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Abstract

In this work a new algorithm for the sequential generation of failure states in a network with multi-mode components is proposed. The
algorithm presented in the paper transforms the state enumeration problem into a K-shortest paths problem.

Taking advantage of the inherent efficiency of an algorithm for shortest paths enumeration and also of the characteristics of the reliability
problem in which it will be used, an algorithm with lower complexity than the best algorithm in the literature for solving this problem, was

obtained.

Computational results will be presented for comparing the efficiency of both algorithms in terms of CPU time and for problems of different

size. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The models of reliability analysis of communications/
computer networks are based on the idea of associating, in
a probabilistic manner, the states of a system, with perfor-
mance measures. This methodology was mainly developed
by Meyer (see e.g. Ref. [1]) leading to the concept of
‘performability’. An exhaustive reliability study of a
network with significant number of components quickly
becomes computationally unfeasible having in mind the
exponential increase in the state space dimension. This
problem becomes more critical as the computational cost
of the performance calculation for each state increases. Li
and Silvester [2] suggested that only the most probable
network states, enabling a certain minimum coverage of
the space state, needed to be considered and developed an
algorithm for selecting those states. The efficiency of this
algorithm was improved by Lam and Li [3] and later by
Yang and Kubat [4], taking as a basis an algorithm [5]
developed by the same authors for networks with multi-

* Corresponding author. Tel.: +351-239-796261; fax: +351-239-
796247.
E-mail addresses: teresa@dee.uc.pt (T. Gomes),
jerav@dee.uc.pt (J. Craveirinha),
lucia@dee.uc.pt (L. Martins).

mode components. An algorithm for components with two
states, with lower complexity than those algorithms was
proposed by Gomes and Craveirinha [6]. For networks
with multi-mode components (the focus of this paper) an
algorithm generalizing the Lam and Li [3] approach was
introduced by Chiou and Li [7]. The performance degrada-
tion of each component is here characterized by up to N
different modes (or states) and the algorithm enumerates a
pre-determined number m of network states in order of
decreasing probability. Another more efficient algorithm
was proposed by Yang and Kubat [5] which was shown to
have an upper limit complexity O(nN|{2,|) when used for
generating the most probable states corresponding to the
minimal set (2, which satisfies the requirement of a cover-
age probability of the state space not less than 1 — &, in a
network with n components. It is at least »n times faster than
the one by Chiou and Li [7]. Another feature of this algo-
rithm is that it does not need to ‘guess’ the dimension of {2,:
the algorithm keeps generating states until the required
coverage of the state space is obtained.

In this paper, a new algorithm is proposed for efficiently
generating the sequence of most probable states in a
network with multi-mode components. This algorithm is
based on the transformation of the enumeration problem
into a K-shortest paths problem. The major advantage of
the proposed algorithm results from its lower complexity
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and therefore lower running CPU time and also from the
quite significant reduction in memory requirement as
compared with the Yang and Kubat [5] algorithm.

The paper is organized as follows. Section 2 introduces
basic concepts of the underlying model and previous results
necessary for justifying the algorithm. The formalization of
the algorithm, its complexity analysis and memory require-
ments are presented in Section 3. Computational results
comparing, in terms of CPU time the Yang and Kubat [5]
approach and the proposed algorithm can be found in
Section 4 which is followed by some conclusions.

2. Foundations of the model
2.1. Basic concepts

Let us consider a network with n components where each
component i can be in j =0, 1,2,...,d(i) different modes,
corresponding to different operational, partially operational
or inoperational conditions. It is assumed that component
failures are statistically independent and that the probability
of any component being in state j is p(i,j), such that
>0 p(i.j) = 1. Let op(i) = p(i.jo) be the probability of
the component being fully operational, then the probability
of being in any inoperability state is ip(i) = 1 — op(i). In
practical situations it is only of interest to consider 1/2 =
op(i) = 1, p(i,jy) = 1/2. Nevertheless in order to maintain
the algorithm as general as possible the following defini-
tions are introduced, inspired by the definitions in Ref. [2].
A component is said to be connected if it is in its most
probable state; otherwise it is said to be disconnected. Let
p(,j,) = max;p(i,j) and p(i) = p(i, ) be the probability of
component i being connected. If op(i) = ip(i), then p(i) =
op(@). If op(i) < ip(i), then p(i) = p(i,j,,) (probability of the
most probable inoperational state). The probability of being

