prediction is used to estimate a
bounding box around the expected new position of
the target. This bounding box is then compared to the
new detected blobs. If a match occurs then the target
position is updated. If the uncertainty in position be-
comes too large over a significant amount of time then
the target is considered to be lost and the associated
tracking process is terminated. This can occur when
the target walks out of the image, is heavily occluded
or stops.

When two or more people pass by each other the
segmented region could result in one big blob. In this
particular case the system tries to recognise each of the
individual targets using the predicted bounding boxes.
Since we also compute the height of each target, we
can use this measurement to certify that the correct
match was made.

This problem of the overlapping of the targets on
the image also determines the maximum number of
targets that the system is able to track. If the number
of targets is such that the segmented region is large
and the confidence on the trajectory of each previously
detected target is low the system is unable, without
any kind of additional information, to detect the targets
and their trajectories.

One of the problems that sometimes arise with these
kind of methods is the presence of shadows on the
floor that could lead to an incorrect segmentation of
the targets pixels (see Fig. 3). One way to overcome
this problem is to rely on the top portion of the blob
where segmentation is much more robust to light vari-
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Fig. 4. Example of the influence of the shadows on the 2D mapping of the targets on the ground plane. In these two experiments the
subject moved along a circular path. On the right, the result obtained where shadows are included as part of the segmented blob. On the
left, the result obtained by ignoring the shadows using the height computation.

ations. If the height of the target is known with a level
of confidence above a certain threshold, then the pro-
jection of the target on the ground plane can be es-
tablished using the estimated height of the target. We
are then able to compute the number of pixels that
the blob should have on the image. Using this kind
of approach, we can improve the quality of the target
mapping on the ground plane. The example shown in
Fig. 4 clearly shows that the presence of a shadow can
induce a false mapping on the ground plane. In both
examples the subject moved along a circular path. On
the right we can see the result obtained by assuming
that the shadows are part of the segmented blob. The
result path has a clear bias near the spot where the
shadow appears (see Fig. 3). The image on the left
shows the result obtained by ignoring the shadows us-
ing the height computation.

An important aspect of the system is its ability to
keep track of the 2D trajectory of the targets on the
ground plane. This feature is interesting specially for
the posterior reconstruction of the trajectory of each
target.

2.3. Evaluation

Some experiments were made to determine
the performance of the system regarding both

the 2D trajectory estimation and the height
estimation.

The entire tracking system is based on a Pentium
II 300 MHz computer equipped with an RGB Matrox
Meteor frame grabber that captures simultaneously
images from the three cameras, avoiding the problems
of image synchronisation. The full tracking system
(both static camera and the active vision system) run
at approximately 25 Hz on 384 × 288 images, includ-
ing the vision routines, control routines and logging
routines.

In the first example three persons, with different
heights, walked into the scene. Fig. 5 shows the com-
puted height for each target in each frame. The targets
real heights are presented in Table 1.

The height is computed using the process described
in Section 2.1. Since we are interested in having an
incremental algorithm in which the height value is up-
dated in every frame, we assume that the height esti-
mations follow a normal distribution with parameters
µ and σ 2. If ht is the computed height on time t, we

Table 1
True heights of subjects represented in Fig. 5

Target Subject A Subject B Subject C

True height (cm) 191 176 184
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Fig. 5. Results of target height computation.

update the statistical parameters using

µt = αµt−1 + (1 − α)ht ,

σt = ασ 2
t−1 + (1 − α)(ht − µt)

2.

The constant α controls the update rate of the sta-
tistical information: if α is low then the adaptation is
quicker but the learned value can deviate from the true
statistics. If α is set high then a sufficient amount of
data needs to be gathered for the solution to converge
to the correct distribution. We use the statistics to re-
fine future estimations of the height. We placed a gate
on acceptable values for the new estimations (in prac-
tice one can use a 3σ gate). Any value larger/lower
than µ ± 3σ is rejected in subsequent updates. The
gate has the effect of excluding the outlying height
computations (caused for instance by an incorrect seg-
mentation of the target), gradually reducing the esti-
mated value of the height to its true value. As long
as the target is visible for a sufficient amount of time
this gated adaptation is guaranteed to converge to the
correct height value. The system is able to determine
the height of the targets after several frames with an
average error of 2 cm.

The trajectory of each target on the ground plane
is computed and stored for posterior off-line analysis.
We performed some experiments in order to evalu-
ate the performance of the system in terms of map-
ping errors. We show here two examples of those
tests. In both cases two persons walked on the scene

Fig. 6. Results of the 2D mapping of the targets onto the ground
plane: subject A moves from left to right and subject B moves
back and forth.

trying to maintain two straight line trajectories, marked
with a tape, on the ground plane. In the first example,
one of the persons moved from left to right while the
other one moved back and forth (Fig. 6). In the second
example both persons moved along a diagonal path
(Fig. 7).

