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Abstract

The adequacy of radial basis function neural networks to model the inside air temperature
of a hydroponic greenhouse as a function of the outside air temperature and solar radiation,
and the inside relative humidity, is addressed. As the model is intended to be incorporated
in an environmental control strategy both o--line and on-line methods could be of use
to accomplish this task. In this paper known hybrid o--line training methods and on-line
learning algorithms are analyzed. An o--line method and its application to on-line learning
is proposed. It exploits the linear–non-linear structure found in radial basis function neural
networks. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Feed-forward layered neural networks (NNs) have extensively been applied in
many 7elds of engineering in order to perform some type of non-linear process-
ing on data generated by a wide variety of systems. In the 7elds of modelling
and identi7cation of non-linear systems, this growing interest is due to several
reasons. Some of the most general ones are that no prior knowledge about the
structure of the dynamical system is needed, that multiple-input multiple-output
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(MIMO) systems are treated the same way as single-input single-output (SISO)
systems, and that NNs have a strong ability to perform non-linear information pro-
cessing. In such contexts NNs act as curve approximators and thus, their design
process can be viewed as a curve-7tting problem in a multi-dimensional space.
The nature of the mentioned design problem explains the fact that most of the
applications consist in approximating unknown systems from an input–output per-
spective, or in the realization of non-linear decision functions to which classi7-
cation problems are an example. In situations where the data generating function
is a non-linear time-varying function, it is standard practice to train 7rst the net-
works o--line, and subsequently to adapt the trained neural networks on-line. In
this article several o--line training and on-line learning methods are compared
for a type of feed-forward layered NN, which in recent years has received grow-
ing interest due to its structural simplicity: The radial basis function (RBF) NN.
The engineering problem for which the networks will be employed is green-
house environmental control (GEC). The networks will be used to model the
inside air temperature in a hydroponic vegetable production greenhouse. In the
following subsection the general GEC problem and the particular modelling ap-
plication to which this article is dedicated are brie@y introduced. In Section 2,
the RBF network is presented and the compared design methods are detailed in
Section 3. An explanation of the experiments carried out is done in Section 4,
for which results are presented in Section 5. Finally, conclusions are drawn in
Section 6.

1.1. Greenhouse environmental control

The main purpose of greenhouses is to improve the environmental conditions in
which plants are grown. In greenhouses provided with the appropriate equipment
these conditions can be further improved by means of climate control. Environ-
mental factors like the inside air temperature, humidity and CO2 concentration, to
mention a few, are in@uenced by the heating systems, ventilators and fog systems,
among others, which in turn are governed by some type of controller. A good
overview of greenhouse climate control can be found in [23]. The greenhouse cli-
mate is in@uenced by many factors, for example the outside weather, the actuators
and the crop. Methods aimed at eCciently controlling the greenhouse climate en-
vironment must take these in@uences into account, and that is achieved by the use
of models. The design problem being considered is to model the inside air temper-
ature of a hydroponic vegetable production greenhouse as a function of the outside
solar radiation and temperature, and the inside relative humidity. This model is
intended to be used in a greenhouse adaptive predictive hierarchical (in the sense
of [23]) control scheme as shown in Fig. 1. In [5] it has been shown that models
of this process are slowly time varying in the parameters. This 7nding makes both
o--line and on-line methodologies important. While the initial design can be done
o--line, the network will probably need on-line adaptation when employed in a
real-time control system.
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Fig. 1. Hierarchical greenhouse environmental control strategy.

Some examples of previous application of NNs to problems arising from GEC
can be found in [20–22]. The back propagation (BP) method along with the
multi-layer perceptron (MLP) is normally employed. RBFNNs are structurally sim-
pler than MLPs, which makes the design and training process an easier task. They
are also strongly based on function approximation theory and have a number of
proven desirable properties in that line, making them very attractive for the problem
in hand. For these reasons they are chosen for this study.

2. RBF neural networks

An RBFN consists of three fully connected layers. The 7rst is the input layer
connecting the source nodes to the hidden layer of the network, which is com-
posed of a certain number of units, called neurons. The outputs of the hidden
layer are then linearly combined by a set of parameters to produce the overall
network response in the output layer. This way the network performs a mapping,
f, from an input space, Xd, to an output space, Ym. The hidden layer applies a
non-linear transformation to the inputs generating a hidden space which in general
has a higher dimension than X. Given two sets of points, X = {xj ∈Xd}Nj=1 and
Y = {yj ∈Ym}Nj=1, and a function F :Xd �→ Ym such that Y =F(X ), the task of the
NN is to construct the mapping in such a way that

f(xj)=yj; j=1; : : : ; N: (1)
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With this formulation the network is constrained to pass through all the N data
points, creating a strict interpolation (SI) problem. A known method to solve this
multivariate SI problem is the radial basis function technique which consists in
choosing f of the form

f(xj)=
N∑
i=1

�i’(‖xj − xi‖); (2)

where ‖ · ‖ is a norm, usually Euclidean, and {’(‖xj − xi‖)}Ni=1 are a set of non-
linear functions known as radial basis functions, centered at the data points xi and
weighted by a set of unknown coeCcients {�i}Ni=1. To solve real world problems
it might be neither practically feasible nor desirable to have an RBF expansion of
dimension N , which could be very large. In [2] an approximation to the RBF SI
problem is proposed, using an expansion on the basis of smaller dimensions:

f(xj)=
n∑
i=1

�i’(‖xj − ci‖); (3)

where n¡N and the {ci}ni=1 are a set of points called centers which, together with
the set of weights, {�i}ni=1, have to be chosen in order to minimize the distance,
from the approximation f to the target F , stated as