disconnected is Zd;’]) p(i,j) and d(i) represents the number

4
of modes of disconnection. Let the probability of the discon-

nected states be g(i,j):
qGi,j) = p(i,j"), withi = 1,2,...,n

i'=0,1,....j,— Lj, + 1,...,dG0)

_ j+1
Jj= i

Let S, designate the states of the network. Then similarly to
Ref. [2]:

M
it J' <

it j' >,

P(Sk) = ﬁp(i)l_Ti(Sk)q(i,j)Ti(Sk) (2)
i=1

where
0 if i is connected in state S}
Ti(Sp) =

1 if i is in the jth disconnected mode in state Sy

3

It is assumed that S; is the state where all the network
components are connected and has probability: P(S;) =

[T=1 p().
2.2. Target graph of the algorithm

In order to specify a graph where the algorithm finds
K-shortest paths in order to solve the state enumeration
problem the following definitions are introduced. Let R be
a vector such that R(r) is associated with a given discon-
nected mode of some component of the network:

)
pQ) "’

dr(i) = dr(i — 1) +d(i);

R(r) i=1,2,.,n j=1,2,..,d();

r= dT(l — 1) + 1,,dT(l)
4)

where by assumption d(0) = 0, and dr(0) = 0.

A function id is defined that transforms the index v =
{1,2,...,dr(n)} of R into the pair (i,j) which identifies the
Jjth disconnected state of component i, according to Egs. (1)
and (4). Another function id, is defined that transforms the
index v of R into the label i of the component such that (i, j)
is the pair associated with v, through Eqs. (1) and (4).

Let S, = {e,e,,...,¢,} with e, € {1,2,...,dp(n)} and
r=1,2...,w, represent a state of the network. Then:

Ve,, e, € S, : id.(e,) # id.(e,) &)
and from Egs. (2) and (4):

P(S) = P(S) [ [ Reey) (6)
i=1

Note that in this manner S is completely defined by the set
of the disconnected modes (of the components) which
characterize the state.

In order to obtain an additive metric required by the used
shortest path algorithm the probability of each state is
transformed by:

—In P(S;) = —1In P(S;) — i In R(e;) (7)
i=1

where the minus sign guarantees that a positive valued
metric is obtained.

A graph is then considered where paths originate at a
fictitious node s = 0 and terminate at a fictitious node t =
dr(n) + 1. The intermediate nodes of a path will represent
the elements of S; if the matrix of the costs associated with
the arcs is constructed in a convenient form, as analysed
hereafter.

LetV = {s,v;,vs5,...,v,_1, 1} be the node set of a directed
graph and L the arc set, composed of ordered pairs of
elements in V. The kth path generated by the algorithm in
this graph will be specified by the sequence p;, =
(8, (8,v1), Vi» ..oy (W, ), 1). The corresponding state is S, =
{vi,vs,...,v,,} where the auxiliary nodes s and ¢ were
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excluded. The cost of such path will be given by:

w

C(pk) = Z Cv,‘vl,ﬂ (8)
u=0
where Cy,y, Tepresents the cost of arc (v;, v;).
In order to guarantee that there is a strict mapping of state
probabilities and path costs, from Eq. (7):

—InP(S) = —InP(S)) + c(pr) €))

This implies that

cp) == > IR, + ¢, (10)

u=1

and

Cyppyy = ~IMRW, 1), u=0,1,...,dr(n) =1 As=vy =0
11

Cy s — O, I=v,4y = dT(n) + 1 (12)

w

Next a cost matrix [c,] of dimension (¢) X (t + 1) is defined
such that the cost of an arc is the additional cost of introdu-
cing a new disconnected component (in a certain discon-
nected mode), while satisfying relations (4), (11) and (12):