2.4. Active vision system visual routines

The active vision system is responsible for pursuit
of a specific target in the scene. There should exist
some kind of priority scheme in order to choose what

Fig. 7. Results of the 2D mapping of the targets onto the ground
plane: both subjects move diagonally.
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target to pursue. Of course this priority scheme is de-
pendent on the type of activity in which the target is
involved and the relevance of that activity in terms
of the application. A priority level is dynamically as-
signed to each newly detected target. This allows the
system to sort the several targets available in the scene
according to their priority level. The highest priority
target will be the one that will get the attention of the
active vision system.

During the tracking process the motion of the active
vision system must satisfy two basic requirements:

1. stabilise the images of the selected target on both
retinas;

2. maintain fixation on the target.

The tracking task is achieved using two different
steps: fixation and smooth pursuit. In the first one the
attention of the active vision system is directed to the
target with the fastest velocity possible and in the sec-
ond one the target is tracked [2]. For a more detailed
description of the active vision system and for some
performance characterisation please refer to [1].

3. Human activity logging

A fundamental problem to be addressed in any
surveillance or human activity monitoring scenario is
that of information filtering: how to decide whether
a scene contains an activity or behaviour worth
analysing. Our approach to detection and monitoring
of such situations is based on the fact that typically
actions are somehow conditioned by the context in
which they are produced. For instance the action of
opening a closet only makes sense in the near vicinity
of a closet.

We assumed the concept of “context cells” to dis-
criminate portions of the scene where any behaviour
can be important in terms of the application. It is as-
sumed that a set of rules is known “a priori” and that
these rules have the adequate relevance for the pur-
pose of the monitoring task. It is also assumed that
these context cells have enough information to trigger
a logging event in order to register the actions of the
human subjects.

Since in this first approach, we only have as an input
the position of the target in the plane and its height we
defined a very simple set of context cells in our lab

Fig. 8. Context cells definition.

(see Fig. 8). Three different context cells were defined:
closets, desks and in/out zones that correspond to areas
where targets can enter/exit the scene. The rule used
to describe the possible actions in the desk context
cell is shown in Fig. 9. Two actions are logged in this
case: “near desk” and “seated at desk”.

To establish if a certain target is in a certain con-
text cell, we take into account the time that the target
spends on that particular cell. In each cell we define

Fig. 9. An example of a rule used to describe an action, in this
case the use of a desk.
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a certain threshold time τ s that determines the min-
imum amount of time that the target should stay in
the cell in order for the action to be logged. In some
cells, such as the case of the in/out cells this time τ s is
equal to zero since in this particular case we are only
interested in the event of entering/leaving the scene.

An advantage of this concept based on the context
is that it can be used to predict the expected appear-
ance and location of the target in the image, to predict
occlusion and initiate processes to deal with that oc-
clusion.

The system creates log files that describe the actions
that occurred during a certain period of time. A picture
is taken by the active vision system for each recorded
action. These images can then be used for posterior
analysis and processing, for instance for identification
purposes. Fig. 10 shows an example of a portion of a
log file recorded by the system.

Different actions require different views in order to
understand what is going on. For instance if the target
is near a closet, then his hands, not his head, should
have the attention of the system. The advantage of the
use of the active vision system is that if the “best”
view needed for a particular action understanding has
not been captured then the active vision system can
be instructed to redirect its attention to the right place.
Once again the definition of “best” view is context
dependent and if this context is known then the search
space for the best view can be substantially reduced.

Another aspect of this work (not yet in real-time) is
the modelling of more complex behaviours using the

Fig. 10. An example of a typical human activity log output.

Table 2
Classification results of context cells

Context cell Closet Closet Closet Desk I/O
Context cell A B C A Zone 1

Classification (%) 91.4 88.6 85.7 94.3 100

same underlying principle. The logging ability can be
extended to the detection of more elaborate actions
like the detection of opening or closing of closets, and
other typical indoor actions.

Some experiments were made in order to evaluate
the performance of the logging module of the system.
Several persons walked around in the scenes and their
activity in terms of the defined cells were registered
by a human operator. At the same time the system
was trying to track the same actions. At the end of
the experiments the human report was compared with
the one produced by the system. A correct match was
considered to be one with an exact correspondence
between the system and the human operator. Table 2
represents the result obtained in terms of percentage
of correct classifications.

The results shown here state that there is in general
a good classification of the context cell visited by the
targets. The worst results were obtained on the Clos-
ets B and C possibly because this two areas overlap
slightly and any small error in the 2D mapping of the
target could result in a misclassification of the cell.

4. Conclusions

In this paper, we described a real-time system
aimed at detecting and tracking targets in man-made
environments. This system is based on a global view
of the scene and a binocular tracking system. The spe-
cific features of the active system enable the tracking
of humans while handling some degree of occlusion.
The degree of occlusion that can be tolerated depends
upon the target distance. Behaviour modelling can
advantageously use the 3D trajectories reconstructed
both with the data from the global view camera and the
data from the active system. Logging of human activ-
ity is performed in real time and by analysing changes
in that data (changes in height and position) some lim-
ited interpretation of action is performed. In addition,
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the redundancy of the system enables cross-checking
of some types of information, enabling greater
robustness.
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