E(f)=
N∑
j=1

(yj − f(xj))2: (4)

De7ning �=[�i; : : : ; �n]
T as the linear weight vector, Eq. (3) can be written in

order to the weights in the following compact form:

�=�+y; (5)

where y is an N -by-1 vector of the desired target values and � is an N -by-n
matrix whose elements ’j; i are the values of the radial basis functions centered at
{ci}ni=1 and evaluated at the points {xj}Nj=1. �

+ denotes the pseudo-inverse of �.
The most used function in RBFNNs is a Gaussian function of the form:

’i(xj)= e
− 1

2�2i
‖xj−ci‖2

:

It is now clear that imposing Eq. (1) to the expansion in Eq. (3) yields an
over-constrained system which no longer interpolates F in the SI sense, but in-
stead approximates it. The regularization network [17] is another method of ap-
proximation also based in an expansion of RBFs, resulting from the application of
regularization theory to the approximation problem. The quantity to be minimized
is now composed of two terms

E�(f)=
N∑
j=1

(yj − f(xj))2 + �‖Pf‖2 (6)

where P is a di-erential operator, ‖ · ‖ is a norm on the space where f belongs,
and � is a positive real number called the regularization parameter. The choice
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of the operator P embodies the a priori knowledge about the solution and deter-
mines the function ’ used in Eq. (3) [11]. The 7rst term on the right-hand side of
Eq. (6) is a standard error term measuring the closeness of the approximation
to the real data. The second term measures the smoothness of the resulting ap-
proximation. The regularization parameter establishes a tradeo- between the two
terms. It should be noted that as � → 0, Eq. (4) is recovered. The solution to
this regularization problem was then found to be similar to Eq. (2), and again
an approximation to this N dimension expansion was pursued by one in less di-
mensions resulting in a solution similar to Eq. (3), where the weights are now
calculated by

�=(�+ �I)+y:

This is called a generalized radial basis function (GRBF) expansion. Again, if
� → 0, the method in Eq. (5) is recovered. From a point of view of func-
tion approximation, the regularization network has three desirable properties [17]:

• It is a universal approximator. The network can approximate arbitrarily well
any multivariate continuous function, given a suCciently large number of hidden
nodes.

• It has the best approximation property [12]. Given an unknown non-linear func-
tion F , there always exists one set of unknown coeCcients that approximates F
better than all other possible sets.

• The computed solution is optimal in the sense that it minimizes a functional
which measures how much the solution deviates from the true values given in
the form of training data.

3. Design methods

3.1. O:-line training

Under the framework of batch processing using epoch learning, three methods
will be compared which share some underlying ideas about the training process.
The structure of an RBFNN and the nature of the neuron activation functions
lead to the idea that training the output linear weights and the neuron-free param-
eters can be considered as di-erent tasks to which the employment of di-erent
optimization techniques makes sense. As opposed to the neuron free parameters
the output weights are linear and can be well determined using linear techniques.
A multitude of methods may be applied in the determination of the neuron-free
parameters but it should be noted that the values determined by a particular method
have great in@uence on the number of hidden units needed to achieve some pre-
scribed error performance and also on the convergence of the linear weights. In
what follows two methods will be brie@y described, and two variants of a third
one are presented.
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3.1.1. O:-line method 1
Here, a hybrid learning procedure composed of two stages is considered. The

selection of the center locations and spreads, {ci; �i}ni=1, is 7rst carried out followed
by the determination of the output weights, {�i}ni=1, using the linear least squares
(LS) solution of

E=
1
2

N∑
i=1

e2(i); (7)

where

e(i)= t(i)− y(i):
Vector y is de7ned from Eq. (3) as y=[f(x1); : : : ; f(xN )]

T and t is the vector of
target values. Eq. (7) can also be rewritten as

E= 1
2e

Te= 1
2‖t − y‖22: (8)

The 7rst stage is implemented by a clustering procedure known as the optimal
adaptive k-means algorithm (OAKM) [4]. The spreads of the neuron activation
functions are then determined [13] using

�i=
dmax√
2n
; i=1; : : : ; n; (9)

where dmax is the maximum distance between the centers determined by the OAKM.
This method will be referred to as o:-line method 1 or OAKM method, throughout
the article.