Ccq = Cor = —In R(k), with k <t (13)
Cop = 00, ifa =k (14)
Cak = 9, if 0 <a<kAid.(a) = id.(k) (15)
¢ = —In R(k), if 0 <a<kAid(a) #id.(k) (16)
¢y =0, with t = dp(n) + 1 a7

The elements of row 0 represent the cost of passing from the
most probable state S; to a state S, = {k}. The element c,
takes the value O so that the shortest path p; = (s, (s, ), 1)
corresponds to state S; = (J. The costs c,, just enable that
all nodes may reach the auxiliary node ¢ without additional
cost. Relation (15) prevents the generation of paths
associated with any given state S, containing two or more
disconnection modes of the same component, since such
states cannot exist. Eq. (14) prevents the generation of
paths including repeated nodes and the generation of differ-
ent paths formed by the same set of nodes, placed in differ-
ent order. Finally, Eq. (17) implies that adding node ¢ to a
path does not have any cost, according to Eq. (12). It should
be pointed out that the obtained matrix is acyclic, that is no
path can be constructed with identical original and terminal
nodes. Therefore, K-shortest paths algorithms will always
obtain loopless paths, when applied to a graph the arcs’ cost
of which are given by Egs. (13)—(17).

In order to justify that the sequential enumeration of the
most probable states is equivalent to obtaining the k-shortest
paths from s to ¢ in the directed graph defined earlier, two
auxiliary propositions are now presented.

Proposition 2.1. Let p be a path from s to t:
pP= <S7 (S’ V]), Vi, (V], V2)7 Vo,eees (Vw9 t)’ t)

obtained from a shortest path algorithm in the graph the
arcs of which have the costs defined by Egs. (13)—(17) and
the arcs with o cost deleted; then s <v; <v, <. <
v, <.

Proof. Vij€[0,1,...dr(n)+1]: i=j= c; = o0,
according to Eq. (14).

Proposition 2.2. Let p be a path from s to t:

P =48 (VD Vi Viet Ve 1V Vi s Vi, V=15 V), ooy (0, D, 1)

obtained from a shortest path algorithm in the graph the
arcs of which have the costs defined by Egs. (13)—(17) and
the arcs with o cost deleted; then id.(v,) # id.(vp),
Vv, v, € p.

Here it is conventioned that id.(s) = 0 and id.(f) = n + 1.

Proof. Letv;,v; € p, then by Proposition 2.1, v; < ;.

If (v;,vy) € p then from Eq. (15), id.(v;) # id(v;), since
otherwise the arc would have oo cost.

If v;,v; € pand (v;,v;) & p then, itis possible to construct
a sub-path p* of p, from v; to v; :

4 ! ! / !
P= i v, vV (V)L )

where by Proposition 2.1 v; < v} < ... < vj/» < v;. Also, by
construction of R in Eq. (4), if id,(v;) = id.(v;) = u then
d.(r)=u,r=v;,v; + 1,...,v]~

But, according to Eq. (15), the arcs in p* may only exist if
their extreme nodes (which are in the interval [v;,v;]) have
different values of id., therefore if v;,v; € p and (v;,v;) & p
then id.(v;) # id.(v;), which concludes the proof.

An illustrative example of the calculation of R, corre-
sponding matrix and target graph is presented in Appendix
C.

3. The algorithm

Next we formalize the algorithm for enumerating the K
most probable states, taking as a basis the graph defined in
the previous section, the nodes of which represent the differ-
ent disconnected modes of all the components; the arcs and
their associated costs are defined by matrix [c,] and the cost
of a path, representing state S,, when added to —In P(S;)
gives the value —In P(S,). For calculating the K-shortest
paths we will use algorithm MPS in Ref. [8] which is to
the best of our knowledge, the most efficient algorithm
available in the literature.

The variables P, and P, represent the calculated and the
desired probability coverage, respectively.
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Algorithm 3.1 ([State generation in a multi-mode compo-
nent network]).

1. Input: p(i,j), i=1,2,...,n, j=0,1,2,...,d(); Py, and
assume without loss of generality:

2. Calculate P(S,), P(S;) =[]~ p(i,0).

. Construct a vector R according to Eq. (4).

4. Define the graph with arcs having associated costs [cy]
given by Eqgs. (13)-(17).

5. Construct the shortest tree of all nodes to ¢, 7,. This is
trivial because such a tree is formed by the paths
(v,(v,1),1t) of cost 0, withv=0,1,2,...,t — 1.

6. Obtain a representation of the graph in the sorted forward
star form (see details in Appendix D or Dial et al. [9]).

7.u=0; P.=0;

8. While (P, < Py)

@u—u+l,
(b) Calculate the next shortest path, p,, from s to ¢
using the MPS algorithm; let its cost be c(p,).
(c) Calculate the associated state probability: P(S,) =
e “PIpes).
(d) P, — P, + P(S,)
EndWhile

W

3.1. Algorithm complexity

Firstly note that the re-labelling operations have a cost
proportional to the number of relabelled elements. The
complete expression of the complexity of the K-shortest
path algorithm MPS is given in [8]:

O(L| + [V]iog| V] + [L] + [Lllog,|V| + K[VI) (18)

where each of the terms in the above-mentioned expression
can be interpreted as follows:

e |L| + |V]log,|V]: obtaining the tree of shortest paths to ¢,
75

e |L|: calculation of reduced costs in the arcs [8,10];

e |L|log|V]: storing the arcs in the sorted forward star form;

e K|V|: cost of obtaining the K-shortest paths, after
performing the previous operations. This results from
the fact that, in MPS, each time a shortest path is selected
at most |V| new paths have to be generated.

This gives rise to a simplified expression for the complex-
ity of the form [8]:

O(|Ljlog,|V| + K[V) (19)

We now present the complexity calculation for our simpli-
fied version of MPS:

¢ Having in mind the particular structure of the cost matrix,
the construction of the tree of the shortest paths from
every node to 7 is trivial (all its arcs have null cost) and
its cost in terms of complexity is O(|V]).

e As the cost of any path to ¢ is zero (in 7)), it is not

necessary to calculate reduced costs in the arcs (reported

to 7,) since they are equal to the arc costs.

e As for the construction of the graph in the sorted forward
star form, it may be done in the following manner, with a
complexity proportional to the number of arcs of the
graph, having in mind the particular structure of the
cost matrix:

o order all the arcs originated at node s = 0 by decreas-
ing cost using the quicksort algorithm which has
complexity O(|V|log,|V]) [11];

o then define straightforwardly the remaining forward
star form structure (no further sorting algorithm is
needed) since the successors of the arcs originated
at nodes r > 0 appear in the same order as for node
0, whenever they exist.

In this manner it is possible to create the forward star

form structure with complexity:

O(|L| + [V[log,|V]) = O(|L]) (20)

assuming |L| = |V|*.

e Due to the fact that all nodes in V are adjacent to ¢ in 7,,
every time a new shortest path is selected at most two
new paths are generated'.

Therefore, the overall complexity of the algorithm
becomes:

O(L| + K) 21

It should be noted that |L| is due to the initial operations that
precede the sequential generation of the states, this is what
could be called the algorithm ‘overhead’.