3.1.2. O:-line method 2
Some methods select the center locations from input data. The simplest way of

doing this consists in picking randomly a desired number of centers which, if the
available number of data points is not large enough and its distribution on input
space is not representative of the problem on hand, can result in a larger network
for a satisfactory performance and poor behavior on unseen data after the training
phase. Methods aimed to build moderately sized networks with a satisfying perfor-
mance implement the selection of centers based on some criterion. The orthogonal
least squares (OLS) learning algorithm [3] selects a suitable set of center locations
from the set of input data in a constructive fashion. It adds neurons to the network
in order to satisfy a prescribed error performance. Again the output linear weights
are afterwards computed using LS. An implementation of this learning algorithm
is available through the Neural Network Toolbox [6] from The MathWorks, Inc.,
and is used in this study for comparison purposes. It will be referred to as o:-line
method 2 or OLS method.

3.1.3. O:-line method 3
In this approach the center locations, the spreads of centers and the output

linear weights are all determined under a supervised learning procedure based
on unconstrained deterministic optimization. Basically, new parameter values are



P.M. Ferreira et al. / Neurocomputing 43 (2002) 51–75 57

calculated in an iterated manner in order to minimize the cost function (7). Let
u=[�1; : : : ; �n]

T, v=[cT1 ; : : : ; c
T
n ; �1; : : : ; �n]

T and w=[vT; uT]T. The neurons output
N -by-n matrix is O=[’1(xj); : : : ; ’n(xj)]

N
j=1. The outputs of the network can be

described by Eq. (10), where the linear dependence of the network on the output
weights and the dependence of O on v have been made explicit.

y=O(v)u: (10)

Eq. (8) now becomes

E(w)= 1
2‖t −O(v)u‖: (11)

The formulation presented so far involves all the network parameters in the op-
timization procedure. As already mentioned the output weights can be optimally
determined by the LS solution. Substituting the target values vector, t, in Eq. (10),
denoting matrix O(v) by A and solving for u yields,

û=A+t;

where A+ stands for the pseudo-inverse of matrix A. Substituting this result into
Eq. (11) gives the new training criterion:

E(v)= 1
2‖t −AA+t‖: (12)

This new training criterion does not depend on the linear parameters, u, and ex-
plicitly incorporates the 7nding that, whatever values the non-linear parameters v
take, the u parameters employed are the optimal ones.
Di-erent training algorithms can be employed to minimize (11) and (12). First-

order gradient algorithms (known for MLPs as the BP algorithm) or second-order
methods, such as quasi-Newton, Gauss–Newton or Levenberg–Marquardt (LM)
algorithms can be employed as training algorithm. For non-linear LS problems
the LM algorithm is recognized as the best method, as it exploits the sum-of-the
squares characteristic of the problem [18]. Therefore, the optimization algorithm
used to calculate new parameter values is the LM method [9]. Denoting the training
criterion in iteration k by �(wk), a search direction, pk , in parameter space is
calculated such that �(wk+pk)¡�(wk). This method is said to be of the restricted
step type because it attempts to de7ne a neighborhood of wk in which a quadratic
function, q(pk), agrees with �(wk + pk) in some sense. The step, pk , is restricted
by the region of validity of q(pk) which is obtained by formulating in terms of pk
a truncated Taylor series expansion of �(wk + pk),

q(pk), 1
2p

T
kGkpk + gTk pk ; (13)

where gk and Gk are, respectively, the gradient and Hessian matrix of �k . It is
shown in [9] that pk can be obtained solving the following system:

(Gk + �kI)pk =− gk ; (14)
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where the scalar �k controls both the magnitude and direction of pk . The gradient,
gk must then be obtained as

gk =
@E
@w

=
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@w1
...
@E
@wl



=




1
2
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=− eTJ;

where J is the Jacobian matrix of the form

J=




@y1
@w1

· · · @y1
@wl

...
. . .

...
@yN
@w1

· · · @yN
@wl



;

which, looking at the de7nition of w, can be further decomposed as J=[Jc J� J�],
where

J"=




@y1
@"1

· · · @y1
@"n

...
. . .

...
@yN
@"1

· · · @yN
@"n



; "∈{c; �; �}:

The three derivatives needed to compute J, with the standard formulation (7), are

@y
@ci

=’i(x)
�i
�2i

(x − ci)T;

@y
@�i

=’i(x)
�i
�3i

‖x − ci‖22;

@y
@�i

=’i(x): (15)

Using the new formulation (12), alternative Jacobian matrices are available for this
problem. We use the one introduced in [19], which is

J=(A)vA+t; (16)
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where (A)v is a three-dimensional quantity denoting the derivatives of the output
neuron matrices with respect to the centers and spreads. Note that this Jacobian is
very easy to compute, as it is given by the two 7rst lines of (15), where �i are
replaced by their optimal values, in the least-squares sense. Actually, the use of
this Jacobian matrix implies that each iteration of the LM method minimizing (12)
is cheaper than minimizing (7).
In the context of non-linear LS, the second derivative matrix, Gk , is approximated

[8] using information already available in the determination of gk :

Gk ≈ JTJ:

In order to measure the agreement of q(pk) with �(wk+pk), the ratio between the
actual reduction, N�k , and the predicted reduction, N�̂k , in �k is used:

rk =
N�k
N�̂k

:

The actual and predicted reduction values are obtained as follows. The predicted
error value after taking step pk is

êk = ek − Jkpk :

This way the prediction reduction in �k becomes

N�̂k =�(wk)− êTk êk
2
:

The actual reduction on �k is simply

N�k =�(wk)−�(wk + pk):

The LM method 7nds a value �k¿ 0 which ensures positive de7niteness for (Gk+
�kI) and then solves Eq. (14) for pk . On these conditions the solution pk is a
unique global solution on the minimization of Eq. (13). One iteration of the LM
method can be stated as

(i) Given wk and �k , calculate ek , gk and Jk .
(ii) If (Gk + �kI) is not positive de7nite, then �k =4�k and repeat the test.
(iii) Obtain pk from Eq. (14).
(iv) Calculate �(wk + pk) and rk .
(v) If rk ¡ 0:25 then �k+1 =4�k ,

else if rk ¿ 0:75 then �k+1 = �k=2,
else �k+1 = �k .

(vi) If rk6 0 then wk+1 =wk ,
else wk+1 =wk + pk .

The optimization procedure is iterated until a set of termination criteria is met
[10]. Assume 'k is a measure of absolute accuracy, where (f is a measure of the
desired number of correct 7gures in the objective function:

'k = (f(1 +�k):
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The optimization stops when all the following conditions are met:

�k−1 −�k ¡'k;

‖vk−1 − vk‖¡√
(f(1 + ‖vk‖);

‖gk‖6 3
√
(f(1 + |�k |): (17)

In the following this method will be referred to as o:-line method 3 or LM method.

3.2. On-line learning

In order to integrate a RBFNN temperature model in a real-time GEC method-
ology like the one depicted in Fig. 1, two possibilities can be considered. The use
of a network trained o--line by a method such as those presented in the last sec-
tion or the employment of an on-line learning algorithm capable of adjusting the
network-free parameters as data arrives at every sample time. For the latter, de-
pending on each particular learning strategy, some initial condition for the network
parameters must be chosen. Generally, this is accomplished in one of two broad
ways: initial values are chosen by means of heuristics, randomly or minimizing
some criterion, or from an o--line trained network. Previous experimental studies
in the context of real-time dynamic temperature models identi7cation, have shown
that such models present time variance in the parameters [7]. In the context of NN
modelling, on-line learning algorithms can be used to circumvent this possibility.
Three of such methods will be compared in this work.

3.2.1. On-line method 1
The 7rst learning method considered is a constructive one. Constructive meth-

ods usually start with an empty hidden layer and then, based on the novelty of
the input training samples, start adding units to the network. This means that no
initial start point must be provided. A major contribution to this kind of technique
was made by Platt [16] with its resource allocating network (RAN), followed
by Kadirkamanathan and Niranjan [15], who improved RAN using an extended
Kalman =lter (EKF) instead of the least mean-squares (LMS) estimate for the
network parameters, creating the RANEKF network, which is more compact and
has a better accuracy. In order to overcome a common drawback of both RAN
and RANEKF, in the sense that they could add new units to the network but never
remove them, Yingwei et al. [25] proposed a sequential learning algorithm adopt-
ing the basic ideas in RANEKF but improving it with a pruning strategy in order
to obtain a minimal-RAN (M-RAN) network. The resulting approach revealed it-
self to be better than RAN or RANEKF. For the reasons pointed out already and
those presented in a performance study of M-RAN [26], this method will be con-
sidered here. The basic idea of M-RAN is to add or subtract hidden units from
the network, based on its performance on the current input sample and also in a
sliding window of a certain size over the training samples. Then, if no units are
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added or subtracted, all the free parameters of the network are adjusted by the
EKF algorithm.

3.2.2. On-line method 2
The second method studied is based on the SI problem with GRBFs with regular-

ization [24]. Regularization networks depend on a regularization parameter which
establishes a trade-o- between a standard error measure and the smoothness of
the mapping performed by the network. In this approach the SI equation is solved
recursively, at each time step k, over a subset ZM (k)= {Xj;Yj}kj=k−M+1 of the
training data, formed from the last M input–output pairs. The size of the network,
in terms of number of hidden units, equals M and the centers are located at the
input points in ZM (k). The basis functions used are of the form

’i(xj)= e−
1
2‖xj−xi‖

2
U ;

where U is a d-by-d diagonal norm weighting matrix, d being the dimension of X.
The diagonal elements of this matrix are the variances of each element in xj over
Z [14]. Since the center locations are known, the only parameters which have to
be learned are the output weights. This is done by solving the GRBF SI equation
recursively. Basically, all data in this equation pertaining to time-step k−M+1 are
discarded, the weights are updated and 7nally, a new center and weight relative to
time-step k+1 are added. Due to its own nature this method does not require any
initial condition for the parameters.