As the cost matrix is upper triangular the maximum |L| is
(VI* = VD2, with [V|=2+3L, (N;—1)<2+ (N —
Dn, where N; is d(i) + 1 and N is the max;N;,

O(L| + K) = O(InNY* + K) (22)

3.2. Comparing with the Yang and Kubat algorithm

Yang and Kubat [5] proposed a state enumeration algo-
rithm with multi-mode components where the state
enumeration problem for a given state coverage probability
is transformed into a tree search problem. This algorithm,
the most efficient so far, was shown to have a complexity
O(K >_| N;) = O(KnN), where K is the number of states
which had to be generated in order to attain a given coverage
probability; also n and N have the same meaning as in this
text. Therefore, it may be concluded:

e if K > [nN]” the presented algorithm has an upper bound
complexity of O(K), which is much lower than O(KnN).
The situation K > [nN]2 will occur for small and medium
size problems, because if nN is high, lets say greater than

' This can be deduced from the MPS algorithm with this particular 7.
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1000 then 1000*> = 1E6, then probably it will be unfea-
sible to consider such a significant number of states.

e If K < [nN]? the proposed algorithm will have an upper
bound complexity of O([nN] 2) which is smaller than
O(KnN), for K > Nn.

This situation, K < [nN]z, will occur only for large
problems and in that case having K > Nn, will be the
most common in reliability studies! In fact, taking K =
(N — D)n + 1 would result in considering the most prob-
able state and a number of states equal to the number of
different states Sy of cardinality 1.

Therefore, considering that for large problems usually
nN < K < (nN)*, the complexity of the proposed algo-
rithm will be lower than the one of the Yang and Kubat
approach.

3.3. Complexity versus memory requirements

The implementation of the MPS algorithm [8] the
complexity of which was presented in Section 3.2, uses an
address calculation method [9] for orderly storing the candi-
date paths. This method is extremely efficient, when the arc
costs are integers, which is not the case of our cost matrix.

The computational results, in Section 4, refer to an imple-
mentation where a binary heap [11] was used for orderly
storing the candidate paths. This particular implementation
of the MPS algorithm has complexity (see Appendix A):

O(|L| + K log, K) (23)

This complexity is still lower then the one achieved by the
algorithm by Yang and Kubat as long as log, K is smaller
than Nn, which will be true for K of significant size when
compared to the total number of states of single failure in the
network.

Therefore, we may conclude that regardless of the imple-
mentation our algorithm presents lower complexity.

As for memory requirements, the proposed algorithm
stores at most 2K + 1 paths and therefore has a memory
complexity of O(K), because each path can be stored
using a record of fixed size (see Appendix D), which does
not depend on n or N.

The memory requirements of the algorithm of Yang and
Kubat [5] are not so easily obtained. From the calculations
in Appendix B, a lower bound for the number of nodes
needed to represent K states, is given by n—h +
K Zj‘l:o 1/N/. Considering only the first three terms of the
sum we have n—h+ K + K(1/N + 1/N2). Considering
that any node (except the K leaves) has an associated
array of size N; (for storing the weights of the heaviest
leaves of its sub-trees [5]), then an approximate lower
bound for the memory requirement of this algorithm is
KQ2 + 1/N) + N(n — h). Therefore, a lower bound for
memory complexity is O(K + nN).

The lower bound for the Yang and Kubat algorithm is
therefore similar to the upper bound of the proposed algo-
rithm, and computional experiments indeed suggest that the

memory requirements for the Yang and Kubat algorithm are
far from the best case.

4. Experimental results

In the graphics that follow ‘YK’ will be used for the Yang
and Kubat algorithm and ‘MM’ for the proposed algorithm.
The state probabilities were randomly generated, assuring
that the operational state probability of the components was
always greater than to 0.99 and 0.999, for n < 500 and for
n = 500, respectively; the number of states per component
was also randomly generated in {2,3,...,N}. The CPU times
are presented as a function of K (number of selected network
states) in Fig. 1 and as a function of n (number of network
components) in Figs. 2 and 3. A Pentium III at 500 MHz
with 256 MB of memory, running Linux with 128 MB for
swapping, was used.

For networks with a small number of components (n =
50, 100, 200) the performance of MM is superior to YK; for
larger problems such as networks with 500 components,
only when the number of selected states is relatively very
low (in the example K = 50, 100, in a 500 element network
with at most five different modes) does MM perform worse
than YK. Nevertheless, this result does not compromise the
use of MM in practical cases because in any reliability study
the number of network states will have to be larger than n,

Networks with 50 MultiMode Components
80 T T T T T T T

YK
0 WEND 5]
B0 [ i
B 50 frori e T
B A0 [ BT
D30 [ T
a9
O 20 i BT
10 Frood T
0 -e&—8 £
0 100 200 300 400 500 600 700 800 900 1000
Number of network states
(@
Networks with 500 MultiMode Components
800 T T T T T T T T T 1)
700 + [ . : T
600 [ .
B 500 [t .
B 400 [t YK (N=3) —o—
k= YK (N=5) —&—
2 300 ot “i MM (N=3 *:g:j
T 200 i it MMUNSS) ST
100 + === Tt RO T R C bt b R Rttt 11}
R s S Gl S et S EEEER L <
0 1 1 L 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Number of network states
(b)

Fig. 1. Comparison of the algorithms for N = 3,5 and (a) 50 (b) 500
network elements; the curves in (a) for YK(N = 3) and YK(N = 5) overlap
in most cases; CPU time of zero in the graphics means exactly CPU time
less than 10 ms (available accuracy).
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Fig. 2. Comparison of the algorithms for N = 3,4, 5, (a) 10,000 states and
(b) 100,000.
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Fig. 3. Total CPU time (MM-total) versus part of that time which was used
for state enumeration (MM-k), after the initial overhead, forN = 3,4, 5, (a)
10,000 states (b) 100,000 states.

and indeed greater than n(N — 1) which is the number of
states of single failure—and for those conditions the
proposed algorithm is significantly more efficient.

The almost flat line in Fig. 1(a) and (b) for MM is due to
the fact that, if the number of states K is not very large
compared with nN, most of the CPU time is overhead
time, and therefore, the time used to actually select
the states in almost irrelevant. In Fig. 3(a), for n=
1000 this condition still holds, but for n=
50, 100, 200, 500 the situation is different. The situation
reverses in Fig. 3(a) and (b) for n = 50, 100,200, where
the time after the overhead becomes dominant; still in
Fig. 3(a) for n =500 and N = 3 the overhead time is
approximately equal to the remaining time for state
selection, therefore they have identical importance.

Please note the different scales for CPU time in Fig. 2(a)
and (b) for both algorithms. For example for n = 1000, N =
5 (nN = 5000), the results show a CPU time of 15.8 s for
YK and 0.55 s for MM (of which 0.5 s are due to the initial
overhead cost). It is precisely in large problems that the
proposed algorithm performs best when compared with
the Yang and Kubat approach, as can be seen from
Fig. 2(a) and (b). In fact for n = 1000 the tree height will
be n + 1 in Yang and Kubat algorithm, but in the MM
algorithm, apart from the initial cost (0.5 s for N = 5) the
CPU time for MM grows linearly with n, as well as memory.

In Fig. 2(b) there are no CPU times for YK for n =
500, 1000 because the Yang and Kubat algorithm uses
all available memory, then starts to use disk space as
memory, finally uses all of the swap disk available and
then terminates due to lack of resources, before obtain-
ing the desired 100,000 states. In Fig. 2(b), the CPU
values for n = 100 are still without swapping but for
n = 200, swapping already occurs. These results confirm
what was expected from the analysis of the memory
requirements for the worst case and the best case for
the MM and YK algorithms respectively, which were shown
to be close.