3.2.3. On-line method 3
The last learning algorithm considered comes from the LM method presented

in Section 3.1.3 and the reasoning behind its on-line implementation follows. The
LM optimization method is iterated a certain number of times, at each time-step k,
over a subset ZM (k)= {Xj;Yj}kj=k−M+1 of the training data, until the termination
criteria (17) is met. At k +1 the 7rst input–output pair in Z is discarded and the
one pertaining to time-step k + 1 is added. Assuming that the dimension of Z is
large enough two conclusions can be drawn: its statistical properties at k + 1 are
essentially the same as in k, and its distribution on input space is representative
of the process data to some extent. As a consequence, point w in parameter space
that minimizes � at time k + 1 will be the same as in k with a slight correction.
If at the initial time step, with �=1 in the 7rst iteration (please recall the role
of �), the LM method succeeds to converge, � will tend to a small value in the
last iteration. This means that the correction made to w is small and that we are
in the vicinity of the optimum, w∗, which agrees with the consequence of the
assumptions taken. In the subsequent time steps the value of � in the 7rst iteration
is the same as in the last iteration of the previous instant and it can be expected
that the number of iterations spent will be near 1. The choice of M is application
and problem dependent and care should be taken with its choice in order to satisfy
the assumptions made. For the minimization of criterion (12) initial values must
be provided for the center locations and for the spreads of the neuron activation
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functions. This is achieved by means of one iteration of the OAKM clustering
procedure and by the use of Eq. (9).

4. Experiments

The networks will try to model the inside air temperature in an hydroponic green-
house as a function of the outside solar radiation, air temperature and the inside
relative humidity. The input–output model structure was selected from a previous
work [5], where several hypotheses were tested and the best one chosen by means
of the Akaike information criterion [1]. It is a second-order model with one delay
from the outside solar radiation to the inside air temperature. The data set are com-
posed of 4257 points acquired with a sample rate of 5 min. It is graphically shown
in Fig. 2. The 7rst 1000 points are used, for the o--line methods, as training set
and the remaining for testing the networks. All DC terms were subtracted from the
signals, which were then scaled to an amplitude one, [−0:5; 0:5], interval. Table 1
shows the value of the DC terms subtracted to the signals and the amplitude in-
terval from which they were scaled.

Fig. 2. Input–output data. From top: inside air temperature, outside air temperature, inside relative
humidity and outside solar radiation.
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Table 1
Values involved in signal pre-processing

Signal DC term Amplitude interval

Inside air temperature ( ◦
C) 13.1 [0 : : : 24]

Outside air temperature ( ◦
C) 10.8 [0 : : : 24]

Outside solar radiation (W=m2) 0 [0 : : : 1070]
Inside relative humidity (%) 19 [0 : : : 100]

5. Results and discussion

5.1. O:-line methods

Regarding the methods presented in Section 3.1, Table 2 shows the results. This
table is divided into four groups o- cells, each presenting results for one method in
particular. From top to bottom and left to right these are the LM method minimizing
(7) and (12), o--line method 1 and the OLS method, respectively. For each group
of cells, the 7rst column, Nc, denotes the number of centers. The second and third
are the sum-of-square of the errors (sse) for the training and test sets, respectively.
Finally, the fourth column is the norm of the linear output weights. The OLS
method is of the constructive type, which means that the number of centers was
chosen by the algorithm.
Fig. 3 presents the curve approximation, output error and error distribution for

the LM methods minimizing (12) and (7), the OAKM method and OLS method,
respectively. The number of centers is 16 for all methods except for the OLS,
where 13 centers were employed. The leftmost plots correspond to a detail from
the test data set from k=[2000 : : : 2600]. The solid line represents measured values
and the dotted line the NN approximation.

5.1.1. OAKM and OLS methods
From the data presented in Table 2 we can conclude that the OLS method did

not achieve good linear parameter conditioning. Its error performance was good
with the exception of the value obtained for the test set using the largest network
(Nc=256). The OAKM method presents the worst error performance among all.
This can be con7rmed looking at Fig. 3 where clearly this method achieves the
poorer curve 7tting.

5.1.2. LM based methods
It can be observed that, in terms of sse for both training and test sets, the LM

methods outperformed the other hybrid methods, usually by a factor of one order of
magnitude in the training set. Comparing the two LM methods, the use of the new
criterion (12) outperformed the standard criterion (7). The error values obtained
with the test set put in evidence the improvement in terms of generalization that
the LM method minimizing (12) achieves. The termination criterion (a value of
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Table 2
Results obtained with the o--line training methods

Nc Training Test ‖u‖ Nc Training Test ‖u‖
sse sse sse sse

8 0.029 0.902 1.65 8 0.028 0.379 1.92
16 0.029 1.033 1.71 16 0.029 0.849 2.33
24 0.024 1.333 2.58 24 0.027 0.819 4.33
32 0.023 1.833 2.47 32 0.021 1.319 6.05

8 1.172 28.191 1.35 7 0.093 1.700 1.84E+02
16 0.329 21.676 3.80 13 0.046 0.889 2.04E+02
24 0.399 24.161 2.61 58 0.025 0.769 1.09E+04
32 0.238 21.162 3.08 256 0.013 131.633 3.99E+07

Fig. 3. Curve 7ttings and error for the o--line methods (k = [2000 : : : 2600]).