In MM the initial cost, which grows with the problem
dimension and wherein lies the most significant part of the
CPU effort for larger problems (n = 500, 1000) and small
number of network states, can be seen in Fig. 3(a) (where
MM-total represents the total CPU time and MM-k
represents the part of that CPU time that is used for
enumerating the K = 10000, 100000 states, after the
initial overhead). This stems from the fact that in
those problems the complexity of the proposed algo-
rithm is established by the algorithm ‘overhead’: the
effort that precedes the first state selection, regardless
of the number of selected states K, as long as K < (nN)2
(according to the complexity calculations). Nevertheless
as the number of states becomes more significant, the cost of
the state generation surpasses the initial cost, as shown in
Fig. 3(b) for n = 50,100,200,500, and this makes the
extreme efficiency of MM clearer when compared with
YK, as can be seen in Fig. 2(b).
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5. Conclusions

In the context of performability analysis of telecommu-
nications networks it is necessary to select the states to be
analysed, thus requiring an efficient algorithm for generat-
ing the network failure states by decreasing probability until
a certain probabilistic coverage of the state space is attained.

We have presented a new algorithm for the purpose of
enumerating, by decreasing probability order the most prob-
able states in a network with multi-mode components. The
algorithm efficiency results from using a simplified version
of an already extremely efficient K-shortest paths algorithm.
For this purpose an adequate graph and cost matrix have to
be built, so that each path between two special nodes repre-
sents a network state.

The proposed algorithm presents lower complexity than
the most efficient algorithm known in the literature [5] when
the number of selected states is of practical interest. Also it
uses much less memory which may be an important factor in
the context of a reliability analysis tool for problems of great
dimension.

Finally some computational results were presented that
showed the signifcant efficiency improvement which can be
achieved by using this algorithm instead of the Yang and
Kubat [5] approach.
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Appendix A. Complexity calculations

Let |X;| be the size of the set of candidate paths before the
removal of the kth shortest path. In the worst case, two
insertions will take place after the selection (and removal)
of every selected path, therefore, |X;.|=|X;|+ 1. So,
having in mind that the insertion of a node or the removal
of the root of a binary heap has complexity O(log, b) where
b is the heap size, the cost of maintaining a heap of shortest
paths is:

K-1
L+ D" Qlogy|Xy| + log|X;11]) + loga|X| (A.T)
k=1

But |X;| = 1 (initially the set of candidate paths is just the

shortest path from s to ¢in 7;), |X5| = 2, ..., |Xk| = k, and the
previous expression can be rewritten:
K-1
1+ > (2log, k +log, k + 1) + log, K < 3K log, K
k=1

(A.2)

Table C.1
Probabilities of component modes

i p(i, 0) p(i, 1) p@i,2)
1 0.7 0.3

0.5 0.2 0.3
3 0.8 0.2

Therefore, the cost of the algorithm is now O(|L| +
K log, K).

Appendix B. Memory requirements

The calculation of the memory requirements of the Yang
and Kubat [5] algorithm is not simple.

The Yang and Kubat algorithm builds a tree of height
n + 1, where every path from the root to each of the leaves
corresponds to a network state. The number of nodes in that
tree, necessary for calculating the K most probable states,
depends on the values of the p(i,j) for every component i.

A lower bound on the number of nodes can nevertheless
be obtained. Let’s consider that the tree of the K most prob-
able states has a subtree of height 1 + logy K (that is the
most dense sub-tree with K leaves) hanging from an arm
withn + 1 — hnodes, where h = [logy K] ([x]represents the
smallest integer greater or equal to x).

So the total number of nodes is n — h + K Z?:o N It
should be noted that such a tree is a very unlikely structure.

Appendix C. Example

An illustrative example of the calculation of R is
presented in Table C.2 for three components with two and
three possible modes (with probabilities given in Table C.1,
identical to the ones used in Ref. [5]). Table C.3 and Fig. C.1
(where costs have been rounded) present the corresponding
cost matrix and graph, respectively. From the graph in
Fig. C.1 and the cost matrix in Table C.3 it is easily seen
that 7, will only have arcs of null cost: the arcs in the last
column of the cost matrix, (i, =5) withi =0,1,2,3,4.