(f=0:001 was employed) not only ensures good generalization capability, but also
good conditioning in the linear parameters. Also, faster convergence rates were
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Table 3
Results obtained with the M-RAN method

Network emin e′min Nc rmse

N1 0.1 0.01 14 0.0390
N2 0.1 0.001 14 0.0390
N3 0.05 0.01 24 0.0445
N4 0.05 0.001 24 0.0445
N5 0.01 0.01 42 0.0450
N6 0.01 0.001 42 0.0450

observed for the LM method minimizing (12). Taking into account, on the one
hand, the bad linear parameter conditioning of the OLS method and the network
sizes it obtains and, on the other hand, the 7ttings, error distributions and error
values obtained by the LM methods, we conclude that the latter achieves a better
performance.

5.2. On-line methods

5.2.1. M-RAN method
The M-RAN method depends on several parameters. A detailed description of

their role is beyond the scope, but the same notation from [26] will be used. A
common choice to all networks is done for some of the parameters: +max =1:0,
+min =0:2, ,=0:4, -=0:01, .=0:3, P0 = 1, Rn=1, Q0 = 0:00001 and M =288.
The value of M determines the size of a sliding window over the output error
values and the outputs of all neurons, which are the decision basis for the pruning
and addition operations. The chosen value corresponds to 1 day of data. Table 3
shows a summary of the values chosen for the two remaining parameters and the
corresponding results obtained. These parameters are emin, a threshold for the ab-
solute value of the output error, and e′min, a threshold for the values of RMSE
over a window of size M . Nc is the number of centers obtained and the last col-
umn presents the root mean square error (rmse) of the predicted output for all
simulation points.
Clearly, in this problem emin dominates the design of the network. The RMSE

values are greater for larger networks when the opposite is expected. Tighter error
restrictions provoke a greater number of pruning and addition operations, which
lead the EKF to converge to a new point in parameter space. Probably, this results
in a worst RMSE behavior. Fig. 4 shows results obtained with the M-RAN method
for networks N{1;3;5}.
For each row, the top left plot presents the evolution of the network size. The

plot below represents the output error obtained. On the right-hand side, the curve
7ttings for the three networks can be observed.
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Fig. 4. Results for the M-RAN method.

Table 4
Results obtained with the regularized network for .=4:0

Nc �

1 0.1 0.01 0.001 0.0001 0.00001

5 0.0986 0.0208 0.0255 0.0528 0.0106 0.0106
6 0.0905 0.0431 0.0192 0.0111 0.0106 0.0106
7 0.0838 0.0232 0.0365 0.0107 0.0106 0.0106
8 0.0781 0.0435 0.1867 0.0110 0.0106 0.0106
9 0.0733 0.0680 0.0468 0.0124 0.0107 0.0106
10 0.0692 0.0283 0.0426 0.0149 0.0107 0.0106
11 0.0658 0.2710 0.0973 0.0186 0.0107 0.0106
12 0.0629 0.5028 0.0515 0.0142 0.0108 0.0106
13 0.0604 0.7114 0.2378 0.0246 0.0107 0.0107
14 0.0582 0.1022 0.6323 0.0339 0.0110 0.0107
15 0.0563 0.1527 0.1359 0.1952 0.0116 0.0107
16 0.0547 0.9885 0.1945 0.0436 0.0112 0.0107
17 0.0534 0.1293 0.1393 0.0214 0.0142 0.0108
18 0.0522 0.1311 0.1787 0.1345 0.0208 0.0107

5.2.2. On-line method 2
For the on-line method 2, the network size is varied from 5 to 15 neurons and

for each network di-erent values of the regularization parameter were employed:
�= {1; 0:1; 0:01; 0:001; 0:0001; 0:00001}. Table 4 presents the RMSE values ob-
tained for these combinations with .=4:0 (read below for the role of .).
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Table 5
Results obtained with the regularized network for .=1:0

Nc �

1 0.1 0.01 0.001 0.0001 0.00001

5 0.0987 0.0205 0.0258 0.0528 0.0106 0.0106
6 0.0908 0.0223 0.0186 0.0110 0.0106 0.0106
7 0.0842 0.0210 0.0283 0.0107 0.0106 0.0106
8 0.0786 0.0215 0.0251 0.0111 0.0110 0.0106
9 0.0739 0.0212 0.0188 0.0145 0.0106 0.0106
10 0.0699 0.0211 0.0516 0.0145 0.0107 0.0106
11 0.0666 0.0362 0.4321 0.0142 0.0109 0.0106
12 0.0637 0.4923 0.0722 0.0162 0.0139 0.0107
13 0.0611 0.0395 0.2760 0.0364 0.0108 0.0147
14 0.0589 0.2029 0.6275 0.0195 0.0126 0.0107
15 0.0569 0.0291 0.1482 0.0477 0.0172 0.0108
16 0.0551 0.0400 0.2694 0.0286 0.0119 0.0107
17 0.0536 0.0394 0.1154 0.0187 0.0109 0.0108
18 0.0524 0.0285 0.4286 0.5326 0.0109 0.0108

Table 5 presents the same results for .=1:0. Some numerical instability was
veri7ed in the experiments and as suggested in [24], algorithm resetting was used
to counteract this problem. The error is monitored at each iteration, k, and the
algorithm is restarted when the following condition is met:

|e[k]− 1([e(i)]k−1
i=k−n)|¿.�([e(i)]k−1

i=k−n);

where 1 and � are the sample mean and standard deviation of their argument
values.
. is a threshold parameter which directly a-ects the number of reset opera-

tions. Fig. 5 shows plots pertaining to the values in Tables 4 and 5. The val-
ues from 1 to 6 in the �-axis correspond to {1; 0:1; 0:01; 0:001; 0:0001; 0:00001},
respectively. From the RMSE values in Fig. 5(a) and (c), it can be seen that
larger networks and bigger regularization parameters do not produce good re-
sults, and that the method is sensitive to those n; � combinations. Small networks
for all tested � values and small � for all network sizes produced acceptable
RMSE values. By looking at Fig. 5(b) and (d) it can be observed that .=1:0
forces a large number of reset operations. For .=4:0 this number is accept-
able, varying from 23 to 199. From n=7 to 18 and small � values this num-
ber lies within [31 : : : 95]. Fig. 5(e) presents the di-erence in RMSE resulting
from the two values of . and reinforces the idea that the method is sensitive
to the combination of larger networks with bigger � values. The other combi-
nations of n; � are not a-ected by the resetting procedure in terms of RMSE.
The reset rate is clearly varying with the n; � combination. Better results were
achieved by the use of smaller values for the regularization parameter. Consider-
ing its role, this fact can indicate that the data set is a good representation of the
underlying system.
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Fig. 5. RMSE values for on-line method 2.

5.2.3. LM based methods
Regarding the on-line LM methods, the network size, Nc, was varied from 3 to

15 neurons and two values of (f, {0:1; 0:01}, were used for each network. The
size of the training set, M , in each time step k was 288 corresponding to one day
of data. This results in a total of 3969 input–output pairs available for simulation.
Tables 6 and 7 present the results obtained for the LM algorithm minimizing the
new criterion (12) and the standard criterion (7), respectively. Each table presents
the results for the two values of (f in separate groups of cells. In each group
of cells the third and fourth columns denote the mean of the values obtained for
the norm of the linear weights and for the error criterion. NI stands for the total
number of iterations spent and the last column is the mean value of �. Table 6
presents the results only for networks up to 10 neurons. This is due to the bad
linear weight conditioning veri7ed, starting with Nc=7. This problem should be
solved employing a regularized implementation of the LS solution of (12). It can
be observed that in general better error performance is obtained with a tighter er-
ror restriction with almost no cost in terms of number of iterations spent. With
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Table 6
Results for the on-line LM method minimizing (12)

Nc rmse ‖ Ru‖ R� NI R�

(f =0:1

3 0.0089 1.60 0.110 3972 0.125
4 0.0065 3.54 0.088 3970 0.5
5 0.0067 3.14 0.086 3970 0.5
6 0.0068 1.97 0.087 3970 0.5
7 0.0073 2.02 0.080 3970 0.5
8 0.0072 10.68 0.077 3970 0.5
9 0.0072 17.06 0.079 3970 0.5
10 0.0076 16.43 0.076 3970 0.5

(f =0:01

3 0.0078 2.26 0.098 3976 0.0156
4 0.0066 14.99 0.083 3974 0.0313
5 0.0066 3.87 0.085 3972 0.1250
6 0.0067 2.34 0.083 3972 0.1250
7 0.0080 28.7E04 0.080 3972 0.1250
8 0.0072 28.7E03 0.077 3972 0.1250
9 0.0078 1.9E03 0.076 3971 0.2501
10 0.0078 18E03 0.072 4031 0.1795

(f=0:1 the termination criteria is easily met hence the relatively large values of
� obtained.
For the other value of (f the termination conditions are not met so easily and in

the initial time step a few more iterations are needed to bring � to smaller values.
Table 7 puts in evidence the slower convergence rates obtained with criterion (12),
as it can be seen from the values of NI . In terms of the error performance although
the mean values of � are smaller for (f=0:01 as expected, this fact shows no
correspondence on the values of the RMSE. With the tighter error restriction much
more iterations were needed and some over-7tting may have occurred. Also the u
parameters obtained in the last time step are not the optimal ones for the current
time step, making convergence more diCcult. Comparing the two LM methods
for error performance, it can be seen that the new error criterion leads, in gen-
eral, to better values. In terms of convergence rate and computational cost the
improvement is obvious. In all experiments good linear parameter convergence
could be observed with some smooth time variability. Figs. 6 and 7 present results
regarding the LM methods minimizing (12) and (7), respectively, for Nc=6 and
(f=0:1.