In this example, the number of disconnected modes, d(i),
of each component i is: d(1) =1, d(2) =2 and d(3) = 1;
therefore, dr(1) = 1, d7(2) = 3,dt(3) =4 and dr(i — 1) <
r = dr(i) means that index r refers to the jth j = r — dp(i —
1)) disconnected mode of component i (with

Table C.2
Calculation of R according to values in Table C.1

@) r R(r) —In R(r)
(1,1) 1 0.3/0.7 0.84730
2,1) 2 0.2/0.5 0.91630
(2,2) 3 0.3/0.5 0.510826
3,1 4 0.2/0.8 1.38629
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Table C.3
Cost matrix
s=0 1 2 3 4 t=35

s=0 o0 0.8473 0.9163 0.510826 1.38629 0

1 © 0 0.9163 0.510826 1.38629 0

2 0 0 0 0 1.38629 0

3 0 00 00 00 1.38629 0

4 00 00 00 o) 00 0

d(0) = dp(0) = 0). Note that, in Table C.3, cy3 =
because id.(2) = id.(3).

Appendix D. Brief revision of MPS algorithm

Each time a path p is chosen from a set of candidate
paths, X, new paths may be added to X. In the context
of the MPS [8] algorithm the node v; of path p, from
which a new candidate path is generated is the devia-
tion node of that new path (which coincides with p up
to v); in a path the link the tail of which is the devia-
tion node, is called the deviation arc of that path. By
definition s is the deviation node of p; (the shortest path
from s to 7).

Leta = (i,j) € L, then nodes i and j are the fail and head
of arc a, respectively.

The concatenation of path p, from i to j, with path g, from
j to 1, is the path p<g, from i to I, which coincides with p
from i to j and with ¢ from j to [.

Let 7, designate a tree where there is a unique path from
any node i to ¢ (tree rooted at f) and r;(7,) denote the cost of
the path p, from i to ¢, in 7;; the reduced cost ¢;; of arc (i, j) €
L associated with 7, is ¢; = m(7) — 7(7) + ¢;.

Let 7/ be the tree of the shortest paths from all nodes to ¢
and p,,, the shortest path from v; to ¢ in 7;. The sub-path from
v; to t1n py is represented by p’v‘i,, and the sub-path from s to v;
by P4,

Let the set of arcs L of (L, V) be written in terms of A(k),
the set of arcs the tail node of whichisv € V = {1,2,...,n},
ie. L=A(l) UAQ2) U ... UA(n)suchthat AG)) NA() =D
for any i #j (i,j € V). Let a} € A(&) and a) € A(6).

Fig. C.1. Target graph corresponding to Table C.3 with arc costs rounded.

Assuming that ¢ 7 0 an order relation * <’ is defined for
the arcs such that a, < a} iff &€ < 6. Moreover if € = 6 then
ay < ajif &a}) = &(a)).

This means that the set A is sorted in such a way that for
any two arcs (k,j), (i, ) € L, (k,j) < @, D ifk<ior(k=i
and ¢;; = ¢;). The resulting set L = {ay, ay, ..., a,, } is said to
be in the sorted forward star form.

MPS Algorithm (adapted).

1. Input: the representation of the graph (V, L), arc costs ¢
s and ¢.
2. Compute 7,.
. Calculate the reduced cost ¢;; for every (i,j) € L.
. Rearrange the arcs of (V, L) in the sorted forward star
form (for the computed ¢;;).
. p; < shortest path from stot (p; € 7,)
- X —{p1}
k<0
. While ((k < K) A (X # J)) Do
@k—k+1
(b) pi < shortest path in X
©) X —X— {p}
(d) Let v; be the deviation node of p;
(e) Repeat
(i) a;, < the arc of p, the tail of which is v;
(i1) If (v is the tail of a;,;) Then
— v; < head of a;+;
-X—=XU {pfv,-<><vi’ah+l’ Vj>’p§/-t}

ij>

W

© O

EndIf
(iii) v; « following node in p;
Until (v; = 1)

9. EndWhileDo

Each path could be represented by the following informa-
tion: cost of the path, deviation arc of the path and the order
of the path it deviates from. The paths are stored in a
pseudo-tree as described in Ref. [8].
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