The 7tting, error sequence and distribution, linear parameter evolution and learn-
ing criterion evolution can be observed. In terms of real values of the modeled
quantity, the error is bounded within the range [− 1◦C; : : : ; 1◦C] and concentrated
on the interval [− 0:2◦C; : : : ; 0:2◦C]. For both methods good linear parameter con-
vergence can be observed.
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Table 7
Results for the on-line LM method minimizing (7)

Nc rmse ‖ Ru‖ R� NI R�

(f =0:1

3 0.0063 3.52 0.088 3978 0.0625
4 0.0063 3.21 0.085 3974 0.0313
5 0.0073 4.65 0.087 4014 3.5527
6 0.0068 2.96 0.078 3978 0.0400
7 0.0074 7.50 0.073 4696 0.0377
8 0.0074 4.81 0.080 4148 0.7191
9 0.0075 4.07 0.075 4122 0.1763
10 0.0101 8.00 0.061 5018 0.0340
11 0.0102 7.19 0.058 5338 0.4211
12 0.0111 5.38 0.083 4209 7.4484
13 0.0102 7.61 0.062 4950 0.0409
14 0.0130 6.42 0.063 4634 1.1504
15 0.0120 7.36 0.052 5569 0.0263

(f =0:01

3 0.0066 4.18 0.091 3977 0.0625
4 0.0069 4.90 0.090 4160 4.0802
5 0.0076 11.25 0.075 6607 0.0078
6 0.0087 7.00 0.075 4838 0.0328
7 0.0280 9.39 0.074 5901 0.0083
8 0.0086 6.78 0.073 4825 0.0804
9 0.0136 6.80 0.063 6055 0.1236
10 0.0114 6.25 0.067 5087 0.1870
11 0.0147 8.60 0.059 7680 0.0405
12 0.0130 8.53 0.054 8079 0.0196
13 0.0141 6.46 0.070 5201 0.9633
14 0.0105 8.29 0.063 6181 0.0368
15 0.0117 6.85 0.056 6576 0.0376

5.2.4. On-line methods comparison
In order to compare all the on-line methods, Table 8 shows two sets of results

organized by network size, presenting the RMSE values obtained. The 7rst set
concerns all methods except method 3 minimizing (12). The regularization method
and the LM method minimizing (7) have a clear advantage over the M-RAN
method. The second set deals with all methods except M-RAN. Again the LM
method minimizing (12) achieves the best result.

5.3. O:-line or on-line?

From the comparisons and reasonings made so far, it can be said that, whether
o--line or on-line, the LM method minimizing the new criterion achieves the best
results. It has the best error performance at smaller network size and better general-
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Fig. 6. LM minimizing (12). From top: curve 7tting, error sequence, error distribution, linear parameter
evolution and training criterion evolution.

Table 8
Comparison of all on-line methods

Method Observations Nc rmse

Method 1 emin = 0:1 14 0.0390
e′min = 0:01

Method 2 �=0:00001 14 0.0107
.=4:0

Method 3 minimizing (7) (f =0:01 14 0.0105

Method 2 �=0:00001 6 0.0106
.=4:0

Method 3 minimizing (7) (f =0:01 6 0.0087
Method 3 minimizing (12) (f =0:01 6 0.0067

ization capability (in the o--line case). The smaller RMSE value obtained o--line
(for the test set) was 0.0108 with a eight neurons network. For a similar sized
network adapted on-line, a value of 0.0072 was achieved. Comparing these values
we can conclude that the on-line version of the LM method minimizing (12) is
the best method for the GEC problem. This conclusion is also supported by the
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Fig. 7. LM minimizing (7). From top: curve 7tting, error sequence, error distribution, linear parameter
evolution and training criterion evolution.

best curve tracking achieved by the on-line version and its linear parameter slow
time variance.

6. Conclusions

The results obtained lead to the conclusion that RBFNNs can model the green-
house internal temperature. All methods achieved good 7ttings and acceptable one
step ahead prediction errors. Results for a new algorithm, based on a Levenberg–
Marquardt method, that explicitly exploits the non-linear–linear structure of
RBFNNs have been presented. A strategy for its on-line application was also dis-
cussed. It has been shown that, whether on-line or o--line, better results were
obtained by the two LM methods, compared with other hybrid batch and adaptive
methods. The LM method, exploiting the separability of parameters, achieves the
best results in terms of error performance and parameter convergence, and with
smaller computational costs.
With a view to greenhouse environmental control, more work has to be done in

terms of the model input selection. The performance of these methods have to be
evaluated over greater prediction horizons, where we think that the bene7ts of the
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on-line version of the LM method will be more evident. Finally, neural network
models have to be compared also with conventional models.
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